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Translations in hyperbolic geometry
of finite or infinite dimension

By WALTER BENZ (Hamburg)

Abstract. Based on separable translation groups T, Euclidean and Hyper-
bolic Geometry of (finite or infinite) dimension > 2 can be characterized ([2]).
The separability assumption of 1" expresses the existence of a special factorization
of its kernel. In a first result of the present note the possibility of this factor-
ization will be characterized geometrically. Another result answers the question
when exactly two arbitrary surjective hyperbolic isometries, written in the form
17181 and 7o, coincide, where «;, 3; are surjective orthogonal mappings and
7; translations with the same axis, i = 1,2. Also a characterization of hyperbolic
translations will be given.

1. Separability

Let X be a real inner product space of (finite or infinite) dimension
> 2,0(X) be its orthogonal group, and e be a fixed element of X satisfying

e? = 1. Suppose that
T:R — Perm X

is a mapping of R into the group of all permutations of X. The mapping
T is called a translation group of X ([2]) with axis e provided the following
properties hold true.

(a) Tyys =T, - T for allt,s € R,
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(b) For x,y € X satisfying y — x € Re there exists exactly one t € R with
Ty(z) =y,

(¢) Ti(x) —z € Re for allz € X and all t € R.

Here T; designates the image of ¢ € R under 7', and Tj(z) the image of

x € X under the permutation T; of X. Property (a) is the socalled trans-

lation equation (J. ACZEL [1, pp. 245-253], Z. MOSZNER and J. TABOR

[B]). Ifet:={he X | he=0}=:H,

o(h,§) := [Te(h) = h] - e (1)

with h € et and € €R is called the kernel of T. It determines the structure
of T ([2]).

The translation group T is called separable ([2]) provided the following
property holds true.

(d) o(h,&) = @(&)Y(h) for all £ € R and h € H with functions ¢ : R — R
and v : H — Ry satisfying ¢(0) = 0 and p(t1) < @(tz) for all reals
t < to.

R~ designates the set of all positive, and R>( the set of all non-
negative reals. ||z|| stands for V22 for all z € X.

Theorem 1. Suppose that T : R — Perm X satisfies (a) and (b).
Then T is a separable translation group if and only if

(c) Ty(z) —x € Rsp-e forall x € X and all t € R,

S T~ b o), and all o
) Ty =Rl = sy o ol € H and all o, 5 € RA{0),

hold true.

ProoOF. A) (a), (b) and (c’) imply (c).
We show more:

Ti(x) —z € R>p- (—e) for z € X and ¢t < 0. (2)
Since —t > 0, (¢’) implies
T ¢(Ty(z)) — Ty(z) = p-e

for a suitable ;1 > 0. Hence x — T;(z) € R>¢ - e. Observe here Tp(x) = x.
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B) (a), (b), (¢’) and (d’) imply (d).

Mainly from (b) we obtain that T;(x) = x holds true if and only if
t = 0. Hence (d’) is well-defined, because T3(h) — h and T3(0) are both
unequal to 0. By (c) and (1) we get

Te(h) — h = o(h,§) - e (3)
for all h € H and £ € R. Hence, by (¢), (2),
Q(i’t) >0 forall h € H and t # 0. (4)

From (), Ty,—t, (T3, (h)) — Tt (h) € R>g - €, and (a) we obtain
Q(h,tl) < Q(h,tz) for h € H and t1 < t9. (5)

Given h € H and £ € R there exists exactly one t € R with o(h,t) = &;
this follows from (b) by defining x = h and y = h+ £e. Hence the function

t — o(h,1) (6)

must be for fixed h € H a monotonically increasing bijection of R with
o(h,0) =0.
By (3), (4), we obtain

[T¢(h) — h|| = sgn& - o(h, §)
for all £ # 0 and h € H. Hence, by (d’),

(h,1)
(0,1)

Q(h,f) = Q(O,f) ) (7)

|

for all € # 0 and h € H. Because of p(h,0) = 0, formula (7) holds true for
& =0 as well. Define

— _ o(h1)
@(§) == 0(0,§) and P(h) = 201

Because of sgnl = 1, we get ¢(h) > 0 for all h € H, and also ¢(0) = 1.
What we proved about function (6), implies that ¢ is a monotonically
increasing bijection of R with ¢(0) = 0.
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C) (a), (b), (c) and (d) imply ().
Observe, by (3), (a),

Ti(h + o(h,7)e) = Ti(T-(h)) = Tri4(h) = h+ o(h, T + t)e. (8)
Since X = H & Re, we get the uniquely determined decomposition
T = h + xge,
h € H,zy € R, for a given x € X. Writing z¢g =: o(h, 7), we obtain, by (8),
Ti(z) = Ty (h + o(h,7)e) =z + (o(h, 7 +t) — o(h,7))e. 9)
(d) implies o(h,t1) < o(h,ts) for all h € H and t; < to. If t > 0, then

T+t > 7. Hence, by (9), property (c¢’) holds true.
D) (a), (b), (c) and (d) imply (d’). (d) and (3) imply

1T (h) — Rl = @) - (h)
for all £ € R and h € H. Hence (d’) holds true. O

Remark. Theorem 1 remains true, if we replace there property (d’) by
the following

(d*) o(h,&) = @(&)Y(h) for all £ € R and h € H with functions
¢:R— Rand 1t : H— R, which, of course, is weaker than (d).

Proor. 1. (a), (b), (c), (d) imply (a), (b), (¢’), (d¥).
This is obvious as far as (a), (b), (d*) are concerned, and, with respect to
(¢”), it follows from step C of the previous proof.

2. (a), (b), ('), (d7) imply (a), (b), (c), (d).
Clear for (c), in view of step A. In order to prove (d), let ¢ : R — R and
1o : H — R be functions according to (d*), satisfying

o(h, &) = wo(&)vo(h)

for all £ € R and h € H. We now will apply results of step B as far as
they were derived without assumption (d’). If there existed hg € H with
Yo(hg) = 0, we would obtain g(hg, &) = 0 for all £ € R, contradicting the
structure of function (6). Define

Yo(h)

(&) = vo(0)po(&), (h)= 2(0)
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and observe o(h, &) = p(§)Y(h). By (5), t1 < to implies
p(t1) = 0(0,11) < 0(0,12) = p(t2).
Because of Ty(z) = x for all z € X (see step A), we get, by (1),
©(0) = ¥p(0)(0) = 0(0,0) = [Tp(0) — 0le = 0.

Hence, by (5),

0= ¢(0)¢(h) = o(h,0) < o(h,1) = p(1)¢(h).
Observe 0 = ¢(0) < p(1). If ¢(1) were 0, o(h,&) = 0 would have distinct
solutions £ = 0, £ = 1. In view of (h) # 0, the inequality
0 < @(1)y(h)

implies ¢(h) > 0. Hence 1 is a function from H into R~g. Hence (d) holds
true. g

2. Examples

Important examples of separable translation groups are the following.
Let again X be a real inner product space of (finite or infinite) dimension
> 2, and let e € X satisfy e? = 1. Define T by (9) on the basis of

(E) o(h,t) :==t (Euclidean Geometry),

(H) o(h,t) :=sinht-+/1+ h? (Hyperbolic Geometry).

We proved in [2], based heavily on the theory of Functional Equations
(J. AczEL [1], Z. DAROCZY [4]), the

Theorem. Let T' be a separable translation group with axis e, and
suppose that d : X x X — R is not identically 0, and satisfies
(i) d(z,y) = d(y,z),
(ii) d(z,y) = d(w(@),w(y)),
(iii) d(z,y) = d(To(z), Ti(y)),
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(iv) d(0, Be) = d(0, ae) + d(ae, Be)
for all z,y € X, w € O(X), t,a, € R with 0 < o < 3. Then, up to
isomorphism, we obtain

(E) with d(z,y) = \/(z — y)?

H) with coshd(z,y) =V1+22/1+vy2 —=z
(H) Y) =V y? —xy

for all z,y € X, h € e*, and t € R. Hence, (X,d) is the Euclidean
Metric Space with classical translations (E), or (X,d) is the Hyperbolic
Metric Space in the form of the Weierstrass model with hyperbolic trans-
lations (H).

Another separable translation group 7T is given by (9) with
o(x — (ze)e,t) = 3. (1+ — (a:e)z)

forall z € X and t € R.
The translation group with o(h,t) = sinh(¢ - 2h2) is not separable.

3. A characterization of hyperbolic translations

Based on (9) and ¢(h,t) = sinht -1+ h? we get the hyperbolic
translations

Ti(z) =z + |(ze)(cosht — 1) + /1 + 22 sinht} e (10)

of X with axis e, where the fixed element e € X satisfies €2 = 1. The group
{T; | t € R} will be denoted by T. As already mentioned in Section 2,
the notion of distance in the Hyperbolic Metric Space (X,d) is given by
d(z,y) > 0 and

coshd(z,y) = V1+22/1+y> —zy

for x,y € X. If o > 0 is a fized real number, N > 1 a fixed integer, and
f: X — X a mapping satisfying

d(z,y) =0 implies d(f(z),f(y)) < o,
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d(z,y) = No implies d(f(:c), f(y)) > No,
for all x,y € X, then
d(z,y) = d(f(z), f(y)) (11)
holds true for all x,y € X, and, moreover,
f(z) =aTiB(z) forallze X (12)

for suitable T; of the form (10),a € O(X), and 3 linear, orthogonal ([3]).

The mapping (12) is surjective (and hence bijective) if and only if 3
is in O(X) as well.

Lemma 1. Given a € O(X) with a(e) = e, ¢ € R. Then
aTia N (x) = Toy(z)
forallz € X andt € R.

PROOF. Because of a(e)a(e) = ee, we obtain e2=1. With a~!(e) =ce
and
z=h+zpe, heet, zoeR,

we get a~!(h)a~1(e) = he = 0, i.e. a1 (h) € e*, and hence, by
a~t(h)a=t(h) = h? and (10),

aTyo ' (z) = Ty (o (k) + zoee)

= a(ofl(h) + [xgacosht + /1 + h? + 2 sinht} e)
=x+ [(:L‘e) (cosh(et) — 1) + V1 + 2 sinh(st)} e="Ty(r). O
Corollary. Define for z = h + xge, h € e*, zg € R,
x(x) = h — xpe.
Then xT; = T_4x for all t € R.

PROOF. Observe x € O(X), x(e) = —e and Lemma 1. O
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Theorem 2. Let f : X — X satisfy (11) for all z,y € X. If f is
surjective, then
f(z)—zeRe foralazeX (13)

holds true if and only if f €e TUT - x.

PROOF. 1. Obviously, f € T UT -y satisfies (13).

2. If f € O(X) has property (13), then f =id or f = x. In order
to prove this statement, notice first f(e) — e € Re, i.e. f(e) = \e with a
suitable A € R. Hence, by f € O(X), e? = (f(e))Z, i.e. 1 = A2, Because of

0=he = f(h)f(e) = f(h)- Ae
for h € e*, we obtain f(h) € et, and thus
f(h+ zoe) = f(h) +xore, f(h) € ™, (14)
for x = h + xge, h € e, zg € R. By (13),
f(h+ zpe) = h + xpe + pe (15)
with a suitable ;1 € R. Hence, by (14), (15), f(h) = h, i.e., by (14),
f(h+ zpe) = h + zoAe.

Thus f =id for A=1, and f = x for A = —1.
3. Assume now that f : X — X is surjective, and that it satisfies (13).
Hence f is of form (12) with 8 € O(X), i.e.

f=al, witha,3€ O(X), t €R.

Ift =0, then f € O(X), i.e., by step 2, f € TUTx. Assume t # 0. Hence
T:(0) # 0. By (13), aT;5(0) = Xe, with a suitable A € R. Hence

0 # T3(0) = Aa~ ' (e),

and thus a~!(e) = ce, ¢ € R, because of T;(0) € Re. So we obtain
a(e) = ce with €2 = 1, i.e., by Lemma 1,

f=aliat-af =T, v

with v := a8 € O(X). Since T and T - v have property (13), hence
also T4 - Teyy = «y. This implies v = id or v = x, by step 2. Thus
feTuTy. O
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T; € T has a fixpoint if and only if £ = 0. On the other hand, every T} -y
has a fixpoint. This leads to the following characterization of hyperbolic
translations, which is a corollary of Theorem 2.

A surjective and distance preserving mapping f : X — X is a hyper-
bolic translation # id (with azis e) if and only if

0+# f(z) —z €Re

holds true for oll z € X.

Given two surjective hyperbolic isometries, i.e. mappings
f=al;f and ¢g=~T

with a, 8,7,0 € O(X), t,s € R, where T}, Ts are translations with axis e.
The question we now would like to answer is the following

when and only when is f = g?
Lemma 2. Let &, n be elements of O(X), and t, s be reals. Then
§Ty = Tin (16)
holds true if and only if
Case ts=0:t=s=0 and £ =m,
Case ts#0:t=¢s, e2=1 and £=r, &(e) = ce.
PRrOOF. ¢T;(0) = Tsn(0) implies
&(e) -sinht = e - sinhs. (17)

Since £(e)é(e) = e-e =1, we obtain ¢ = s = 0, and hence £ = 7 from (16),
in the case ts = 0. On the other hand, t = s = 0 and £ = n imply (16). In
the case ts # 0, we get £(e) = ce,e2 = 1, and t = es from (17). Hence, by
(16) and Lemma 1,

Ton=¢NE - €=1T, &,

i.e. £ = 1. On the other hand, ts # 0, t = es, €2 =1, £ =1, £(e) = ee
imply Tt = Tsn. u
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Theorem 3. Let «, (3, v, § be elements of O(X), and t,s be reals.
Then
Ty = ~Ts6 (18)
holds true if and only if

Case ts=0:t=s=0 and af =",
Case ts#0:t=¢cs, e2=1 and aff =76, ale) = eyle).

PROOF. Since (18) is equivalent with (16) by defining £ = vy la, n =
5371, we may apply Lemma 2. Hence (16) is the same as t = s = 0 and
af =0 in the case ts = 0, and the same as

t=es, e2=1, v la=6"" 47!

(e) = ce,
i.e. the same as t = es, €2 = 1, a3 = 7 and a(e) = ey(e), in the case
ts # 0. O
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