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Inner approximation-solvability of nonlinear equations

By RAM U. VERMA (Orlando)

Abstract. Result on the inner approximation-solvability are generalized to the
case of uniformly φ-monotone operators in an A-properness setting.

1. Introduction

It seems that Petryshyn [4] was the first who, in a series of publi-
cations, studied the approximation-solvability problem: For what type of
a linear or nonlinear mapping A, is it possible to construct a solution x of
the equation

Ax = b

as a strong limit of solutions xn of simpler finite-dimensional equations

Anxn = E∗
nb ?

The technique, thus, evolved from Petryshyn’s investigations is that
of an approximation-properness (A-properness). It turned out that the im-
portance of A-properness of A was not only limited to the approximation-
solvalibility of the equation Ax = b, but extends to the results relating
to the Galerkin type methods for linear and nonlinear operator equations
with more recent works on strongly monotone and accretive operators and
other mappings. For the details on A-proper maps and approximation-
solvabilty, see ([1], [4], [5], [7], [11], [13]).

Here our motivation is to extend the results on the inner approxima-
tion-solvability [13] of the equations Ax = b to the case of uniformly φ-
monotone operators A : X → X∗ from a real separable reflexive Banach
space X to is dual X∗. The obtained results include a number of significant
results as special cases.

Definition 1.1. Let X and Y be real Banach spaces, and φ : X → Y
from X into Y be such that
(i) φ(X) is dense in Y ; and
(ii) for each x ∈ X and each t ≥ 0, φ(tx) = tφ(x).
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A mapping A : X → Y ∗ from X into Y ∗ (dual of Y ) is said to be
uniformly phi-monotone if, for all x, y ∈ X,

〈Ax−Ay, φ(x− y)〉 ≥ c (‖x− y‖) ‖φ(x− y)‖,
where c(r) is some gauge function, and 〈· , ·〉 is the pairing between Y ∗ and
Y .

Note that when Y = X (reflexive) and φ = I, A is just uniformly
monotone, and when Y = X∗, the uniform φ-monotonicity of A coincides
with strong K-monotonicity ([4], [6]).

2. Inner approximation scheme

Let X be a real separable reflexive Banach space with dim X = ∞,
and A : X → X∗ from X into its dual X∗ be uniformly φ-monotone and
continuous.

Let (Xn) be a Galerkin scheme in X such that

Xn = span {e1n, . . . , en′n} , n = 1, 2, . . . .

Let En : Xn → X be the embedding operator corresponding to Xn ⊆ X
(i.e., Enx = x for all x ∈ Xn). We construct the operator Rn : X → Xn

in such a manner that, for each x ∈ X, there exists at least an element
Rnx ∈ Xn such that

‖x−Rnx‖ = dist (x,Xn) .

We consider the operator equation

(1) Ax = b (x ∈ X, b ∈ X∗)

along with the approximate equations

(2) Anxn = E∗
nb (xn ∈ Xn, n = 1, 2, . . . )

corresponding to the following approximation scheme {Xn, En, Rn, X∗
n, E∗

n}
represented by the accompanying diagram:

(3)

X
φ−−−−→ X

A−−−−→ X∗

En

x Rn

y
xEn

yE∗n

Xn
RnφEn−−−−−→ Xn

An−−−−→ X∗
n

where all the operators An = E∗
nAEn are continuous.

For n = 1, 2, . . . , the approximate equation (2) is equivalent to Galer-
kin equations

(4) 〈Axn, ejn〉 = 〈b, ejn〉



Inner approximation-solvability of nonlinear equations 93

for xn ∈ Xn, j = 1, . . . , n′.
A word of caution: Here and in what follows operators En : Xn → X

and E∗
n : X∗ → X∗

n are lenear and continuous. The symbols “ → ” and
“ ω−→ ” shall denote strong and weak convergence, respectively.

Definition 2.1. An approximation scheme π = {Xn, En, Rn, X∗
n, E∗

n}
represented by diagram (3) is an admissible inner approximation scheme
iff

(C1) X and X∗ are infinite-dimensional normed spaces over field K
(complex).

(C2) Xn and X∗
n are normed spaces over K with dim Xn = dim X∗

n <
∞ for all n.

(C3) En : Xn → X and E∗
n are linear and continuous with sup ‖En‖ <

∞ and sup ‖E∗
n‖ < ∞.

(C4) Rn : X → Xn is defined in the sense of the compatibility condi-
tion

lim
n→∞

‖EnRnx− x‖X = 0 for all x ∈ X.

Definition 2.2. The equation Ax = b is said to be solvable if it has a
solution for each b ∈ X∗.

Unique Approximation-Solvability. The equation Ax = b is said to be
uniquely approximation-solvable if, for each b ∈ X∗,
(i) Ax = b, x ∈ X, has a unique solution.
(ii) For each n ≥ n0, the approximate equation E∗

nAEnxn = E∗
nb, xn ∈

Xn, has a unique solution.
(iii) The sequence (xn) converges to the solution x of the equation Ax = b

in the sense that
lim

n→∞
‖Enxn − x‖X = 0.

Definition 2.3. The operator A : X → X∗ is said to be approximation-
proper (abbreviated as A-proper) with respect to the approximation scheme
π = {Xn, En, Rn, X∗

n, E∗
n} if the following holds: Let (n′) be any subse-

quence of the sequence of natural numbers. If (xn′) is a sequence with
xn′ ∈ Xn′ for all n′, and if

lim
n→∞

‖An′xn′ − E∗
nb‖X∗

n′
= 0 for fixed b ∈ X∗

and sup ‖xn′‖Xn′
< ∞, then there exists a subsequence (xn′′) such that

lim
n→∞

‖En′′xn′′ − x‖X = 0

and Ax = b.
Definition 2.4. The approximation scheme π = {Xn, En, Rn, X∗

n, E∗
n}

is said to be consistent if, for all x ∈ X,
lim

n→∞
‖E∗

nAx−AnRnx‖X∗
n

= 0.
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Definition 2.5. The approximation scheme π is said to be stable if
there is an n0 such that

‖Anx−Any‖X∗
n
≥ c

(‖x− y‖Xn

)

for all x, y ∈ Xn and n ≥ n0.

Before we wind up this section, we state the following theorem of
Petryshyn [4], crucial to our approximation-solvability:

Lemma 2.6. If the approximation scheme π = {Xn, En, Rn, X∗
n, E∗

n}
is an admissible inner approximation scheme with consistency and stability,
then the equation

Ax = b, x ∈ X,

is uniquely approximation-solvable for each b ∈ X∗ iff A is A-proper.

3. Inner approximation-solvabilty

Now we are just about ready to describe our main results on the
solvability (approximation-solvability).

Theorem 3.1. Suppose that the operator A : X → X∗ is uniformly
φ-monotone and continuous from a real separable reflexive Banach space
X (dim X < ∞) into its dual X∗. Then the operator equation

Ax = b (x ∈ X)

has a unique solution every b ∈ X∗.

For φ = I, Theorem 3.1 reduces to the following corollary:

Corollary 3.2. If A : X → X∗ is uniformly monotone and continuous,
then the equation

Ax = b (x ∈ X)

has a unique solution for every b ∈ X∗.

Theorem 3.3. Let X be a real separable reflexive Banach space with
dim X = ∞. Let {Xn, En, Rn, X∗

n, E∗
n} be the approximation-scheme for

(X,X∗) represented by the diagram (3), and let φ : X → X be weakly
continuous with

Rnφx = φx for all x ∈ Xn and each n.

If A : X → X∗ is uiniformly φ-monotone and continuous, then, for
each b ∈ X∗, the operator equation

Ax = b (x ∈ X)

is uniquely approximation-solvable.
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Corollary 3.4. Under the assumptions of Theorem 3.3, if A : X → X∗
is uniformly φ-monotone and continuous, and C : X → X∗ is compact,
then, for each real λ 6= 0, the operator

λ(A + C) : X → X∗

is A-proper.

For φ = I, Theorem 3.3 reduces to the following corollary:

Corollary 3.5 ([13], Prop. 34.9). Under the assumptions of Theorem
3.3, if A : X → X∗ is uniformly monotone and continuous, then the
equation

Ax = b (x ∈ X)

is uniquely approximation-solvable for every b ∈ X∗.

Corollary 3.6. For X = H (Hilbert space), φ = I and Rn = E∗
n = Pn

(orthogonal projection operator), Theorem 3.3 reduces to ([13], Theorem
34. B).

For the sake of simplicity, from now on the symbol ‖·‖ shall denote all
norms ‖ · ‖X , ‖ · ‖X∗ , ‖ · ‖Xn and ‖ · ‖X∗

n
in the respective spaces X, X∗, Xn

and X∗
n.

Proof of theorem 3.1. Since A is uniformly φ-monotone, i.e.,

(C5) 〈Ax−Ay, φ(x− y)〉 ≥ c(‖x− y‖)‖φ(x− y)‖
for all x, y ∈ X, it is immediate that A is injective. Let us take k(r) =
c(r)− ‖A(0)‖. Then, for x ∈ X, we have

〈Ax, φx〉 = 〈Ax−A(0), φx〉+ 〈A(0), φx〉
≥ 〈Ax−A(0), φx〉 − 〈A(0), φx〉 ≥ c(‖x‖)‖φx‖ − ‖A(0)‖ ‖φx‖
=

[
c(‖x‖)− ‖A(0)‖] ‖φx‖ = k(‖x‖)‖φx‖,

and so ‖Ax‖ ≥ k(‖x‖) for x 6= 0. For each M > 0, therefore, there exists
h(M) such that ‖Ax‖ ≤ M , implying ‖x‖ ≤ h(M). Thus, A−1 carries
bounded subsets of R(A), the range of A, into bounded subsets of X, and
is continuous from R(A) into X. By the Brouwer theorem on invariance
of domain, R(A) is open.

To this end, it only remains to show that R(A) is closed. To show
this, let Axm → b as m →∞. Thus, (Axm) is a Cauchy sequence, and by
the condition (C5), we obtain

c(‖xm − xn‖) ‖φ (xm − xn)‖ ≤ 〈Axm −Axn, φ (xm − xn)〉
≤ ‖Axm −Axn‖ ‖φ (xm − xn)‖ ,
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and so

c (‖xm − xn‖) ≤ ‖Axm −Axn‖ → 0 as m,n →∞.

This, in turn, implies that

‖xm − xn‖ → 0.

Hence, (xm) is also a Cauchy sequence, and so xm → x as m →∞. Since
A is continuous, we find Ax = b, implying b ∈ R(A).

Thus, the non-empty set R(A) is both open and closed and, therefore,
R(A) = X∗ and A is bijective. This completes the proof.

Proof of theorem 3.3. We prove the theorem by an application
of Lemma 2.6, i.e., we need to show first that the approximation scheme
π = {Xn, En, Rn, X∗

n, E∗
n} is an admissible inner approximation scheme.

Since ‖En‖ = 1 (and hence ‖E∗
n‖ = 1) and (Xn) is a Galerkin scheme,

dist (x,Xn) → 0 as n →∞ for all x ∈ X. This implies that ‖Rnx− x‖ → 0
as n →∞, and thus compatibility condition (C4) is satisfied.

Consistency. Since A is continuous and compatibility condition (C4)
is satisfied, the consistency condition is as follows: Since

‖AEnRnx−Ax‖ → 0 as n →∞ and ‖E∗
n‖ = 1,

this implies that

‖E∗
nAx−AnRnx‖ = ‖E∗

nAx− E∗
nAEnRnx‖

≤ ‖E∗
n‖ ‖Ax−AEnRnx‖ → 0

as n →∞
Stability. For all x, y ∈ Xn, we have

‖Anx−Any‖ ‖φ(x− y)‖ ≥ 〈Anx−Any, φ(x− y)〉
= 〈E∗

nAEnx− E∗
nAEny, φ(x− y)〉 = 〈Ax−Ay, Enφ(x− y)〉

= 〈Ax−Ay, φ(x− y)〉 ≥ c (‖x− y‖) ‖φ(x− y)‖ ,

and consequently,

‖Anx−Any‖ ≥ c (‖x− y‖) for all x, y ∈ Xn.

A-properness. Let sup ‖xn‖ < ∞ for all xn ∈ Xn and

(A1) ‖Anxn − E∗
nb‖ = ‖E∗

nAxn − E∗
nb‖ → 0

as n →∞ for all n. Since X is reflexive, there exists a subsequence (again)
denoted by (xn) such that

xn
ω→ x in X as n →∞.
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This means, we need only to show

xn → x in X as n →∞, and Ax = b.

Since ‖Rnx− x‖ → 0 as n →∞, xn
ω→ x as n →∞ implies that

xn −Rnx
ω→ 0 as n →∞.

Thus, φ (xn −Rnx) ω→ 0 since φ is weakly continuous, and b − ARnx →
b−Ax since ‖x−Rnx‖ → 0 as n →∞.

From Condition (C5) and above arguments, we obtain, for xn ∈ Xn

as above, as n →∞,

c (‖xn −Rnx‖) ‖φ (xn −Rnx)‖ ≤ 〈Axn −ARnx,Enφ (xn −Rnx)〉
= 〈E∗

nAxn − E∗
nARnx, φ (xn −Rnx)〉

= 〈E∗
nAxn − E∗

nb + E∗
nb− E∗

nARnx, φ (xn −Rnx)〉
= 〈E∗

nAxn − E∗
nb, φ (xn −Rnx)〉+ 〈E∗

nb− E∗
nARnx, φ (xn −Rnx)〉

= 〈E∗
nAxn − E∗

nb, φ (xn −Rnx)〉+ 〈b−ARnx,Enφ (xn −Rnx)〉
= 〈E∗

nAxn − E∗
nb, φ (xn −Rnx)〉+ 〈b−ARnx, φ (xn −Rnx)〉 → 0

This also implies that ‖xn −Rnx‖ → 0 as n → ∞, and consequently,
xn −Rnx → 0 as n →∞. Since ‖En‖ < ∞, it implies that

‖Enxn − EnRnx‖ → 0 as n →∞,

and the compatibility condition (C4) (in Definition 2.1) implies

‖EnRnx− x‖ → 0 as n →∞.

It follows that
‖Enxn − x‖ → 0 as n →∞.

Now it only remains to show Ax = b. Since xn − Rnx → 0 as n → ∞,
implies that xn → x as n → ∞, and A is continuous, we obtain Ax = b,
that is, A is A-proper.

Now Lemma 2.6 is applicable to conclude the proof.

4. Application to numerical ranges

In this section, we apply the obtained results to the solvability of
nonlinear equations involving the numerical range — a generalization of
the Zarantonello numerical range to the case of the reflexive Banach space
operator.
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Definition 4.1. (Duality Mapping). We recall a continuous function
µ : R+ = {t : t ≥ 0} → R+ is called a gauge function if µ(0) = 0, and
µ is strictly increasing. Let X be a real reflexive Banach space and X∗
its dual. We denote by 〈f, x〉 the duality pairing between the elements
of f ∈ X∗ and x ∈ X. A mapping J : X → X∗ is said to be a duality
mapping between X and X∗ with respect to a gauge function µ if

(C6) 〈Jx, x〉 = µ(‖x‖)‖x‖, and

(C7) ‖Jx‖ = µ(‖x‖) for x ∈ X.

Note that if µ(t) = t, J is said to be a normalized duality mapping.
If X∗ is strictly convex, then J is uniquely determined by µ, and if X
is also reflexive, then J is a single-valued demicontinuous mapping of X
onto X∗, which is bounded and positively homogeneous. Furthermore, J
is monotone and satisfies

(C8) 〈Jx− Jy, x− y〉 ≥ (µ(‖x‖)− µ(‖y‖))(‖x‖ − ‖y‖)
for all x, y ∈ X,

and

(C8)∗ 〈Jx− Jy, x− y〉 = 〈Jx, x− y〉 − 〈Jy, x− y〉 ≥
≥

∣∣∣µ(‖x‖)− µ(‖y‖)
∣∣∣‖x− y‖ for all x, y ∈ X.

For J a normalized duality, (C8) reduces to

(C9) 〈Jx− Jy, x− y〉 ≥ (‖x‖ − ‖y‖)2 for all x, y ∈ X,

and

(C9)∗ 〈Jx− Jy, x− y〉 ≥
∣∣∣‖x‖ − ‖y‖

∣∣∣‖x− y‖ for all x, y ∈ X.

Definition 4.2 (Numerical Range). Let A : X → X∗ be a mapping
from a reflexive Banach space X to its dual X∗ over the field K (real or
complex). Let J : X → X∗ be a strictly monotone normalized duality
mapping. The set

V [A] =
{ 〈Ax−Ay, φ(x− y)〉
〈Jx− Jy, φ(x− y)〉 : x, y ∈ X,x 6= y

}

is called the numerical range of A. Here φ : X → X is weakly continuous
such that

(i) φ(X) is dense in X; and
(ii) for each x ∈ X and each t ≥ 0, φ(tx) = tφ(x) and ‖φx‖ = ‖x‖.
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Clearly, V [A] is a subset of K, and V [A] reduces to the Zarantonello
numerical range when X is a Hilbert space and J = φ = I in the form [12]

N [A] =
{

(Ax−Ay, x− y)
‖x− y‖2 : x, y ∈ X,x 6= y

}

where (· , ·) is the standard inner product on X.
We describe some of the elementary properties of V [A] in the following

theorem:

Theorem 4.3. Let A,B : X → X∗ be mappings from a reflexive
Banach space to its dual X∗, J : X → X∗ strictly monotone normalized
duality, and λ ∈ K (real or complex field). Then

(i) V [λA] = λV [A];

(ii) V [A + B] ⊆ V [A] + V [B]; and

(iii) V [A− λJ ] = V [A]− {λ}.
Proof. The assertions (i) and (ii) follow directly from the definition.

To prove (iii), if x, y ∈ D(A + J) = D(A)∩D(J) 6= ∅ with x 6= y, we have

〈(A− λJ)x− (A− λJ)y, φ(x− y)〉
〈Jx− Jy, φ(x− y)〉

=
〈Ax−Ay, φ(x− y)〉 − λ〈Jx− Jy, φ(x− y)〉

〈Jx− Jy, φ(x− y)〉 = V [A]− {λ}.

Now we apply the obtained results in the preceding section to the
solvability (approximation-solvability) of the equation

Ax− λJx = b for fixed λ ∈ K.

Theorem 4.4. Let A : X → X∗ be continuous from a separable real
Banach space X(dimX < ∞) to its dual X∗. If X and X∗ are locally
uniformly convex, J : X → X∗ is normalized duality, and the number
λ ∈ K is at a positive distance from the numerical range of A, V [A], that
is

d = dist(λ, V [A]) > 0,

then, for each b ∈ X∗, the equation

Ax− λJx = b, x ∈ X,

has a unique solution.
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Theorem 4.5. Suppose X (dimX = ∞) is a separable reflexive com-
plex Banach space with dual X∗, and A : X → X∗ is continuous mapping.
If X and X∗ are locally uniformly convex, J : X → X∗ is normalized
duality, and the number λ ∈ K is at a positive distance from the numerical
range of A, V [A], that is,

d = dist(λ, V [A]) > 0,

then, for each b ∈ X∗, the equation

Ax− λJx = b, x ∈ X,

is uniquely approximation-solvable.

Corollary 4.6 ([12]), Theorem II). If X is a separable Hilbert space,
and J = φ = I in Theorems 4.4 and 4.5, then, for each b ∈ X, the equation

Ax− λx = b, x ∈ X,

has a unique solution.
The inverse operator

(A− λI)−1 : X → X

is Lipschitz continuous, and if A(0) = 0, then the Zarantonello numerical
range N [A] contains the eigenvalues of A.

If, in addition, dim X = ∞, then, for each b ∈ X, the equation

Ax− λx = b, x ∈ X,

is uniquely approximation-solvable.

Proof of theorem 4.4. The proof follows from an application of
Theorem 3.1. To achieve this, we need the following key stability condition:
For x, y ∈ X with x 6= y, we have

(C10)

|〈(A− λJ)x− (A− λJ)y, φ(x− y)〉| =
= |〈Ax−Ay, φ(x− y)〉 − λ〈Jx− Jy, φ(x− y)〉|

=
∣∣∣∣
〈Ax−Ay, φ(x− y)〉
〈Jx− Jy, φ(x− y)〉 − λ

∣∣∣∣ |〈Jx− Jy, φ(x− y)〉|
≥ d Re〈Jx− Jy, φ(x− y)〉
≥ d

∣∣∣ ‖x‖ − ‖y‖
∣∣∣ ‖φ(x− y)‖.

This implies that

‖(A− λJ)x− (A− λJ)y‖ ≥ d
∣∣∣‖x‖ − ‖y‖

∣∣∣
for all x, y ∈ X.
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Now, the rest of the proof can be imitated from the proof of Theo-
rem 3.1.

Proof of theorem 4.5. The proof follows from Theorem 3.3 on
approximation-solvability.
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