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On some global and local geometric properties
of Musielak–Orlicz spaces

By HENRYK HUDZIK (Poznań) and WOJCIECH KOWALEWSKI (Poznań)

Abstract. It is well known that any SU-point is an exposed point and any
LUR-point is a strongly exposed point. Conditions which complete exposed points
and strongly exposed points to SU-points and LUR points (respectively) are
found. Criteria for SU-points in Musielak–Orlicz spaces with the Luxemburg
and the Orlicz norms are given. Moreover, criteria for compact local uniform
rotundity of Musielak–Orlicz sequence spaces are established.

1. Introduction

Denote by N and R the sets of natural and real numbers, respectively.
Let (X, ‖ ‖) be a real Banach space and X∗ be its dual space. By S(X)
we denote the unit sphere of X.

A point x ∈ S(X) is said to be an extreme point if for every y, z ∈ S(X)
such that x = y+z

2 , we have z = y = x. We say that x∗ ∈ X∗ is a support
functional at x ∈ X \ {0} if ‖x∗‖ = 1 and x∗(x) = ‖x‖. The set of
all support functionals at x ∈ X \ {0} is denoted by Grad(x). A point
x ∈ S(X) is said to be an exposed point if there exists x∗ ∈ Grad(x) such
that x∗ /∈ Grad(y), whenever y ∈ S(X) and y �= x. It is obvious that every
exposed point is an extreme point.
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A point x ∈ S(X) is said to be a strongly exposed point if there exists
x∗ ∈ Grad(x) such that for every sequence (xn) ⊂ S(X) the condition
x∗(xn − x)→ 0 implies ‖xn − x‖ → 0.

A point x ∈ S(X) is called a strong U-point (SU-point for short) if for
any y ∈ S(X) with ‖x + y‖ = 2, we have x = y.

A point x ∈ S(X) is said to be a point of compact local uniform
rotundity (local uniform rotundity) (CLUR-point, (LUR-point) for short)
if for every (xn)∞n=1 in S(X) such that ‖xn +x‖ → 2 we have that (xn) is a
relatively compact set in S(X) (resp. ‖xn − x‖ → 0). If every x ∈ S(X) is
a CLUR-point, then we say that X is compactly locally uniformly rotund
(X ∈ (CLUR) for short). If every x ∈ S(X) is a LUR-point, then we say
that X is locally uniformly rotund (X ∈ (LUR) for short). The importance
of the notion of SU-point follows from the fact that x ∈ S(X) is a LUR-
point if and only if x is a CLUR-point and an SU-point as well as that
“SU-point” cannot be replaced in this equivalence by “extreme point”
(see [3]). Moreover, a point x ∈ S(X) is an SU-point if and only if any
x∗ ∈ Grad(x) exposes x, that is, if y ∈ S(X) and x∗(y) = 1, then x = y

(see [10], Remark 2). In consequence any SU-point of S(X) is an exposed
point. It is also known that in Köthe function (or sequence) spaces, if
x ∈ S(X) is an SU-point, then |x| is a point of upper monotonicity as
well as a point of lower monotonicity (see [10], Lemma 7). For example,
the point (1, 1) is an extreme point of S(l∞2 ), but it is not a point of
lower monotonicity because ‖(1, 0)‖∞ = ‖(1, 1)‖∞ = 1 and (1, 0) ≤ (1, 1),
(1, 0) �= (1, 1).

A Banach space X is said to have the Kadec–Klee property (X has
the H-property) or X ∈ (H) for short if the weak convergence and the
convergence in norm of sequences in S(X) to a limit element from S(X)
coincide. It is known that the CLUR property implies the H-property.

A sequence Φ = (Φi)∞i=1 is called a Musielak–Orlicz function, if for any
i ∈ N, the function Φi : R → R+ ∪ {∞} is convex, even, vanishing at 0,
limu→∞ Φi(u) = ∞ and Φi(ui) < ∞ for some ui ∈ (0,∞). The function
Ψ = (Ψi)∞i=1 with Φi(v) = supu≥0{u|v| − Φi(u)} for any i ∈ N and v ∈ R

is called the function complementary to Φ in the sense of Young. The
function Ψ is again a Musielak–Orlicz function.

Denote by l0 the space of all real sequences and define en = χ{n} for
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any n ∈ N. Given a Musielak–Orlicz function Φ, we define the Musielak–
Orlicz sequence space lΦ, by

lΦ = {x = (xi)∞i=1 ∈ l0 : IΦ(λx) <∞ for some λ > 0},
where

IΦ(x) =
∞∑
i=1

Φi(xi).

This space equipped with the Luxemburg norm

‖x‖Φ = inf{λ > 0 : IΦ(x/λ) ≤ 1}
or with the equivalent one

‖x‖oΦ = inf
k>0

1
k
(1 + IΦ(kx))

called the Orlicz (or the Amemiya) norm is a Banach space. The spaces
(lΦ, ‖ ‖Φ) and (lΦ, ‖ ‖oΦ) will be denoted shortly by lΦ and l◦Φ, respectively.
Moreover, we define the space{

x = (xi)∞i=1 ∈ l0 : ∀λ > 0∃iλ ∈ N s.t.
∞∑

i=iλ

Φi(λ|x(i)|) <∞
}

,

and it will be denoted shortly by hΦ and h◦
Φ, respectively. For x ∈ lΦ we de-

note θ(x) = inf
{
λ> 0 :

∑∞
i=iλ

Φi(λ|x(i)|)<∞ for some iλ ∈ N depending
on λ

}
.

Let p−i (u), p+
i (u) (q−i (u), q+

i (u) respectively) denote the left and right
derivatives of Φi (Ψi respectively) at u. We have the Young inequality

uv ≤ Φi(u) + Ψi(v)

for all u, v ≥ 0; and

uv = Φi(u) + Ψi(v)⇐⇒ p−i (u) ≤ v ≤ p+
i (u) or q−i (v) ≤ u ≤ q+

i (v).

For any x ∈ l◦Φ, we define

k∗(x) = inf{k ≥ 0 : IΨ(p+(k|x|)) ≥ 1};
k∗∗(x) = sup{k ≥ 0 : IΨ(p+(k|x|)) ≤ 1};
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K(x) =

{
[k∗(x), k∗∗(x)], if k∗∗(x) <∞;

[k∗(x),∞) if k∗(x) <∞ and k∗∗(x) =∞.

We usually will write k∗, k∗∗ instead of k∗(x), k∗∗(x) if it is clear which x is
considered. It is known that ‖x‖oΦ = 1

k (1+ IΦ(kx)) if and only if k ∈ K(x)
for any x ∈ lΦ (see [21]).

The dual space of lΦ is well known. Namely, we have

(lΦ)∗ = lΨ ⊕ S,

that is, any x∗ ∈ (lΦ)∗ is uniquely represented in the form

x∗ = ξv + φ,

where v ∈ lΨ and ξv is the order continuous functional on lΦ generated by
v, that is,

ξv(x) =
∞∑
i=1

vixi (∀x ∈ lΦ)

and φ ∈ S is a linear singular functional on lΦ, that is, φ(x) = 0 for any
x ∈ hΦ (order continuous functionals are also called regular functionals).
We denote by R Grad(x), (S Grad(y), respectively) the set of all regular
(singular, respectively) support functionals at x.

Let N0 be a subset of N. We say that a Musielak–Orlicz function
Φ satisfies the δ2(N0) condition (Φ ∈ δ2(N0) for short) if for any h > 1
(equivalently for some h > 1) there exists a > 0, k > 1, i0 ∈ N0 and a
positive sequence (ci) (i ∈ N0, i > i0) such that

∑
i∈N0, i>i0

ci < ∞ and
the inequality

Φi(hu) ≤ kΦi(u) + ci

holds whenever i ∈ N0, i > i0 and Φi(u) ≤ a. If Φ ∈ δ2(N), then we write
simply Φ ∈ δ2.

For the theories of Orlicz and Musielak–Orlicz spaces and the notions
concerning lΦ defined above we refer to [2], [18], [17], [21], [15], [19] and [16].

We say that a function Φ : R → R+ ∪ {∞} is upper (lower) affine at
w ∈ R if there exists v ∈ R with |v| > |w| (|v| < |w|) such that Φ is affine
on the intervals

[|w|, |v|] and
[ − |v|,−|w|] (respectively on the intervals[|v|, |w|] and

[− |w|,−|v|]). We introduce the following notations:

Ai
u = {z ∈ R : Φi is upper affine at z},
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Ai
l = {z ∈ R : Φi is lower affine at z}

ASi
u = {z ∈ Ai

u : p−i (z) = p+
i (z)}, ASi

l = {z ∈ Ai
l : p−i (z) = p+

i (z)}

ANSi
u = Ai

u \ASi
u, ANSi

l = Ai
l \ASi

l

Au(x) = {i ∈ N : xi ∈ Ai
u}, Al(x) = {i ∈ N : xi ∈ Ai

l},

As
u(x) = {i ∈ Au(x) : xi ∈ ASi

u}, As
l (x) = {i ∈ Al(x) : xi ∈ ASi

l},
Ans

u (x) = Au(x) \ As
u(x), Ans

l (x) = Al(x) \ As
l (x).

Moreover, for every i ∈ N we denote Smooth(Φi) = {u ∈ R : p+
i (u) =

p−i (u)}, a(Φi) = sup{u ≥ 0 : Φi(u) = 0}, b(Φi) = sup{u ≥ 0 : Φi(u) <∞},
Ext(Φi) = {u ∈ R : Φi is strictly convex at u}, ∂Φi(u) = [p−i (u), p+

i (u)].
If a(Φi) = 0 (b(Φi) = +∞, respectively) for all i ∈ N, then we will write
Φ > 0 (Φ <∞, respectively).

We will use a few known results that we present below.

Theorem 1.1 ([3]). Let X be a Banach space and x ∈ S(X). If x is

an SU-point, then x is an exposed point.

Theorem 1.2 ([1]). A point x ∈ S(lΦ) is exposed if and only if:

(i) IΦ(x) = 1,

(ii) card({i ∈ N : a(Φi) > 0, xi ∈ Smooth(Φi)}) = 0,

(iii) card({i ∈ N : xi /∈ Ext(Φi)}) ≤ 1,

(iv) (p−i (|xi|))i∈N ∈ lΨ,

(v) there are no pair i, j ∈ N with i �= j such that xi ∈ ASi
u and xj ∈ ASj

l .

Theorem 1.3 ([6]). A Musielak–Orlicz space l◦Φ has property H if and

only if Φ ∈ δ2 or
∑∞

i=1 Ψi(ci) ≤ 1,where

ci =

{
b(Φi), if Ψi(b(Φi)) < 1;

Ψ−1
i (1), otherwise.

Theorem 1.4 ([4]). Let X be a reflexive Banach space. Then both X

and X∗ have the CLUR-property if and only if the both X and X∗ have

the H-property.
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Lemma 1.1 (see [20], [14]). Let Φ < ∞, x ∈ S(lΦ) and IΦ(x) = 1.
Then x∗ ∈ R Grad(x) if and only if it is of the form

x∗(y) =
∞∑
i=1

ηiyi

/ ∞∑
i=1

ηixi (y ∈ lΦ),

where η = (ηi) ∈ lΨ is such that ηi ∈ ∂Φi(xi) = [p−i (|xi|), p+
i (|xi|)] for any

i ∈ N.

Lemma 1.2 ([20]). If Ψ /∈ δ2, then there exists a sequence (In) ⊂ N

(0 = I0 < I1 < I2 < . . . ) and a family of sequences (un
i ) in R+ (n = 1, 2 . . . ;

i = In−1 + 1, . . . , In) such that

In∑
i=In−1+1

Φi(un
i ) > 1 for any n ∈ N,

Φi(un
i ) ≤ 1

n
, Φi

(
un

i

2

)
>

(
1− 1

n

)
Φi(un

i )
2

for any n ∈ N and any i ∈ {In−1 + 1, . . . , In}.
Theorem 1.5 ([12]). Let x ∈ S(l◦Φ) and k ∈ K(x). Then

(i) if k∗ < k∗∗, then there exists exactly one support functional at x and

it is generated by w sgn(x), where wi = p+
i (k∗xi) = p−i (k∗∗xi) for any

i ∈ N;

(ii) if K(x) = {k}, then

(a) IΨ(p−(kx)) ≤ 1 and θ(kx) ≤ 1;

(b) if θ(kx) < 1, then IΨ(p+(kx)) ≥ 1. Moreover, each support

functional at x belongs to lΨ and it is of the form : w sgn(x),
where p−i (kxi) ≤ wi ≤ p+

i (kxi) for any i ∈ N and IΨ(w) = 1;

(c) if θ(kx) = 1, then each support functional at x is of the form

w sgn(x) + φ, where p−i (k|xi|) ≤ wi ≤ p+
i (k|xi|) for any i ∈ N,

IΨ(w) + a = 1, φ is a singular functional, φ(x) = a/k and a ∈
[0, 1 − IΨ(p−(kx))].
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2. Results

We start with two auxiliary lemmas and two remarks.

Lemma 2.1. In the Musielak–Orlicz space hΦ, the condition IΦ(x)=1
is equivalent to the condition ‖x‖Φ = 1 if and only if Φi(b(Φi)) ≥ 1 for any

i ∈ N.

Proof. Necessity. Suppose that there exists i0 ∈ N such that
Φi0(b(Φi0)) < 1. Defining x = b(Φi0)ei0 we have IΦ(x) < 1 and IΦ(λx) =
∞ for any λ > 1, which implies ‖x‖Φ = 1.

Sufficiency. It suffices to show that ‖x‖Φ = 1 implies IΦ(x) = 1
when Φi(b(Φi)) ≥ 1 for any i ∈ N. Assume that there exists x ∈ hΦ

such that IΦ(x) < 1. The function f(λ) = IΦ(λx) is convex. It fol-
lows from the definition of the space hΦ that there exists i0 ∈ N such
that

∑∞
i=i0

Φi(2xi) < ∞. Moreover, there exists λ0 ∈ (1, 2) such that∑i0−1
i=1 Φi(λ0xi) < 1, because of IΦ(x) < 1. Therefore, the function f is

real-valued in the interval (0, λ0), so it is continuous on this interval, by
its convexity. Since f(1) = IΦ(x) < 1 and f is continuous in a right-
neighbourhood of 1, there exists λ1 > 1 such that IΦ(λ1x) < 1, whence
‖λ1x‖Φ ≤ 1, which gives ‖x‖Φ ≤ 1

λ1
< 1. This contradiction finishes the

proof. �

Using similar techniques as in [11], we get

Lemma 2.2. Assume that Φ = (Φi) is a Musielak–Orlicz function

such that for any i ∈ N there exists ui ∈ R satisfying Φi(ui) = 1. Let

Φ ∈ δ2, x ∈ lΦ, (xn) ⊂ lΦ, xn → x coordinatewise and ‖xn‖Φ → ‖x‖Φ.

Then ‖xn − x‖Φ → 0.

Remark 2.1. For a Banach space X and x ∈ S(X) define the follow-

ing condition

(A) If y ∈ S(X) and ‖x + y‖ = 2, then Grad(x) = Grad(y).

Then the point x is an SU-point if and only if x is an exposed point

and condition (A) holds.

Proof. ⇐) Let x, y ∈ S(X) and ‖x + y‖ = 2. Then condition (A)
gives Grad(y) = Grad(x). Using the fact that x is an exposed point we
get x = y.
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⇒) First we will show that any SU-point in S(X) is an exposed point.
Let y ∈ S(X) and x∗(x) = x∗(y) = 1 for x∗ ∈ S(X∗). Then x∗(x + y) = 2.
Therefore

2 = ‖x∗‖‖x + y‖ ≥ |x∗(x + y)| = 2,

whence ‖x+ y‖ = 2. By the assumption that x is an SU-point we get that
x = y, which means x is an exposed point. Now assume that x ∈ S(X) is an
SU-point, y ∈ S(X), ‖x + y‖ = 2. Then x = y and so Grad(y) = Grad(x).
Therefore we have obtained condition (A). �

Remark 2.2. For a Banach space X and x ∈ S(X) define the follow-

ing condition

(B) If (xn) ⊂ S(X), x∗ ∈ Grad(x) and ‖x + xn‖ = 2, then x∗(xn)→ 1.

Then x is a LUR-point if and only if x is a strongly exposed point and

condition (B) holds.

Proof. ⇒) It is well known that a LUR-point is a strongly exposed
point. Let x be a LUR-point and ‖x + xn‖ → 2. Then ‖x − xn‖ → 0,
which implies that xn

w→ x, i.e. x∗(xn) → x∗(x) = 1. Therefore we have
obtained condition (B).
⇐) Let ‖xn + x‖ → 2 and x∗ ∈ S(X∗) be a functional which exposes

x strongly. Then x∗ ∈ Grad(x) and by condition (B) we get x∗(xn)→ 1 =
x∗(x), i.e. x∗(xn−x)→ 0 for any x∗ ∈ Grad(x). Since x∗ strongly exposes
x, so ‖xn − x‖ → 0. �

Theorem 2.1. Let Φ < ∞ and x ∈ S(lΦ). Then x is an SU-point if

and only if:

(i) IΦ(x) = 1,

(ii) card({i ∈ N : a(Φi) > 0, xi ∈ Smooth(Φi)}) = 0,

(iii) card({i ∈ N : xi /∈ Ext(Φi)}) ≤ 1,

(iv) there are no i, j ∈ N, i �= j, such that xi ∈ Ai
u and xj ∈ Aj

l ,

(v) θ(x) < 1,

Proof. Necessity. Assume, without loss of generality that x ≥ 0 and
x is an SU-point of S(lΦ). By Theorem 1.1 and Theorem 1.2 we only need
to show the necessity of conditions (v) and (iv). Suppose θ(x) ≥ 1. Since
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x ∈ S(lΦ) and θ(x) ≤ ‖x‖Φ, we have θ(x) = 1. Then IΦ(λx) = +∞ for
any λ > 1. Let i0 ∈ N be such that xi0 �= 0 and let y = {yi}, where

yi =

{
xi, i �= i0;

0, i = i0.

Then IΦ(y) ≤ 1, whence ‖y‖Φ ≤ 1, and IΦ(λy) = +∞ for any λ > 1,
which implies ‖y‖Φ ≥ 1. Consequently ‖y‖Φ = 1. Therefore ‖x + y‖Φ ≤ 2.
Moreover, |y| ≤ |x| and |y| �= |x|, which implies 2 = 2‖y‖Φ ≤ ‖x + y‖Φ,
whence we get ‖x+y‖Φ = 2. This contradicts the assumption that x is an
SU-point and gives the necessity of condition (v). Now we will show that
condition (iv) is necessary. By Theorem 1.2 we need to consider only two
cases: I) there exist i, j ∈ N, i �= j, such that xi ∈ ASi

u and xj ∈ ANSj
l ;

II) there exist i, j ∈ N, i �= j, such that xi ∈ ANSi
u and xj ∈ ANSj

l . We
will prove only case I), because the proof of the second one is nearly the
same. Assume that there exist i, j ∈ N, i �= j, such that xi ∈ ASi

u and
xj ∈ ANSj

l . We choose a, b ∈ R+ such that

Φi(xi) + Φj(xj) = Φi(xi + a) + Φj(xj − b)

and define
y = xχN\{i,j} + (xi + a)ei + (xj − b)ej .

Then IΦ(y) = IΦ(x) = 1, by condition (i). Let ηi = p+
i (xi) = pi(xi),

ηj = p−j (xj) and ηn = p−n (xn) for n /∈ {i, j}. Then, by Lemma 1.1, the
support functional x∗ generated by η belongs to Grad(x) ∩Grad(y). So

2 = x∗(x + y) ≤ ‖x + y‖Φ ≤ 2,

whence ‖x + y‖Φ = 2. This contradicts the assumption that x is an SU-
point. In the same way we consider the case: xi ∈ ANSi

u and xj ∈ ANSj
l

for some natural i �= j.
Sufficiency. Assume that conditions (i)–(v) hold and ‖x‖Φ = ‖y‖Φ =

‖x+y
2 ‖Φ = 1. In the same way as in the proof of Theorem 5 in [3] we show

that IΦ(y) = IΦ(x+y
2 ) = 1 and the coordinates xi, yi belong to the same

interval of the affinity of the functions Φi, for any i ∈ N. If there exists
i0 /∈ Ext(Φi) (condition (iii)), then condition (ii) yields Φi0(xi0) �= 0. Since
xi0 and yi0 belong to the same interval of affinity of the function Φi0 and
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IΦ(x) = IΦ(y) = 1, so we have xi0 = yi0. If xi ∈ Ext(Φi) ∩ Ai
u for some

i ∈ N, then, by condition (iv), xj ∈ Aj
u for any natural j �= i. Therefore

xi ≤ yi for any i ∈ N. Now condition (i) implies that xi = yi for any i ∈ N,
because of IΦ(y) = 1. Similarly we consider the case xi ∈ Ext(Φi)∩Ai

l for
some i ∈ N. �

Theorem 2.2. Let x ∈ S(LΦ) and b(Φ(t, ·)) = +∞ for µ-almost every

t ∈ T . Then x is SU-point if and only if:

(i) IΦ(x) = 1,

(ii) µ({t ∈ T : a(Φ(t, ·)) > 0, x(t) ∈ Smooth(Φ(t, ·))}) = 0,

(iii) µ({t ∈ T : x(t) /∈ Ext(Φ(t, ·))}) = 0,

(iv) µ(Al(x))µ(Au(x)) = 0,

(v) θ(x) < 1.

Proof. The proof proceeds in the same way as the proof of Theo-
rem 2.1, using Theorem 3 in [1] (which characterizes exposed points in
LΦ) instead of Theorem 1.2. �

The next theorem is an analogue of Theorem 2.1, but it concernes the
Orlicz norm.

Theorem 2.3. A point x ∈ S(l◦Φ) is an SU-point if and only if the

following conditions hold:

(i) K(x) = {k} for some 0 < k <∞,

(ii) As
l (kx) = As

u(kx) = ∅,
(iii) if Ans

l (kx) �= ∅, then θ(kx)< 1 and IΨ(p+(kx)χN\{i})+Ψi(p−i (kxi)) < 1
for any i ∈ Ans

l (kx).

(iv) if Ans
u (kx) �= ∅, then θ(kx)< 1 and IΨ(p−(kx)χN\{i})+Ψi(p+

i (kxi)) > 1
for any i ∈ Ans

u (kx).

Proof. Necessity. Condition (i) is necessary in order that x is an
extreme point (see [13] and [5]). Therefore, it is also necessary in order
that x is an SU-point.

(ii) Assume for simplicity (but without loss of generality) that x ≥ 0.
Since condition (i) is necessary, we can assume in the remaining part of
the proof that K(x) = {k}. Suppose that there exists i0 ∈ As

l (kx). Then



On some global and local geometric properties. . . 51

the function Φi0 is affine in the interval [kxi0 − b, kxi0 ] for some b > 0. We
will consider two cases.

1◦ Let θ(kx) < 1. Define

y = xχN\{i0} +
(

xi0 − sgn(xi0)
b

k

)
ei0 . (1)

Then p+
i (kyi) = p+

i (kxi) for any i ∈ N. Hence IΨ(p+(ky)) = IΨ(p+(kx)).
Moreover, for α �= k, we have IΨ(p+(αy)) ≤ IΨ(p+(αx)), which implies
k = k∗(x) ≤ k∗(y). Since 0 ≤ y ≤ x, we have θ(ky) ≤ θ(kx) < 1. If
IΨ(p+(kx)) < 1, then by Theorem 1.5(ii)(b), we have that Grad(x) = ∅,
which contradicts the Hahn–Banach theorem. Hence IΨ(p+(kx)) ≥ 1.

If IΨ(p+(kx)) > 1, then IΨ(p+(ky)) > 1, whence k∗(y) ≤ k and we
get k∗(y) = k, by k∗(y) ≥ k. Consequently K(y) = {k}, because in the
opposite case IΨ(p+(kx)) = 1, by Theorem 1.5(i) and the Young inequality.
Since k ∈ K(y) if and only if k‖y‖oΦ ∈ K (y/‖y‖oΦ), so K (y/‖y‖oΦ) =
{k‖y‖oΦ}. Moreover

p−i

(
k‖y‖oΦ

yi

‖y‖oΦ

)
= p−i (kyi) = p−i (kxi),

p+
i

(
k‖y‖oΦ

yi

‖y‖oΦ

)
= p+

i (kyi) = p+
i (kxi)

for any i ∈ N, so by Theorem 1.5(ii)(b), Grad (y/‖y‖oΦ) = Grad(x).
If IΨ(p+(kx)) = 1, then IΨ(p+(ky)) = 1 and k ∈ K(y), so k∗(y) = k,

by k∗(y) ≥ k, which has been already proved. If k = k∗(y) < k∗∗(y)
then, by Theorem 1.5(i), p+(kx) generates a support functional x∗ be-
longing to Grad(x) ∩ Grad

( y
‖y‖o

Φ

)
. If k = k∗(y) = k∗∗(y) then, by Theo-

rem 1.5(ii)(b), p+(kx) generates a support functional x∗ that belongs to
Grad(x) ∩Grad(y/‖y‖oΦ). For such a functional we have

2 = x∗
(

x +
y

‖y‖oΦ

)
≤
∥∥∥∥x +

y

‖y‖oΦ

∥∥∥∥
◦

Φ

≤ 2,

whence ‖x + y
‖y‖o

Φ
‖oΦ = 2, which means that x is not an SU-point. This

proves the necessity of the condition As
l (kx) = ∅ for k satisfying K(k) =

{k} whenever θ(kx) < 1.
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2◦ Let θ(kx) = 1. Define y as in (1). Then θ(ky) = 1, because in the
opposite case there exists l > k such that IΦ(ly) <∞. On the other hand,
by IΦ(lx) =∞, we have

IΦ(ly) = IΦ(lxχN\{i0}) + Φi0(lyi0) = IΦ(lx) + Φi0(lyi0)− Φi0(lxi0) = +∞,

which gives a contradiction. By Theorem 1.5(ii)(c), the case IΨ(p+(kx))≥1
can be considered as the case 1◦. So let IΨ(p+(kx))<1. Then IΨ(p+(ky))<1.
Since θ(ky) = 1, so IΦ(αy) = ∞ for any α > k, whence k∗∗(y) = k and
K(y) = {k}, by k∗(y) = k. It follows from Theorem 1.5(ii)(c) that any
y∗ ∈ Grad

(
y

‖y‖o
Φ

)
is generated by the triple (v, φ, a), where v ∈ lΨ, φ

is a singular functional, a ≥ 0, IΨ(v) + a = 1, φ (y/‖y‖oΦ) = a/(k‖y‖oΦ),
a ∈ [0, 1 − IΨ(p−(ky))] and

p−i (kxi) = p−i

(
k‖y‖oΦ

yi

‖y‖oΦ

)
≤ vi ≤ p+

i

(
k‖y‖oΦ

yi

‖y‖oΦ

)
= p+

i (kxi)

for any i ∈ N. Moreover
∞∑
i=1

yi

‖y‖oΦ
sgn(yi)vi = 1− a

k‖y‖oΦ
,

because IΨ(v) = 1− a, IΦ(ky) = k‖y‖oΦ − 1 and

k‖y‖oΦ
∞∑
i=1

y

‖y‖oΦ
sgn(yi)vi = IΦ(ky) + IΨ(v).

Similarly

k
∞∑
i=1

xi sgn(xi)vi = IΦ(kx) + IΨ(v) = k − 1 + 1− a = k − a.

Hence
∑∞

i=1 xi sgn(xi)vi = 1− a
k . Moreover x−y ∈ hΦ, so φ(y) = φ(x) = a

k .
It means that

Grad
(

y

‖y‖oΦ

)
⊂ Grad(x).

Now we can proceed as in the case 1◦ of the proof, obtaining that x is not
an SU-point.

In the same way we can show that As
u(kx) = ∅.
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(iii) By the previous part of the proof we can assume that conditions
(i)–(ii) hold. Consider first the case θ(kx) = 1. Assume that there exists
i0 ∈ Ans

l (kx). Then the function Φi0 is affine on the interval [kxi0−b, kxi0 ]
for some b > 0. Define y as in (1). Then, similarly as in the proof of
condition the necessity of (ii), we have θ(ky) = 1. First we will show that

IΨ(p−(kx)) < 1. (2)

Suppose for the contrary that IΨ(p−(kx)) ≥ 1. Since K(x) = {k}, it
follows from Theorem 1.5(ii)(a) that IΨ(p−(kx)) ≤ 1, whence

IΨ(p−(kx)) = 1. (3)

Consequently, since i0 ∈ Ans
l (kx), we get

IΨ(p+(kx)) > 1. (4)

Since K(x) = {k}, we get IΨ(p+(αx)) < 1 for any α < k, because in the
opposite case k∗(x) ≤ α < k. So by i0 ∈ Ans

l (kx) and y ≤ x, we have

IΨ(p+(αy)) < 1 for any α < k. (5)

If IΨ(p+(kx)χN\{i0}) + Ψi0(p
i0−(kxi0)) < 1, then IΨ(p+(ky)) < 1, which

contradicts the equality IΨ(p−(ky)) = 1, being a consequence of (3). So
we should consider only two subcases.

3◦ LetIΨ(p+(kx)χN\{i0}) + Ψi0(p
−
i0

(kxi0)) > 1. Then IΨ(p+(ky)) > 1,
whence k∗(y) ≤ k and, by (5), k∗(y) = k. If k = k∗ < k∗∗, then it follows
from Theorem 1.5(i) and from the Young inequality that IΨ(p+(ky)) =
1, which contradicts the fact that IΨ(p+(ky)) > 1, whence K(y)= {k}.
Therefore K (y/‖y‖oΦ) = {k‖y‖oΦ}. Moreover IΨ(p−(ky)) = IΨ(p−(kx)) =
1, by (3). By Theorem 1.5(ii)(c) we have that the support functional x∗,
generated by p−(kx) belongs to Grad(x) = Grad (y/‖y‖oΦ). Proceeding as
in the case 1◦ of the proof, we get that x is not an SU-point.

4◦ Let IΨ(p+(kx)χN\{i0}) + Ψi0(p
i0−(kxi0)) = 1. Note that in this case

supp(x) �= Ans
l (kx), because in the opposite case we have IΨ(p−(kx)) < 1,

which contradicts condition (3). So, in particular, we have supp(x) �=
{i0}. Moreover IΨ(p+(ky)) = 1, whence k ∈ K(y) and IΨ(p+(ky)) =
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IΨ(p−(ky)) = 1, by (3) and the fact that IΨ(p−(ky)) = IΨ(p−(kx)). By
the assumption that Φi(u)/u→ 0 as u→ 0 for any i ∈ N, we get

p−i (kyi) = p+
i (kyi) for any i �= i0, i ∈ N. (6)

Condition (5) and IΨ(p+(ky)) = 1 imply that k∗(y) = k. By (6) we have
IΨ(p+(αy)) > IΨ(p+(ky)) = 1 for any α > k. Hence IΨ(p+(ky)) = 1
implies that k∗∗(y) = k. Finally K(y) = {k}. Proceeding as in the case 3◦

of the proof, we get that x is not an SU-point.

Therefore, we have proved that if θ(kx) = 1, then condition (2) is
necessary in order that x is an SU-point and we can assume that this
condition holds.

Now once again consider y as in (1). If IΨ(p+(ky)) ≥ 1, then, as
above (cases 3◦ and 4◦ of the proof), we have k∗(y) = k. If k∗∗(y) =
k∗ = k, then, by condition (2) and Theorem 1.5(ii)(c), the support func-
tional x∗ ∈ Grad(x), which is generated by the triple (w,φ1, a1), where
w = (p−i (kxi))∞1 = (p−i (kyi))∞1 and a1, φ1 satisfy conditions from Theo-
rem 1.5(ii)(c), also belongs to Grad (y/‖y‖oΦ). Proceeding with x∗ as in
the case 1◦ of the proof, we get ‖x + y‖oΦ = 2. It means that x is not
an SU-point. If k∗∗(y) > k∗ = k, then, by Theorem 1.5(i) and the Young
inequality, we get IΨ(p+(ky)) = 1, whence k∗∗(y) ≥ k. Since θ(ky) = 1, so
IΦ(ly) =∞ for any l > k, whence k∗∗(y) = k and finally K(y) = k. This
contradiction shows that the case k∗∗(y) > k∗ is impossible.

If IΨ(p+(ky)) < 1, then k∗∗(y) ≥ k and as above, using θ(ky) = 1,
we get k∗∗(y) = k. From Theorem 1.5(i) and the Young inequality, we get
that K(y) = {k}, because in the opposite case IΨ(p−(ky)) = 1. Now we
proceed as above, obtaining a contradiction.

In order to prove condition (2) in the case θ(kx) < 1 together with the
assumption that there exists i0 ∈ Ans

l (kx) such that IΨ(p+(kx)χN\{i0}) +
Ψi0(p

−
i0

(kxi0)) ≥ 1, we proceed exactly in the same way as in the cases
3◦ and 4◦ of the proof, using only Theorem 1.5(ii)(b) instead of Theo-
rem 1.5(ii)(c). Then we have IΨ(p−(kx)) < 1 and IΨ(p+(kx)) > 1. Defin-
ing y as in (1), we get IΨ(p+(ky)) ≥ 1, whence k∗(y) ≤ k and, by (5),
k∗(y) = k. We will consider two cases.

If IΨ(p+(ky)) = 1, then the support functional x∗, generated by
p+(ky), belongs to the Grad(x) ∩ Grad (y/‖y‖oΦ), by Theorem 1.5(ii)(b)
and the fact that p−(kx) = p−(ky) ≤ p+(ky) ≤ p+(kx). Therefore, as in
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the case 1◦ of the proof, we have ‖x + y/‖y‖oΦ‖oΦ = 2. So, we get that x is
not an SU-point.

If IΨ(p+(ky)) > 1, then there exists Ans(kx) � i1 �= i0, because in the
opposite case Grad(x) = ∅, by Theorem 1.5(ii)(b). If∑

i=1

i/∈{i0,i1}

Ψi(p+
i (kxi)) + Ψi0(p

−
i0

(kxi0)) + Ψi1(p
−
i1

(kxi1)) = 1,

then the support functional x∗, generated by v = (vi)∞1 , where vi =
p+

i (kxi) for i /∈ {i0, i1}, vi = p−i (kxi) for i ∈ {i0, i1}, belongs to the
Grad(x) ∩Grad (y‖y‖oΦ). So, as above, x is not an SU-point.

(iv) This case can be proved similarly to the case (iii), so we omit the
proof. �

Sufficiency. Assume that y ∈ S(l◦Φ), ‖x + y‖oΦ = 2. Let l ∈ K(y) and
conditions (i)–(iv) hold. Then kl

k+l ∈ K(x + y) (see [4]) and ‖x + y‖oΦ =
‖x‖oΦ + ‖y‖oΦ, whence

(k + l)
(
1 + IΦ

(
kl

k+l(x + y)
))

kl
=

l(1 + IΦ(kx)) + k(1 + IΦ(ly))
kl

,

(l + k)IΦ

(
kl

k + l
(x + y)

)
= lIΦ(kx)) + kIΦ(ly),

∞∑
i=1

Φi

(
kl

k + l
(xi + yi)

)
=

l

k + l

∞∑
i=1

Φi(kxi) +
k

k + l

∞∑
i=1

Φi(lyi),

Φi

(
l

k + l
kxi +

k

k + l
lyi

)
=

l

k + l
Φi(kxi) +

k

k + l
Φi(lyi)

for all i ∈ N. It means that all functions Φi are affine on the intervals
[min{kxi, lyi},max{kxi, lyi}]. Suppose that there exist i �= j such that
i ∈ Ans

l (kx) and j ∈ Ans
u (kx). Then, by conditions (iii) and (iv), we get

1 > IΨ(p+(kx)χN\{i,j}) + Ψi(p−i (kxi)) + Ψj(p+
j (kxj))

≥ IΨ(p−(kx)χN\{i,j}) + Ψi(p−i (kxi)) + Ψj(p+
j (kxj))

= IΨ(p−(kx)χN\{j}) + Ψj(p+
j (kxj)) > 1,
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a contradiction, whence either N = Ans
l (kx) or N = Ans

u (kx). Assume that
N = Ans

l (kx). Then lyi ≤ kxi for any i ∈ N and since x, y ∈ S(l◦Φ), so
l ≤ k. By (iii) we get θ(kx) < 1. Suppose that there exists i0 ∈ N such
that lyi0 < kxi0 . By condition (iii), we have

IΨ(p+(kx)χN\{i0}) + Ψi0(p
i0−(kxi0)) < 1. (7)

Without loss of generality we can assume that lyi = kxi for any natural i �=
i0, because condition (7) holds for any i ∈ N, not only for fixed i0. More-
over pi0

+(lyi0) = pi0−(kxi0) and pi
+(lyi) ≤ pi

+(kxi) for any i �= i0. Then, by
(7), we get IΨ(p+(ly)) < 1. Moreover, ly≤ kx, whence θ(ly)≤ θ(kx)< 1.
Therefore, it follows from Theorem 1.5(ii)(b) that Grad(y) = ∅, which
contradicts Hahn–Banach Theorem. Therefore lyi0 = kxi0 . It implies that
ly = kx, and since x, y ∈ S(l◦Φ), so k = l and finally x = y.

If Ans
u (kx) = N, then we proceed in the same way as above, using

condition (iv) instead of condition (iii).
In a similar way we can prove the following

Theorem 2.4. A point x ∈ S(L◦
Φ) is an SU-point if and only if the

following conditions hold:

(i) K(x) = {k} for some 0 < k <∞,

(ii) µ(As
l (kx)) = µ(As

u(kx)) = 0,

(iii) if µ(Ans
l (kx)) > 0, then θ(kx) < 1 and

IΨ(p+(kx)χT\E) + IΨ(p−(kx)χE) < 1 for any E ⊂ Ans
l (kx) such that

µ(E) > 0,

(iv) if µ(Ans
u (kx)) > 0, then θ(kx) < 1 and

IΨ(p−(kx)χT\E) + IΨ(p+(kx)χE) > 1 for any E ⊂ Ans
u (kx) such that

µ(E) > 0.

Theorem 2.5. If Φ is a Musielak–Orlicz function such that Φ > 0
and Φi(1) = 1 for any i ∈ N, then the following conditions are equivalent:

(i) lΦ ∈ (CLUR),

(ii) (a) Φ ∈ δ2

(b) Ψ ∈ δ2 or Φi is strictly convex on [0,Φ−1
i (1)] for every i ∈ N.

Proof. (i)⇒ (ii)(a) The implication follows from the facts that X ∈
(CLUR) ⇒ X ∈ (H) for any Banach space X and Φ /∈ δ2 ⇒ lΦ /∈ (H),
because Banach function lattices with property H are order continuous.
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(i)⇒ (ii)(b) Assume that condition (ii)(b) does not hold, that is, Ψ /∈ δ2

and there is j ∈ N and an interval [u, v]∪ [0,Φ−1
j (1)] such that Φj is affine

on [u, v]. We may assume without loss of generality that j = 1 and u > 0.
Denote w = (u+v)/2 and take x ∈ S(lΦ) with IΦ(x) = 1 and x(1) = v. Let
(In)∞n=1 in N and (un

i ) in R (n ∈ N, i ∈ {In−1+1, . . . , In}) be sequences from
Lemma 1.2. Denote a = Φ1(v)−Φ1(w). Let k ∈ N be the smallest number
that satisfies 1

k ≤ a. Since Φi(un
i ) ≤ 1

n for any i ∈ {In−1+1, . . . , In}, n ∈ N

being arbitrary, there exists m1 ∈ {Ik−1 + 1, . . . , Ik} such that

m1∑
i=Ik−1+1

Φi(uk
i ) ≤ a and

m1+1∑
i=Ik−1+1

Φi(uk
i ) > a.

Continuing this procedure we can find a sequence (mn)∞n=1 with Ik+n−2 +
1 ≤ mn < Ik+n−1 for any n ∈ N such that

mn∑
i=Ik+n−2+1

Φi(uk+n−1
i ) ≤ a and

mn+1∑
i=Ik+n−2+1

Φi(uk+n−1
i ) > a.

Let ei = χ{i} be the basis vector for the space c0 and define

xn = we1 +
Ik+n−2∑

i=2

x(i)ei +
mn∑

i=Ik+n−2+1

uk+n−1
i ei.

Since Φi(ul
i) ≤ 1

l for any i, l ∈ N, we have

a− 1
k + n− 1

<
mn∑

i=Ik+n−2+1

Φi(uk+n−1
i ) ≤ a.

Consequently

1− 1
k + n− 1

< IΦ(xn) ≤ 1

and so
1− 1

k + n− 1
< ‖xn‖Φ ≤ 1

for any n ∈ N. Moreover

1 ≥ IΦ

(
x + xn

2

)
= Φ1

(
w + v

2

)
+

Ik+n−2∑
i=2

Φi

(
x(i)

)
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+
mn∑

i=Ik+n−2+1

Φi

(
uk+n−1

i

2

)
≥ 1

2
Φ1(w) +

1
2
Φ1(v) +

Ik+n−2∑
i=2

Φi

(
x(i)

)

+
1− 1

k+n−1

2

(
mn+1∑

i=Ik+n−2+1

Φi(uk+n−1
i )− 1

k + n− 1

)

=
Ik+n−2∑

i=2

Φi(x(i))− 1
2
{Φ1(v) −Φ1(w)}

+
1− 1

k+n−1

2

(
Φ1(v) − Φ1(w)− 1

k + n− 1

)

=
Ik+n−2∑

i=2

Φi(x(i))− 1
2(k + n− 1)

{Φ1(v) − Φ1(w)}

− 1− 1
k+n−1

2(k + n− 1)
→ Iφ(x) = 1.

Consequently
∥∥x+xn

2

∥∥
Φ
→ 1 as n→∞. Moreover

IΦ(xm − xn) ≥
mn∑

i=Ik+n−2+1

Φi(uk+n−1
i )

=
mn+1∑

i=Ik+n−2+1

Φi(uk+n−1
i )− Φmn+1(uk+mn

i ) ≥ Φ1(v)− Φ1(w)− 1
k + mn

for all m,n ∈ N. Consequently

IΦ(xm − xn) ≥ 1
2
{Φ1(v)− Φ1(w)}

for m,n ∈ N large enough, which yields

‖xm − xn‖Φ ≥ min
(

1,
1
2
{Φ1 − Φ1(a)}

)
> 0

for m,n ∈ N large enough. This means that sequence (xn) has no Cauchy
subsequences, that is, lΦ /∈ (CLUR).

(ii)⇒ (i) If Φ ∈ δ2 and Ψ ∈ δ2, then the proof proceeds in the same way
as the proof of the analogous fact in the case of the Orlicz spaces (see [3]),
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so we omit it. Now assume that Φ ∈ δ2, ‖x‖Φ = ‖xn‖Φ = ‖x+xn
2 ‖Φ = 1

and Φi is strictly convex on [0,Φ−1
i (1)] for any i ∈ N. The last condition

implies that card(Al(x)) = 0. We define the sets

Ai,ε = {n ∈ N : |xn(i)| ≤ |x(i)| and |x(i)− xn(i)| ≥ ε},

for any ε > 0 and any i ∈ N. First we will show that

card(Ai,ε) <∞ for any ε > 0 and i ∈ N. (8)

Otherwise, there exists ε0 > 0 and i0 ∈ N such that card(Ai0,ε0) =∞, that
is, there exists a subsequence (xnk

) of (xn) which satisfies the conditions:
|xnk

(i0)| ≤ |x(i0)| and |xnk
(i0)− x(i0)| ≥ ε0. Since Al(x) = ∅, there exists

δ > 0 such that

Φi0

(
x(i0) + xnk

(i0)
2

)
≤ 1− δ

2
[Φi0(x(i0)) + Φi0(xnk

(i0))] ,

for any k ∈ Ai0,ε0. By Lemma 2.1 we have IΦ(x) = IΦ(x1) = 1. Moreover,
IΦ(x+xn

2 )→ 1 as n→∞. Then we get

0←
∞∑
i=1

[
Φi(xnk

(i)) + Φi(x(i))
2

− Φi

(
xnk

(i) + x(i)
2

)]

≥ Φi0(xnk
(i0)) + Φi0(x(i0))

2
− Φi0

(
xnk

(i0) + x(i0)
2

)

≥ δ
Φi0(xnk

(i0)) + Φi0(x(i0))
2

≥ δΦi0

(
xnk

(i0)− x(i0)
2

)
≥ δΦi0

(ε0

2

)
,

a contradiction, which shows that (8) is true. We will show now that
xn → x coordinatewise. Suppose the opposite. Then there exist ε0 > 0,
i0 ∈ N and a subsequence (xnk

) of (xn) satisfying

|xnk
(i0)− x(i0)| > ε0 for any k ∈ N. (9)

By the previous part of the proof we have card(Ai0,ε0) <∞. By condition
(9) and the definition of the set Ai0,ε0 we conclude that there exists k0 ∈ N

such that |xnk
(i0)| > |x(i0)| for all k > k0, whence we conclude from

(9) the existence of ε1 > 0 such that Φi0(xnk
(i0)) − Φi0(x(i0)) > ε1 for

any k > k0. Since IΦ(x) < ∞, so there exists a natural number i1 > i0
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such that
∑

i>i1
Φi(x(i)) < ε1

2 . Moreover, we can assume, without loss
of generality, that xn(i) → x(i) for any i ≤ i1, i �= i0. Hence for any
i < i1, i �= i0, there exists li ∈ N such that |Φi(xn(i)) − Φi(x(i))| < ε1

3i1
for

any n > li. Therefore, in the worst case we have

1 = IΦ(xnk
) ≥ Φi0(|xnk

(i0)|) +
∑
i≤i1
i�=i0

Φi(|xnk
(i)|)

≥ Φi0(|x(i0)|) + ε1 +
∑
i≤i1
i�=i0

Φi(|x(i)|) +
∑
i≤i1
i�=i0

[Φi(|xnk
(i)|) − Φi(|x(i)|)]

> 1 +
ε1

2
+
∑
i≤i1
i�=i0

[Φi(|xnk
(i)|) − Φi(|x(i)|)] > 1 +

ε1

2
− ε1

3
= 1 +

ε1

6

for any k > max{k0, l1, l2, . . . , li1}. This contradiction proves that xn → x

coordinatewise. Using Lemma 2.2 we can finish the proof. �
Remark 2.3. Let B = {i ∈ N : b(Φi) < ∞} and IΦ(b(Φ)χB)) < 1.

Then lΦ /∈ (CLUR).

Proof. Assume first additionally that card(B) = ∞. Then we may
assume, without loss of generality, that b(Φi) <∞ for any i ∈ N. Define

x =
∑
i∈N

b(Φi)ei, xn =
n∑

i=1

b(Φi)ei.

It is clear that ‖x‖Φ = ‖xn‖Φ = 1 for any n ∈ N. For m,n ∈ N with
n > m, we get xn − xm =

∑n
i=m+1 b(Φi)ei, so ‖xn − xm‖Φ = 1. Moreover

xn + x

2
=

n∑
i=1

b(Φi)ei +
∞∑

i=n+1

b(Φi)
2

ei.

Therefore IΦ(x+xn
2 ) ≤ IΦ(x) ≤ 1 and consequently, using the triangle

inequality, we get ‖x+xn
2 ‖Φ = 1. This shows that lΦ /∈ (CLUR).

Now let card(B) < ∞, x =
∑

i∈B b(Φi)ei and a = 1 − IΦ(x) > 0.
Define xn = x for n ∈ B and

xn(i) =




x(i), for i ∈ B;

Φ−1
n (a), i = n;

0, otherwise
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for n /∈ B. Therefore IΦ(xn) = IΦ(x) < 1 for n ∈ B and IΦ(xn) =
IΦ(x) + a = 1 for n /∈ B. Hence ‖xn‖Φ = 1 for any n ∈ N. Moreover,
xn+x

2 = x for n ∈ B, and

xn(i) + x(i)
2

=




x(i), for i ∈ B;

1
2
Φ−1

n (a), i = n;

0, otherwise

for n /∈ B. Since IΦ(x) ≤ 1 and IΦ(xn) ≤ 1 for any n ∈ N, by convexity
of IΦ, we get IΦ(xn+x

2 ) ≤ 1 and consequently ‖xn+x
2 ‖Φ ≤ 1 for any n ∈ N.

Moreover, IΦ(λxn+x
2 ) ≥ IΦ(λx) =∞ for any λ > 1, whence ‖xn+x

2 ‖Φ ≥ 1.
This proves that ‖x+xn

2 ‖Φ = 1 for any n ∈ N. We also have for n > m and
n,m /∈ B:

xn(i)− xm(i) =



−Φ−1

m (a), for i = m;

Φ−1
n (a), for i = n;

0, otherwise.

Therefore, IΦ(xn − xm) = 2a for m,n /∈ B, m �= n, so ‖xn − xm‖Φ ≥
min{1, 2a} > 0 for m,n /∈ B, m �= n . This shows that lΦ is not CLUR. �

Theorem 2.6. Let Φ be a Musielak–Orlicz function such that Φ <∞
and limu→0

Φi(u)
u = 0 for any i ∈ N. Then l◦Φ has property CLUR if and

only if Φ ∈ δ2 and Ψ ∈ δ2.

Proof. Sufficiency. By Theorem 1.3, l◦Φ ∈ (H). By limu→0
Φi(u)

u = 0
for any i ∈ N, we get Ψ < ∞. Moreover, condition Ψ ∈ δ2 is equivalent
to lΨ ∈ (H) (see [8]). Since our assumptions imply reflexivity of l◦Φ, so by
Theorem 1.4 we get l◦Φ ∈ (CLUR).

Necessity. Since property CLUR implies property H and property H

implies order continuity (see [7]), we have Φ ∈ δ2. Now suppose Ψ /∈ δ2.
Then (see [8]) there exists a sequence (un) ⊂ R, un ≥ 0, and sequence of
sets (En): En ∈ 2N , En ∩ Em = ∅ for m �= n such that:

(a) 1
2n+1 <

∑
i∈En

Ψi(un(i)) ≤ 1
2n ,

(b) Ψi((1 + 1
2n )un(i)) > 2n+1Ψi(un(i)) for any i ∈ En.
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Define the sequence (zn) in lΨ by

zn(i) =

{
un(i), if i ∈ En;

0, otherwise.

Then

IΨ(zn) =
∞∑
i=1

Ψi(zn(i)) =
∑
i∈En

Ψi(zn(i)) ≤ 1
2n

.

Hence ‖zn‖Ψ ≤ 1. If λ = 2n

2n+1 , then

IΨ

(zn

λ

)
=
∑
i∈En

Ψi

((
1 +

1
2n

)
un(i)

)
>
∑
i∈En

2n+1Ψi(un(i)) > 1.

Therefore 2n

2n+1 < ‖zn‖Ψ ≤ 1. Since zn ∈ hΨ and (hΨ)∗ = l◦Φ, so for any
n ∈ N there exists xn ∈ S(l◦Φ) such that

2n

2n + 1
< ‖zn‖Ψ = 〈zn, xn〉 =

∑
i∈En

xn(i)un(i). (10)

Let x ∈ S(l◦Φ) and x ≥ 0. Since Φ ∈ δ2, so (l◦Φ)∗ = lΨ and there exists
y ∈ S(lΨ) such that 〈x, y〉 =

∑
i∈N xiyi = ‖x‖oΦ. Define

yn =
2n

2n + 1
(unχEn + yχN\En

).

Then

IΨ(yn) ≤ 2n

2n + 1
(IΨ(y) + IΨ(zn)) ≤ 2n

2n + 1

(
1 +

1
2n

)
= 1. (11)

Moreover

〈xn, yn〉 ≥ 2n

2n + 1

∑
i∈En

xn(i)zn(i) =
2n

2n + 1
〈xn, zn〉 ≥

(
2n

2n + 1

)2

. (12)

By the definition of yn and the fact that x ≥ 0 and zn ≥ 0, we get

〈x, yn〉 = 2n

2n + 1

[ ∑
i∈En

x(i)un(i) +
∑
i/∈En

x(i)y(i)
]
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=
2n

2n + 1

[∑
i∈N

x(i)y(i) +
∑
i∈En

x(i)un(i)−
∑
i∈En

x(i)y(i)
]

≥ 2n

2n + 1

[
〈x, y〉 −

∑
i∈En

x(i)y(i)
]
. (13)

Moreover, the Young inequality yields∑
i∈En

x(i)y(i) ≤ IΦ(xχEn) + IΨ(yχEn)→ 0. (14)

By (12), (13), (14) and by the definition of the Orlicz norm, we have

2 ≥ ‖x + xn‖oΦ ≥ 〈x + xn, yn〉

≥
(

2n

2n + 1

)2

+
2n

2n + 1

[
1−

∑
i∈En

x(i)y(i)
]
→ 2.

Hence ‖xn + x‖oΦ → 2. On the other hand, since supports of the elements
xn are separated, we get ‖xn − xm‖oΦ ≥ ‖xn‖oΦ = 1 for any m,n ∈ N,
m �= n. This contradicts the CLUR-property for l◦Φ. �
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