
Publ. Math. Debrecen
67/1-2 (2005), 79–91

When does an iterate equal a power?

By CHE TAT NG (Waterloo) and WEINIAN ZHANG (Chengdu)

Abstract. Let f be a continuous self-map on the real line, f [m] denote its
m-th iterate and fn its n-th multiplicative power. In this paper we solve the
functional equation f [m] = fn for integers m ≥ 2, n ≥ 2. When m = n, it reveals
functions whose n-th iterate and power agree.

1. Introduction

Let f : X → X be a map on a set X, m ≥ 0 an integer. The m-th
iterate f [m] of f is defined by

f [m](x) = f(f [m−1](x)), f [0](x) ≡ x.

When f is bijective, with inverse f−1, iterates with negative exponents are
defined by f [−m] = (f−1)[m]. Sometimes the brackets around m in f [m]

are omitted when there is no confusion [1], [4]–[6]. As pointed out in [2],
in circumstances where fm has other natural meaning, such an omission
would possibly lead some readers astray. For functions defined on the real
line R, let fm denote its m-th (multiplicative) power.We would like to ask
when f [m] and fm actually agree, i.e.

f [m] = fm. (1)

Mathematics Subject Classification: 39B12, 37E05.
Key words and phrases: iteration, periodic orbit, range, iterative root.
Supported by NSERC of Canada Grant OGP 0008182, NNSFC(China) Grant 10171071
and China Education Ministry Research Grants.
Corresponding author: Weinian Zhang (matzwn@sohu.com)



80 Che Tat Ng and Weinian Zhang

On various domains, this functional equation was discussed ([2], [3])
for m = −1. In particular, in [2] the problem leads to a discussion on
the 4-th iterative roots of the identity as [4] does. In this paper we seek
continuous functions f : R → R satisfying

f [m] = fn (2)

for given integers m ≥ 2, n ≥ 1.

2. Fundamental results

The following theorem, as a fundamental result, links our problem to
iterative roots of special functions.

Theorem 1. A continuous function f : R → R is a solution of equa-

tion (2) if and only if there exists an interval I in R such that

(i) I is non-empty, closed relative to R, and is invariant under the power

function F (x) = xn,

(ii) I is also f -invariant, f [m−1] = F on I, and

(iii) ran(f) ⊂ I, where ran(f) denotes the range of f .

Proof. Let f : R → R be a continuous solution of equation (2):

f [m](x) = (f(x))n, ∀x ∈ R. (3)

Putting y = f(x) in it we get

f [m−1](y) = yn, ∀y ∈ ran(f). (4)

Since f is continuous, ran(f) is a non-empty interval. Let I be its closure
in R. Then I is also an interval and (iii) holds. Clearly, (iii) implies that
I is f -invariant. By continuity, equation (4) can be extended to I and we
have (ii):

f [m−1](y) = yn, ∀y ∈ I. (5)

Being f -invariant, I is also invariant under f [m−1]. In view of (5), we
get (i) – that I is invariant under the power function F . The converse is
easy to check. With (iii), ran(f) ⊂ I, (ii) implies (4) which is equivalent
to (3). �
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While there is no need for I to be a closed interval in order to get the
converse in the above theorem, its imposition eliminates the need to discuss
a broader class of I. Its closure assures that continuous self-maps on I have
continuous extension to the larger domain R without an expansion on its
codomain. Although we could impose the condition that ran(f) is dense
in I, we do not do this because it would be inconvenient and unnecessary
for the converse.

Referring to condition (i), let

a := inf I, b := sup I.

Thus a is possibly −∞, b is possibly ∞, and I = [a, b] ∩ R. The deter-
mination of F -invariant I is straight forward. In the next proposition we
state the result.

Proposition 1. For even n, n ≥ 2, I is invariant under F (x) = xn if

and only if its ends a, b are in one of the following four combinations: (E1)

a ∈ [−1, 0] and b ∈ [an, 1], or (E2) a ∈ [−∞, 0] and b = ∞, or (E3) a = 1
and b = 1, or (E4) a ∈ [1,∞[ and b = ∞. For odd n, n ≥ 3, I is invariant

under F (x) = xn if and only if its ends a, b are in one of the following

five combinations: (O1) a = −∞ and b ∈ ]−∞,−1], or (O2) a = −1 and

b = −1, or (O3) a ∈ {−∞} ∪ [−1, 0] and b ∈ [0, 1] ∪ {∞}, or (O4) a = 1
and b = 1, or (O5) a ∈ [1,∞[ and b = ∞. For n = 1, a and b can be

chosen arbitrarily with a ≤ b.

We now turn our attention to condition (ii). Letting g = f |I : I → I,
we shall solve the equation

g[m−1] = F |I (6)

in the next two sections. Together with the above fundamental results, (2)
is solved fully. Solving (6) for m = 2 is a trivial mission, so in the coming
sections we will assume m > 2.
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3. Cases of odd n

In the special case n = 1, (6) is known as a Babbage equation, i.e.,
F = id on I, where id denotes the identity map. By Theorem 11.7.1
in [4], either g = id on I or m has to be odd and g is a strictly decreasing
involution. As described in [4], decreasing involutions on an interval have
simple geometric interpretation: their graph has to be symmetric with
respect to the diagonal {(x, y) ∈ R

2 : x = y}. In the sequel, we need only
discuss the cases of an odd n ≥ 3.

Lemma 1. Let n ≥ 3 be odd. Let g be a continuous (m − 1)-th
order iterative root of F (x) = xn on I. Then (i) g is strictly monotonic,

(ii) g has no periodic points other than 0, 1 and −1, and they are in fact

periodic points of g whenever they are in I, (iii) for strictly increasing g,

its periodic points can only be of order 1 (a fixed point), (iv) for strictly

decreasing g , its periodic points are of order 1 and 2, while at most one

is of order 1, and (−1, 1) is its only possible 2-cycle in I.

Proof. (i) With odd n, F is injective. If g(x1) = g(x2), then
g[m−1](x1) = g[m−1](x2). Thus F (x1) = F (x2), implying x1 = x2. This
shows that g is also injective. Being continuous on the interval, g must be
strictly monotonic. (ii) If x0 is a periodic point of g, then x0 must be a
fixed point of an iterate of F . However, for any integer k ≥ 1 the function
F [k](x) = xnk

has exactly three fixed points at 0, 1 and −1. This proves
that x0 can only be 0, 1 or −1. Conversely, every fixed point x0 of F is a
periodic point of g, as g[m−1](x0) = x0 where m − 1 ≥ 1.

(iii) This is a general observation that the only order preserving (finite)
cycles on a linearly ordered set are the trivial 1-cycles. (iv) An order
reversing cycle on a linearly orderly set must be a 1-cycle or a 2-cycle.
A map with more than one fixed point cannot be order reversing. The
2-cycles (−1, 0) and (0, 1) cannot occur for continuous g, because no fixed
points are present in the open intervals ]−1, 0[ and ]0, 1[. �

According to the list in Proposition 1, we shall seek roots on intervals
I = [a, b] ∩ R where a, b are in one of the following five combinations
(O1) a = −∞ and b ∈ ]−∞,−1], or (O2) a = −1 and b = −1, or (O3)
a ∈ {−∞} ∪ [−1, 0] and b ∈ [0, 1] ∪ {∞}, or (O4) a = 1 and b = 1, or (O5)
a ∈ [1,∞[ and b = ∞.
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In light of Lemma 1, (i), all roots are strictly monotonic. Within the
following two subsections, the shorter form “increasing g”, for instance,
will have the same effect as “strictly increasing g”.

3.1. For increasing g on I. The solving of (6) for increasing g on inter-
vals of type (O3) can be further simplified by solving it “componentwise”,
as stated more accurately in the following:

Proposition 2. Let n ≥ 3 be odd. Then g is a strictly increasing

continuous (m− 1)-th order iterative root of F (x) = xn on I if and only if

it is the union of strictly increasing roots on each of the closed connected

sub-intervals of I separated by the fixed points {0,±1} ∩ I.

Theorem 11.2.2 in [4] gives the results on increasing iterative roots
on I. In particular it shows that F possesses increasing iterative roots g

of all orders, and they can be constructed by piecewise defining.
Moreover, it is easy to show that g(x) ≤ x (resp. ≥ x) for x ∈

]−∞,−1]∪ [0, 1] (resp. x ∈ [−1, 0]∪ [1,+∞[) if g is defined at the point x.
For example, if g is an increasing second order root and g(t0) > t0 for some
t0 ∈ [0, 1] where g is defined, then F (t0) = g(g(t0)) > g(t0) > t0 since g

is strictly increasing. This will contradict F (t0) = tn0 ≤ t0. This property
of g is observed when we apply Theorem 11.2.5 in [4] during a subsequent
discussion on the decreasing roots.

In what follows we select a typical interval under the case −1 < a < 0
and b = 0 to illustrate the general construction of an increasing root.

Let g be a strictly increasing continuous self-map on [a, 0] and

g[m−1](x) = F (x) = xn (x ∈ [a, 0]). (7)

According to Lemma 1, g has 0 as its unique fixed point. Letting

cj = g[j](a), j = 0, . . . ,m − 1 (8)

we first get −1 < a = c0 ≤ c1 ≤ c2 ≤ · · · ≤ cm−2 ≤ cm−1 = F (a) = an < 0
from the range condition ran(F |I) = ran(g[m−1]) ⊂ ran(g[m−2]) ⊂ · · · ⊂
ran(g) ⊂ [a, 0] while using g(0) = 0. Because g has 0 as its unique fixed
point, the above inequalities must be strict:

−1 < a = c0 < c1 < c2 < · · · < cm−2 < cm−1 = an < 0.
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Recall that m > 2 has been assumed. A fundamental region for g is
[c0, cm−2], in the sense that the restriction

g0 := g|[c0,cm−2]

can be initiated reasonably freely, and it determines g on the full [a, 0].
The initial g0 is an order preserving homeomorphism, mapping [c0, cm−2]
onto [c1, F (a)], and g0(cj) = cj+1 for each j = 0, . . . ,m − 2. It implies

g
[m−2]
0 ([c0, c1]) = [cm−2, cm−1] (9)

in particular, and g on [a, 0] is uniquely determined by g0 via:
Step 1. For each � ≥ 1 and x ∈ [F [�](c0), F [�](cm−2)], there exists a

unique y ∈ [c0, cm−2] such that F [�](y) = x. We have g(x) = g(F [�](y)) =
F [�](g(y)). Thus g(x) = F [�](g0(y)).

It corresponds to the observation that for each �≥ 0, g maps [F [�](cm−3),
F [�](cm−2)] homeomorphically onto [F [�](cm−2), F [�+1](a)], order preserv-
ing.

Step 2. For each � ≥ 0 and x ∈ [F [�](cm−2), F [�+1](a)], there exists a
unique y ∈ [cm−2, F (a)] such that F [�](y) = x. Further, by (9), there exists
a unique z ∈ [c0, c1] such that g

[m−2]
0 (z) = y. We have g(x) = g(F [�](y)) =

F [�](g(g[m−2]
0 (z))) = F [�+1](z).

It reflects that g maps [F [�](cm−2), F [�+1](a)] onto [F [�+1](a), F [�+1](c1)]
homeomorphically, order preserving.

Step 3. g(0) = 0.

Conversely, let (cj)m−1
j=0 be a strictly increasing sequence with c0 = a

and cm−1 = F (a), and let g0 be an order preserving homeomorphism
from [c0, cm−2] onto [c1, cm−1] satisfying (8), we can verify that the above
three steps well define an extension of g0 to a continuous increasing g

satisfying (7).

3.2. For decreasing g on I.

Proposition 3. Let n ≥ 3 be odd. Let g be a strictly decreasing

continuous (m − 1)-th order iterative root of F (x) = xn on I. Then the

five interval types listed in Proposition 1 are confined further to (C1) I

is one of the degenerated singletons {−1}, {0} and {1}, (C2) I = R or

[−1, 1], or (C3) I = [a, b] where −1 < a < 0, 0 < b < 1.
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Proof. Amongst the five interval types (O1) a = −∞ and b ∈
]−∞,−1], or (O2) a = −1 and b = −1, or (O3) a ∈ {−∞} ∪ [−1, 0]
and b ∈ [0, 1] ∪ {∞}, or (O4) a = 1 and b = 1, or (O5) a ∈ [1,∞[ and
b = ∞, we shall rule some out quickly. When a = −∞, b cannot be finite
because the condition ran(F |I) ⊂ ran(g) cannot be met by finite b. For
the same reason, a finite a cannot be paired with b = ∞. By Lemma 1,
I cannot contain two points in {−1, 0, 1} without having the third. This
rules out both a = −1 and 0 ≤ b < 1, and −1 < a ≤ 0 and b = 1. The
case a = 0 and 0 < b < 1 is not admissible because the order reversing g

cannot map [0, b] into [0, b] while keeping 0 fixed. For the same reason the
case −1 < a < 0 and b = 0 is not admissible. �

In the following we give the construction of g on intervals I listed in
Proposition 3. On a degenerated singleton I, the answer for g is trivial.
For the rest of this subsection, we shall assume that I is not a singleton.
Because F is strictly increasing, m − 1 must be even, say m − 1 = 2k.

Let
φ := g[2].

Then φ is continuous, strictly increasing and satisfies

φ[k](x) = xn. (10)

As illustrated in the previous subsection we can solve for all increasing φ

from (10). By Lemma 1, φ has no periodic points other than 0, 1 and −1
and they are in fact fixed points of φ whenever they are in I.

For each solved φ, which is perhaps not a power function, we continue
to solve for continuous and strictly decreasing g from

g[2] = φ. (11)

Case a = −1 and b = 1, or a = −∞ and b = ∞.
In this case, the fixed points of φ are −1, 0 and 1. Notice that F is a

bijection on I and so is φ. Thus φ is an increasing homeomorphism of I

onto I.
Theorem 11.2.5 in [4] is applicable, giving the construction of g. A

fundamental region for g is [x0, φ(x0)] on [−1, 1], or [x0, φ(x0)]∪ [φ(y0), y0]
on R, where −1 < x0 < 0 and y0 < −1 are arbitrarily chosen.
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Case −1 < a < 0, 0 < b < 1.
From ran(φ) = ran(g[2]) ⊂ ran(g) ⊂ [a, b] we get

[φ(a), φ(b)] ⊂ [g(b), g(a)] ⊂ [a, b]. Letting

[c, d] = ran(g), where c = g(b), d = g(a),

we note their relative positions in R:

−1 < a ≤ c ≤ φ(a) < 0 < φ(b) ≤ d ≤ b < 1.

Consider the sequences

a, φ(a), φ[2](a), . . . , φ[�](a), . . .

and
d, φ(d), φ[2](d), . . . , φ[�](d), . . .

which are strictly increasing and strictly decreasing, respectively. They
tend to 0, the unique fixed point of φ. Observe that g maps each term in
the first sequence to a corresponding term in the second sequence, i.e.,

g(φ[�](a)) = φ[�](d) � = 0, 1, 2, . . . (12)

as g and φ commute. Moreover, each term in the second sequence is mapped
by g to a shifted term in the first sequence, i.e.,

g(φ[�](d)) = φ[�+1](a) � = 0, 1, 2, . . . (13)

The interval [a, φ(a)] is a fundamental region for g as we shall explain.

(1) The initial g0 maps [a, φ(a)] homeomorphically onto [φ(d), d],
g0(a) = d, g0(φ(a)) = φ(d) and d ∈ [φ(b), b].

(2) g0 determines g elsewhere as follows:

Step 1. For each � ≥ 1 and x ∈ [φ[�](a), φ[�+1](a)], there exists a unique
y ∈ [a, φ(a)] such that φ[�](y) = x. We have g(x) = g(φ[�](y)) = φ[�](g(y)).
Thus g(x) = φ[�](g0(y)).

Step 2. For each � ≥ 0 and x ∈ [φ[�+1](d), φ[�](d)], there exists a unique
y ∈ [φ[�](a), φ[�+1](a)] such that g(y) = x. We have g(x) = g(g(y)) = φ(y).

Step 3. For each x ∈ [d, b], we see φ(x) ∈ [φ(d), φ(b)] ⊂ [φ(d), d]. Since
g0 maps [a, φ(a)] homeomorphically onto [φ(d), d], there exists a unique
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y ∈ [a, φ(a)] such that g(y) = φ(x). Because φ(x) = g(g(x)) and g is
injective, we have g(x) = y.

So g maps [d, b] homeomorphically onto [c, φ(a)], order reversing.

Step 4. g(0) = 0 according to Lemma 1.

Conversely, it is straight forward to check that if g0 is a continuous
order reversing map of the interval [a, φ(a)] onto the interval [φ(d), d] for
some d ∈ [φ(b), b], then the above four steps well define a continuous
extension g on [a, b] which satisfies g[2] = φ.

4. Cases of even n

In this final section, we determine the continuous (m − 1)-th order
iterative roots of F (x) = xn on I when n is an even positive integer.
According to Proposition 1, there are four types of I = [a, b] ∩ R to cover:
Case (E1) a ∈ [−1, 0] and b ∈ [an, 1], or (E2) a ∈ [−∞, 0] and b = ∞, or
(E3) a = 1 and b = 1, or (E4) a ∈ [1,∞[ and b = ∞.

Lemma 2. Let n ≥ 2 be even. Let g be a continuous (m−1)-th order

iterative root of F (x) = xn on I. Then (i) g has no periodic points other

than 0 and 1, and they are in fact fixed points of g whenever they are in I,

(ii) g is strictly increasing on I+ := I ∩ [0,+∞[ , and is strictly decreasing

on I− := I ∩ ]−∞, 0].

Proof. (i) If x0 is a periodic point of g, then x0 must be a fixed point
of an iterate of F . For any integer k ≥ 1 the function F [k](x) = xnk

has
exactly two fixed points at 0 and 1. This proves that x0 can only be 0
or 1. Conversely, every fixed point x0 of F , if it is in I, is a periodic point
of g. So 0 and 1 are indeed periodic points of g whenever they are in I.
Having no third fixed point between 0 and 1, they cannot form a 2-cycle
under the continuous g. This shows that 0 and 1 are in fact fixed points
of g whenever they are in I.

(ii) With even n ≥ 2, F is injective on ]−∞, 0] and on [0,+∞[. Re-
peating the arguments in the proof of Lemma 1, we see that g must be
strictly monotonic on each of the two intervals I∩ ]−∞, 0] and I∩ [0,+∞[.
Consider the four types of I.
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Case (E4): a ∈ [1,∞[ and b = ∞. Subcase 1. Suppose a > 1. By (i),
g(a) �= a. The interval I being g-invariant, we must have g(a) > a. If g

were strictly decreasing, we would have a ≤ g(2)(a) < g(a). The compact
interval [a, g(a)] will then be g-invariant and must contain a fixed point
of g. This is a contradiction to (i), that g has no fixed point in I when
a > 1. So g is strictly increasing. Subcase 2. a = 1. By (i), g(a) = a. As
I is g-invariant, g cannot be strictly decreasing.

Case (E1): a ∈ [−1, 0] and b ∈ [an, 1]. Subcase 1. Suppose a < 0.
By (i), g(0) = 0. First, we observe that if g were strictly increasing on
both I+ and I−, then it is strictly increasing on I. This would imply all
its iterates, including F , are strictly increasing on I. But F is not strictly
increasing. This contradiction shows that g cannot be strictly increasing
on both I+ and I−. For similar reasons it cannot be strictly decreasing
on both I+ and I−. Next, if g were strictly increasing on I− and strictly
decreasing on I+, then g and therefore all its iterates will have their range
included in I−. This is a contradiction as F does not comply with this
property. So we reached the conclusion that g is strictly increasing on I+

and strictly decreasing on I−. Subcase 2. Suppose a = 0. The argument
for g strictly increasing is the same as that of Subcase 2 in Case (E4).

Case (E2): a ∈ [−∞, 0] and b = ∞. Subcase 1. Suppose a < 0. In
this case, 0 is an interior point of I and the proof given above for Subcase
1 in Case (E1) is also valid. Subcase 2. Suppose a = 0. The argument for
an increasing g is the same as that of Subcase 2 in Case (E4).

Case (E3): a = 1 and b = 1. The statements are trivial. �

Lemma 3. Let n ≥ 2 be even. Let g be a continuous (m − 1)-th
orderiterative root of F (x) = xn on I = [a, b] ∩ R which contains 0 as an

interior point. Then g is even on the maximal subinterval of I symmetric

about 0. Furthermore, it can be extended uniquely to a continuous (m−1)-
th order iterative root ḡ of F on the balanced interval Ī := [−c, c]∩R where

c = max(|a|, b), with ran(ḡ) = ran(g) ⊂ I.

Proof. Let x ∈ I and assume −x ∈ I. By Lemma 2, g is minimized
at the fixed point 0. So y1 := g(x) and y2 := g(−x) are both in I+. We
also have g[m−2](y1) = g[m−1](x) = F (x) and g[m−2](y2) = g[m−1](−x) =
F (−x). Because F is even, it follows that g[m−2](y1) = g[m−2](y2). The
strict monotonicity of g on I+ which is g-invariant yields y1 = y2. This
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proves the evenness of g, that g(x) = g(−x) whenever both x and −x are
in I. The function ḡ : Ī → Ī given by

ḡ(x) =

{
g(x), ∀x ∈ I

g(−x), ∀x ∈ −I

is thus well defined. It is straight forward to check that on the interval
Ī = I ∪ (−I), ḡ is again a continuous (m − 1)-th iterative root of F . It is
immediate from the definition of ḡ that ran(ḡ) = ran(g). The function ḡ

is clearly the unique even extension of g from I to Ī. �

Combining the above two lemmas we arrive at the following conclusion
for the Section. The convention −(−∞) = ∞ will be in use.

Proposition 4. Let F (x) = xn, n ≥ 2 even, I = [a, b]∩R F -invariant,

and let g : I → I denote a continuous (m− 1)-th order iterative root of F .

(i) When a ≥ 0, g exists (for every m > 2) and its general construction is

given in the same manner as in the discussions in Section 3.1. (ii) When

a < 0 and −a ≤ b, g exists. Its restriction to I+, dentoted by g∗, is a root

of F |I+ and g is the even extension of g∗ to I. Conversely, for every root

g∗ of F |I+ whose general construction is covered in (i), the even extension

g(x) := g∗(|x|) to I (which is not necessarily the balanced Ī ) is a root

on I. (iii) When a < 0 and −a > b > an, g exists. It is the restriction,

to I, of some root ḡ : [a,−a] → [a,−a] of F on [a,−a] satisfying the extra

range condition ran(ḡ) ⊂ [0, b]. (iv) When a < 0 and −a > b = an, g does

not exist (for every m > 2).

Proof. Recall that I belongs to one of the following types: (E1)
a ∈ [−1, 0] and b ∈ [an, 1], or (E2) a ∈ [−∞, 0] and b = ∞, or (E3) a = 1
and b = 1, or (E4) a ∈ [1,∞[ and b = ∞.

Case 1. Suppose a ≥ 0.
This is the case where I = I+. According to Lemma 2, g is strictly

increasing having 0 and 1 as its only fixed points provided they are in I.
Just like the discussions in section 3.1, its existence as well as its general
construction are given by Theorem 11.2.2 in [4].

Case 2. Suppose a < 0.
This is the case where 0 is an interior point of I. According to

Lemma 3, g is even and has an extension ḡ : Ī → Ī, Ī = I ∪ (−I).
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Furthermore, the extension satisfies the range condition

ran(ḡ) ⊂ I. (14)

Subcase 1. Suppose −a ≤ b.
In this subcase, x ∈ I− implies −x ∈ I+. The consideration of the

extension ḡ is not crucial. By Lemma 2, g∗ := g|I+ is an increasing root
of F on I+. The existence and general construction of g∗ are attended in
Case 1. On the interval I−, g is determined by its evenness g(x) = g∗(−x).

Subcase 2. Suppose −a > b.
This can only occur within Case (E1), with a ∈ ]−1, 0[ and b ∈

[an,−a[ . We first attend the general construction of ḡ∗ := ḡ|Ī+ which
is strictly increasing. The interval Ī+ is [0, c] where c = −a. While Theo-
rem 11.2.2 in [4] gives the general construction of all roots ḡ∗ mapping [0, c]
into [0, c], we must confine ourselves to those meeting the stronger range
condition (14) which requires that ḡ∗ maps [0, c] into [0, b]. Its initialization
on [0, c] is, in part, based on the following:

The sequence

cj := ḡ
[j]
∗ (c), j = 0, . . . ,m − 1 (15)

satisfies

1 > c = c0 > c1 > c2 > · · · > cm−2 > cm−1 = cn > 0 (16)

and
c1 ≤ b. (17)

Subcase 2.1. Suppose a ∈ ]−1, 0[ and b = an.
For m > 2 there is no sequence satisfying (16)–(17). So F has no root.

Subcase 2.2. Suppose a ∈ ]−1, 0[ and b > an. Then the conditions
(16)–(17) can be met by some sequence, ḡ∗ exists, and a fundamental
region for its construction is [cm−2, c0]. It determines g by

g(x) = ḡ∗(|x|) ∀x ∈ I. (18)

�
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