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On weakly symmetric spaces with semi-symmetric metric
connection

By S. AYNUR UYSAL (Istanbul) and R. ÖZLEM LALEOĞLU (Istanbul)

Abstract. The notions of weakly symmetric and weakly projective sym-
metric spaces were introduced by Tamássy and Binh [1] and an example of
the modified form of weakly symmetric Riemannian spaces was constructed by
U. C. De and S. Bandyopadhyay, [2]. The object of this paper is to intro-
duce the modified form of weakly symmetric spaces with semi-symmetric metric
connection with an illustrative example.

1. Introduction

A non-flat Riemannian space Vn (n > 2) is called weakly symmetric if
its Riemannian curvature tensor Rhijk satisfies the condition

∇lRhijk = alRhijk + bhRlijk + ciRhljk + djRhilk + ekRhijl, (1.1)

where a b, c, d, e are 1-forms (non-zero simultaneously) and ‘∇l’ denotes
the covariant differentiation with respect to the Riemannian connection ∇.

The one-forms a, b, c, d, e are called associated one-forms of the space
and an n-dimensional space of this kind is denoted by (WS)n. In [2], a
reduction in the defining equation of a (WS)n is obtained in the following
simpler form:

∇lRhijk = alRhijk + bhRlijk + biRhljk + djRhilk + dkRhijl.
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Let D denote the semi-symmetric metric connection over Vn with coeffi-
cients

Γijk =
{

i

jk

}
+wjδ

i
k − wkδ

i
j , Dkgij = 0, (1.2)

where ‘Dk’ denotes the covariant differentiation with respect to the semi-
symmetric metric connection.

The curvature tensor Lhijk of the manifold Vn is defined by

Lhijk = ∂jΓhik − ∂kΓhij + ΓaikΓ
h
aj − ΓaijΓ

h
ak,

(
∂k =

∂

∂xk

)
. (1.3)

Substituting (1.2) in (1.3) we obtain the following equation for the curva-
ture tensor Lhijk of Vn with semi-symmetric metric connection:

Lhijk = Rhijk − δhi (Pjk − Pkj) + δhkPji − δhj Pki, (1.4)

where Pjk = ∇jwk − wjwk and Rhijk is the Riemannian curvature tensor
of the space.

Multiplying (1.4) by gah and interchanging the indices a and h, the
above equation can be converted into the covariant form

Lhijk = Rhijk − gih(Pjk − Pkj) + gkhPji − gjhPki. (1.5)

Interchanging the indices j and k and taking k = j in (1.5) leads to the
identities

Lhijk = −Lhikj, (1.6)
and

Lhijj = 0 (1.7)

respectively. An n-dimensional, (n > 2), weakly symmetric space with
semi-symmetric metric connection, ((WS)n,D) for short, is a non-flat
space satisfying the condition

DlLhijk = alLhijk + bhLlijk + ciLhljk + djLhilk + ekLhijl, (1.8)

and it has the coefficients (1.2), where Lhijk is the curvature tensor of the
space and a, b, c, d, e are 1-forms (non-zero simultaneously). By using the
following method, which is also used in [2], we come to the conclusion that
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the five associated 1-forms cannot be all different. Moreover, we can state
that the associated one forms d and e are identically equal to each other.

Interchanging the indices j and k in (1.8) we obtain

DlLhikj = alLhikj + bhLlikj + ciLhlkj + dkLhilj + ejLhikl. (1.9)

Now, adding (1.8) and (1.9) and using (1.6), we get

(dj − ej)Lhilk + (dk − ek)Lhilj = 0

or
AjLhilk +AkLhilj = 0 (1.10)

where Aj = dj − ej . We want to show that Aj = 0 (j = 1, 2, . . . , n).
Suppose on the contrary there exists a fixed index q for which Aq �= 0.
Putting j = l = q in (1.10), with the help of (1.7) we have AqLhiqk = 0,
which implies that Lhiqk = 0 for all h, i, k. Next, putting k = q in (1.10)
we obtain AjLhilq + AqLhilj = 0 which means that Lhilj = 0 for all h, i,
j, l, since Lhiqk = 0 for all h, i, k and Aq �= 0. Then the space is flat,
contradicting our hypothesis. Hence Aj = 0 for all j, which implies that
dj = ej for all j. Now in virtue of the above process we can state that the
condition (1.9) can always be expressed in the following form:

DlLhijk = alLhijk + bhLlijk + ciLhljk + djLhilk + dkLhijl. (1.11)

2. An example of weakly symmetric spaces
with semi-symmetric metric connection

In this section, we construct an example of weakly symmetric spaces
with semi-symmetric metric connection.

We define the metric g in ((WS)n,D) by the formula, [2], [3]

ds2 = ϕ(dx1)2 + kαβdx
αdxβ + 2dx1dxn, (n ≥ 4) (2.1)

where [kαβ ] is a symmetric non-singular matrix consisting of constants.
The function ϕ, which is independent of xn, will be determined with some
assumptions such that the condition (1.11) is satisfied. Here and through-
out this section each Latin index runs over 1, 2, . . . , n and each Greek index
runs over 2, 3, . . . , n − 1.
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Also we define the vector components wh, which are contained in the
formula of coefficients of the connection D, as

wh =

{
ψ(x1), for h = 1

0, otherwise
(2.2)

where ψ is a continuous function of x1 defined on the interval I = [a, b],
[5]. The function ψ will be determined precisely such that the condition
(1.11) is satisfied for certain values of the associated 1-forms a, b, c, d for
the ((WS)n,D) space, which has the metric (2.1). Since the above process
is equivalent to determining the metric (2.1) and the coefficients of the
connection completely, the construction of our example will be completed.

Due to the metric (2.1), the only non-vanishing components of the
Christoffel symbols and the Riemannian curvature tensors Rhijk are the
followings, [4]:{

β

11

}
= −1

2
kβαϕ.α,

{
n

11

}
=

1
2
ϕ.1,

{
n

1α

}
=

1
2
ϕ.α

and R1αβ1 =
1
2
ϕ.αβ

(2.3)

respectively, where (.) denotes the partial differentiation with respect to
coordinates, and [kαβ ] is the inverse matrix of [kαβ ].

With the assumption (2.2) we obtain the non-zero components of Γhij
and Pij as follows:

Γβ11 =
{

β

11

}
+ w1δ

β
1 − w1δ

β
1 =

{
β

11

}

Γβ1α =
{

β

1α

}
+ w1δ

β
α − wαδ

β
1 =

{
ψ(x1), for α = β

0, α �= β

Γβα1 =
{

β

α1

}
+ wαδ

β
1 − w1δ

β
α =

{
−ψ(x1), for α = β

0, α �= β

Γn11 =
{

n

11

}
+ w1δ

n
1 −w1δ

n
1 =

{
n

11

}
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Γn1α =
{

n

1α

}
+ w1δ

n
α − wαδ

n
1 =

{
n

1α

}

Γn1n =
{

n

1n

}
+ w1δ

n
n − wnδ

n
1 = ψ

(
x1

)

Γnα1 =
{

n

α1

}
+ wαδ

n
1 − w1δ

n
α =

{
n

α1

}

Γnn1 =
{

n

n1

}
+ wnδ

n
1 − w1δ

n
n = −ψ(

x1
)
. (2.4)

P11 = ∇1w1 − w2
1 =

∂w1

∂x1
− wa

{
a

11

}
− w2

1 = ψ
′(
x1

) − ψ2
(
x1

)
. (2.5)

Also one can easily show that the only non-zero component of DlP11 is

D1P11 = ψ′′(x1
) − 2ψψ′(x1

)
. (2.6)

For the metric (2.1), if we consider kαβ as δαβ and

ϕ = kαβx
αxβex

1
e−

∫ x1

a 2ψ(t)dt, x1 ∈ I = [a, b], we obtain

ϕ =
n−1∑
α=2

xαxαex
1
e−

∫ x1

a 2ψ(t)dt, x1 ∈ I. (2.7)

Hence

ϕ.αα = 2ex
1
e−

∫ x1

a
2ψ(t)dt and ϕ.αβ = 0 . . . for α �= β. (2.8)

It follows from (2.3) and (2.8) that the only non-zero components of Rhijk
are

R1αα1 = ex
1
e−

∫ x1

a
2ψ(t)dt. (2.9)

Also, by means of (2.4) and (2.9) it can be easily shown that the only
non-zero components of DlRhijk are

D1R1αα1 = ex
1
e−

∫ x1

a 2ψ(t)dt, (2.10)

which are equal to R1αα1.
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We get the non-zero components of the curvature tensor Lhijk and
their covariant derivatives with respect to the connection D as follows, [5]:

L111n = R111n − g11(P1n − Pn1) + gn1P11 − g11Pn1 = P11

L11n1 = −L111n = −P11

L1α1α = R1α1α − gα1(P1α − Pα1) + gα1P1α − g11Pαα = R1α1α

L1αα1 = −L1α1α = −R1α1α = R1αα1

Lα11α = Rα11α − g1α(P1α − Pα1) + gααP11 − g1αPα1 = Rα11α + P11

Lα1α1 = −Lα11α = −Rα11α − gααP11 = Rα1α1 − P11, (2.11)

DkL111n = DkP11 =

{
D1P11, k = 1

0, k �= 1

DkL11n1 = −DkP11 =

{
−D1P11, k = 1

0, k �= 1

DkL1α1α = DkR1α1α =

{
D1R1α1α, k = 1

0, k �= 1

DkL1αα1 = DkR1αα1 =

{
D1R1αα1, k = 1

0, k �= 1

DkLα11α = DkRα11α +DkP11 =

{
D1Rα11α +D1P11, k = 1

0, k �= 1

DkLα1α1 = DkRα1α1 −DkP11 =

{
D1Rα1α1 −D1P11, k = 1

0, k �= 1.
(2.12)

Since DlR1αα1 = 0 and DlP11 = 0 for l �= 1, we observe that DlLhijk = 0
for l �= 1.



On weakly symmetric spaces with semi-symmetric. . . 151

Let ai =




1
3
, i = 1

0, i �= 1
, bi = ci = 0, ∀i, di =




2
3
, i = 1

0, i �= 1.
(2.13)

In order to verify the condition (1.8), it is sufficient to check the relations:

(A) DnL1111 = anL1111 + b1Ln111 + c1L1n11 + d1L11n1 + d1L111n

(B) DαL111α = aαL111α + b1Lα11α + c1L1α1α + d1L11αα + dαL111α

(C) D1L111n = a1L111n + b1L111n + c1L111n + d1L111n + dnL1111

(D) DαL11α1 = aαL11α1 + b1Lα1α1 + c1L1αα1 + dαL11α1 + d1L11αα

(E) D1L11n1 = a1L11n1 + b1L11n1 + c1L11n1 + dnL1111 + d1L11n1

(F) D1L11nn = a1L11nn + b1L11nn + c1L11nn + dnL111n + dnL11n1

(G) DαL1α11 = aαL1α11 + b1Lαα11 + cαL1α11 + d1L1αα1 + d1L1α1α

(H) D1L1α1α = a1L1α1α + b1L1α1α + cαL111α + d1L1α1α + dαL1α11

(I) D1L1αα1 = a1L1αα1 + b1L1αα1 + cαL11α1 + dαL1α11 + d1L1αα1

(J) DαLα111 = aαLα111 + bαLα111 + c1Lαα11 + d1Lα1α1 + d1Lα11α

(K) D1Lα11α = a1Lα11α + bαL111α + c1Lα11α + d1Lα11α + dαLα111

(L) D1Lα1α1 = a1Lα1α1 + bαL11α1 + c1Lα1α1 + dαLα111 + d1Lα1α1.

With these choices of ai, bi, ci and di as in any other case, the compo-
nents of Lhijk and DlLhijk vanish identically, and the relation (1.11) holds
trivially. From the equations (C) and (E) we get

D1P11 = (a1 + b1 + c1 + d1)P11, (2.14)

from (H) and (I) we have

D1R1α1α = (a1 + b1 + d1)R1α1α, (2.15)

and from (K) and (L) we obtain

D1(Rα11α + P11) = (a1 + c1 + d1)(R1α1α + P11). (2.16)
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As a result of (1.6) and (2.13) other relations hold trivially. With the help
of (2.9), (2.10) and (2.13), we conclude that (2.14), (2.15) and (2.16) are
equivalent to

D1P11 = P11. (2.17)

Substituting (2.5) and (2.6) in (2.17), we obtain the differential equation

ψ
′′ − 2ψψ

′
= ψ

′ − ψ2, (2.18)

where (′) denotes the derivation with respect to x1. By integration with
respect to x1, (2.18) reduces to

ψ
′ − ψ2 = cex

1
, (2.19)

where c is an arbitrary constant. If we take c = 1 and use the transforma-
tion ψ = −U ′

U , (2.19) turns into the linear differential equation

U
′′

+ ex
1
U = 0. (2.20)

By a further transformation ex
1

= t2 (2.20) can be converted into the
form

t2Ü + tU̇ + 4t2U = 0,

which is a Bessel differential equation, where U̇ = ∂U
∂t and Ü = ∂2U

∂t2 .
Solving this equation, we obtain the general solution of U in terms of
Bessel functions as follows:

U = AJo(2t) +BYo(2t), (2.21)

where A and B are arbitrary constants.

Substituting (2.21) in ψ = −U
′

U and remembering that t = ex
1/2 and

J
′
m(z) = z

′

2 [Jm−1(z) + Jm+1(z)], Y
′
m(z) = z

′

2 [Jm−1(z) + Ym+1(z)], we have

ψ(x1) =
e

x1

2

[
J1

(
2 e

x1

2

)
+ c1Y1

(
2 e

x1

2

)]
Jo

(
2 e

x1

2

)
+ c1Yo

(
2 e

x1

2

) ,
(
x1 ∈ I

)
,

where c1 = B
A , Jo and J1 are Bessel J functions and Yo and Y1 are Bessel

Y -functions.
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By determining ψ(x1) precisely we have completely determined the ϕ

and w, therefore the coefficients of the connection and the metric (2.1), and

relatively the whole space, such that the condition of being a ((WS)n,D)
space is satisfied. Hence the construction of our example of a weakly

symmetric spaces with semi-symmetric metric connection is completed.

Although we achieved our aim, as a special case we will investigate
the particular solution ψ0(x1) satisfying the initial condition ψ(0) = 0, in
order to give an example for the choice of the continuity interval of the
function ψ(x1).

We can easily see that the particular solution which satisfies the initial
condition ψ(0) = 0 is obtained with c1 = − J1(2)

Y1(2) . This particular solution
ψ0(x1) has the following graph:

-4 -2 2 4

-10

-7.5

-5

-2.5

2.5

5

7.5

10

We see the apparent vertical asymptotes near x1 = −2 and x1 = 1. These
vertical asymptotes, which are x1 ≈ −2.0253 and x1 ≈ 1.27081, correspond
to the zeros of denominator of ψ0(x1). Then, for this particular solution
the interval I, which is the interval of continuity of the function ψ(x1),
can be chosen to be any closed interval such that ψ0(x1) is continuous on
it, for example [−2, 1] or [a, b], such that a < b < d where d = x1 is the
smallest asymptote of ψ(x1).

Finally, we have determined the function ψ(x1), and by the way the
coefficients of the connection, such that the defining equation of weakly
symmetric spaces is satisfied for the space ((WS)n,D), which has the
metric (2.1).
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