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On a functional inequality related to the stability problem
for the Go�la̧b–Schinzel equation

By JACEK CHUDZIAK (Rzeszów)

Abstract. We determine all unbounded continuous functions satisfying the
inequality

|f(x+ yf(x)) − f(x)f(y)| ≤ ε for x, y ∈ R,

where ε is a fixed positive real number. As a consequence we obtain that in
the class of continuous functions the Go�la̧b–Schinzel functional equation is super-
stable.

1. Introduction

The Go�la̧b–Schinzel functional equation

f(x+ yf(x)) = f(x)f(y) for x, y ∈ R, (1)

where f : R → R is the unknown function, is one of the most intensively
studied equations of the composite type. Some information concerning (1),
recent results, applications and numerous references one can find in [1]–[6]
and [8]–[12]. At the 38th International Symposium on Functional Equa-
tions (2000, Noszvaj, Hungary) R. Ger raised, among others, the problem
of Hyers–Ulam stability of (1) (see [7]). Motivated by this problem, we
consider the inequality

|f(x+ yf(x)) − f(x)f(y)| ≤ ε for x, y ∈ R, (2)
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where ε is a fixed positive real number. We determine all unbounded
continuous solutions of (2). As a consequence we obtain that in the class
of continuous functions the equation (1) is superstable.

2. Auxiliary results

For the proof of our main results we need few lemmas.

Lemma 1. Assume that a function f : R → R satisfies (2). Then:

(i) either f(0) = 1 or f is bounded;

(ii) |f(x+ yf(x)) − f(y + xf(y))| ≤ 2ε for x, y ∈ R; (3)

(iii) if f is bounded above then f is bounded.

Proof. (i) Putting y = 0 in (2), we get |f(x)||1−f(0)| ≤ ε for x ∈ R.

Whence either f(0) = 1 or f is bounded.

(ii) This follows immediately from (2).

(iii) Suppose that f is unbounded. Then there exists a sequence (xn :
n ∈ N) of real numbers such that limn→∞ |f(xn)| = ∞. Using (2) we
obtain that f(xn + xnf(xn)) ≥ f(xn)2 − ε for n ∈ N. Consequently f is
unbounded above. �

Lemma 2. Assume that f : R → R is a continuous function satisfy-

ing (2). Fix a z ∈ R \ {0} and define the function ψz : R → R by

ψz(x) = x+ zf(x) for x ∈ R. (4)

(i) If ψz is bounded then

f(x) = 1 − x

z
for x ∈ R. (5)

(ii) If f(z) = 0 and ψz is unbounded below (above), then

|f(x)| ≤ ε for x ∈ (−∞, z] (x ∈ [z,∞), resp.). (6)

(iii) ψn+1
z (z) = ψn

z (z) + zf(ψn
z (z)) for n ∈ N. (7)

(iv) If there exists a q := limn→∞ ψz(z)n, then f(q) = 0.
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Proof. (i) Assume that ψz is bounded. From (4) it follows that

f(x) =
1
z

(ψz(x) − x) for x ∈ R,

so using (2), one can obtain

1
z2

∣∣∣zψz

(
x+

y

z
(ψz(x) − x)

)
− ψz(x)ψz(y) + x(ψz(y) − z)

∣∣∣ ≤ ε

for x, y ∈ R. Since ψz is bounded, this means that ψz(y)−z = 0 for y ∈ R,
which implies (5).

(ii) Assume that f(z) = 0 and ψz is unbounded above. Since ψz is
continuous and ψz(z) = z, we have [z,∞) ⊂ ψz(R). Moreover, taking in
(2) y = z, we obtain |f(ψz(x))| ≤ ε for x ∈ R. Hence we get (6). In the
case when ψz is unbounded below, the proof is analogous.

(iii) This follows immediately from (4).

(iv) This results at once form (iii). �
Lemma 3. Assume that f : R → R is a continuous function satisfying

(2) and I ∈ {(−∞, 0), (0,∞)}. If there is a z ∈ I with f(z) = 0, then f|I
is bounded above.

Proof. We present the proof in the case I = (0,∞) only. Assume
that f(z) = 0 for some z ∈ (0,∞). Let a function ψz be defined by (4). If
ψz is bounded above (say, by a constant p), then from (4) it results that
f(x) ≤ p−x

z for x ∈ R. Hence f|(0,∞) is bounded above. If ψz is unbounded
above, then according to Lemma 2(ii), we get f(x) ≤ ε + max{f(t) : t ∈
[0, z]} for x ∈ (0,∞), so again f|(0,∞) is bounded above. �

Lemma 4. Assume that f : R → R is a continuous function satisfying

(2) and I ∈ {(−∞, 0), (0,∞)}. Then either f|I is bounded above or there

exists a k ∈ I such that

f(x) ≥ kx for x ∈ I. (8)

Proof. Similarly as in the proof of the previous lemma, we consider
only the case I = (0,∞). Suppose that f|(0,∞) is unbounded above. Then
from Lemma 1(i) and Lemma 3 it follows that f(0) = 1 and f(x) �= 0 for
(0,∞). Hence, by the continuity of f ,

f(x) > 0 for x ∈ (0,∞). (9)
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We divide the remaining part of the proof into two steps.

Step 1. We show that

f(x) ≥ 1 for x ∈ (0,∞). (10)

Suppose that (10) does not hold. Whence, according to (9), there is a
z ∈ (0,∞) such that f(z) ∈ (0, 1). Let the function ψz be defined by (4).
Consider a sequence (ψn

z (z) : n ∈ N). According to (7) and (9), we obtain
that the sequence is strictly increasing. Moreover, it is unbounded. In-
deed, if it were bounded, then it would exist q := limn→∞ ψn

z (z). Hence,
by Lemma 2(iv), f(q) = 0, which contradicts to (9). Now, we define a
sequence of intervals (In : n ∈ N ∪ {0}) as follows: I0 := [0, z], In :=
[ψn−1

z (z), ψn
z (z)] for n ∈ N. Since the sequence (ψn

z (z) : n ∈ N) is un-
bounded, we get

∞⋃
n=1

In = [0,∞). (11)

Furthermore, for every n ∈ N ∪ {0}, we have

f(x) ≤Mf(z)n + ε

n−1∑
i=0

f(z)i for x ∈ In, (12)

where M := sup{f(x) : x ∈ [0, z]}. In fact, for n = 0 (12) trivially holds
(we adopt the convention

∑−1
i=0 = 0). If (12) occurs for a n ∈ N ∪ {0},

then taking an x ∈ In+1 = [ψn
z (z), ψn+1

z (z)] and using the continuity of
ψz, we obtain that x = ψz(t) for some t ∈ In. Whence, in view of (2) and
(12) (for n), we obtain

f(x) = f(ψz(t)) = f(t+ zf(t)) ≤ f(t)f(z) + ε

≤Mf(z)n+1 + ε

n∑
i=0

f(z)i.

Now, using (12), for every n ∈ N ∪ {0}, we have

f(x) ≤Mf(z)n + ε

∞∑
i=0

f(z)i ≤M +
ε

1 − f(z)
for x ∈ In.

Thus, in view of (11), f|[0,∞) is bounded above, which yields a contradic-
tion.
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Step 2. Since f|(0,∞) is unbounded above, there is a p ∈ (0,∞) with
f(p) > 1 + ε. Define the function hp : [0,∞) → R by hp(x) = p + xf(p)
for x ∈ [0,∞). Consider a sequence (hn

p (p) : n ∈ N) and note that

hn
p (p) = p

n∑
i=0

f(p)i for n ∈ N. (13)

Hence, the sequence (hn
p (p) : n ∈ N) is strictly increasing and unbounded.

Let I0 := [0, p] and In := [hn−1
p (p), hn

p (p)] for n ∈ N. Then (11) occurs.
Furthermore, using (10), similarly as in the previous step, one can show
that for every n ∈ N ∪ {0}

f(x) ≥ f(p)n − ε

n−1∑
i=0

f(p)i for x ∈ In. (14)

Fix an x ∈ (0,∞). In view of (11), x ∈ In for some n ∈ N ∪ {0}. Hence
x ≤ hn

p (p), so according to (13) and (14), we get

f(x)
x

≥ f(p)n − ε
∑n−1

i=0 f(p)i

hn
p (p)

≥ 1 − ε
∑∞

i=1 f(p)−i

p
∑∞

i=0 f(p)−i

=
f(p) − (1 + ε)

pf(p)
> 0.

Therefore (8) holds with k := f(p)−(1+ε)
pf(p) > 0. �

Lemma 5. Assume that f : R → R is an unbounded continuous

function satisfying (2). Then either

f(x) ≤M for x ∈ (−∞, 0] (15)

and

f(x) ≥ kx for x ∈ (0,∞) (16)

with some M ∈ R and k ∈ (0,∞); or

f(x) ≥ sx for x ∈ (−∞, 0) (17)

and

f(x) ≤M for x ∈ [0,∞) (18)

with some M ∈ R and s ∈ (−∞, 0).
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Proof. According to Lemma 4, it is enough to show that exactly one
of functions f|(−∞,0) and f|(0,∞) is unbounded above. From Lemma 1(iii),
it follows that at least one of them is unbounded above. Suppose that both
f|(−∞,0) and f|(0,∞) are unbounded above. Then, on account of Lemma 4,
there exist k ∈ (0,∞) and s ∈ (−∞, 0) such that (16) and (17) occur.
Moreover, in virtue of Lemma 1(i), f(0) = 1. Since f is continuous, it
implies that there is a d > 0 such that f(x) ≥ d for x ∈ R. Fix an x0 ∈ R

with f(x0) > 1+ε
d . Then f(x0)f(− x0

f(x0)) > 1 + ε. On the other hand, in
view of (2), we get

∣∣∣∣1 − f(x0)f
(
− x0

f(x0)

)∣∣∣∣ =
∣∣∣∣f(0) − f(x0)f

(
− x0

f(x0)

)∣∣∣∣
=

∣∣∣∣f
(
x0 +

(
− x0

f(x0)

)
f(x0)

)
− f(x0)f

(
− x0

f(x0)

)∣∣∣∣ ≤ ε,

which yields a contradiction. �

Lemma 6. Assume that f : R → R is an unbounded continuous

function satisfying (2). Then there exists a p ∈ R such that f(p) = 0.

Proof. Suppose that f(x) �= 0 for x ∈ R. Since f is continuous and,
in view of Lemma 1(i), f(0) = 1, this implies that f(x) > 0 for x ∈ R.
According to Lemma 5, either (15) and (16); or (17) and (18) hold. Since
the proof in both cases is similar, assume that (15) and (16) occur. Then,
on account of (16), we have x− 1

kf(x) ≤ 0 for x ∈ (0,∞). Hence, in view
of (15) f(x − 1

kf(x)) ≤ M for x ∈ (0,∞). On the other hand, from (16)
it follows that f(− 1

k + xf(− 1
k)) ≥ −1 + kf(− 1

k )x for x > 1
kf(− 1

k
)
. Thus

limx→∞ |f(− 1
k +xf(− 1

k ))−f(x− 1
kf(x))| = ∞, which contradicts (3). �

3. Main results

Theorem 1. A function f : R → R is an unbounded continuous

solution of (2) if and only if there exists a non-zero real constant a such

that either

f(x) = 1 + ax for x ∈ R (19)
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or

f(x) = max{1 + ax, 0} for x ∈ R. (20)

Proof. It is obvious that for every non-zero real constant a, the
function f given by (19) or (20), is an unbounded continuous solution
of (2). Assume that f is an unbounded continuous function satisfying (2).
Then, according to Lemma 1(i) and Lemma 6, f(0) = 1 and there is a
p ∈ R \ {0} such that f(p) = 0. Assume that p < 0 (if p > 0, the proof
is similar). Then, in view of Lemma 3 and 5, we have (15) and (16). Let
z := max{x ∈ (−∞, 0] : f(x) = 0} and ψz be given by (4). Then z < 0
and

f(x) > 0 for x ∈ (z, 0). (21)

If ψz is bounded then, in virtue of Lemma 1(iv), f has the form (19) with
a := −1

z . Assume that ψz is unbounded. If ψz were unbounded above, then
in virtue of Lemma 2(ii), we would have |f(x)| ≤ ε for x ∈ [z,∞), which
contradicts to (16). Whence ψz is unbounded below and bounded above
(say, by a constant w). Consequently, in view of (4) and Lemma 2(ii), we
have

f(x) ≥ w − x

z
for x ∈ R (22)

and
|f(x)| ≤ ε for x ∈ (−∞, z]. (23)

We divide the remaining part of the proof into three steps.

Step 1. We prove that

lim
x→∞

f(x)
x

= −1
z
. (24)

Suppose that (24) does not hold. Then, according to (22), there are a
constant t > 0 and a sequence (xn : n ∈ N) of positive real numbers such
that limn→∞ xn = ∞ and

f(xn)
xn

> −1
z

+ t for n ∈ N. (25)

Since z < z
1−tz < 0, according to (21), we get f

(
z

1−tz

)
> 0. Thus

lim
n→∞

(
z

1 − tz
+ xnf

(
z

1 − tz

))
= ∞,
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so in virtue of (16), we obtain limn→∞ f
(

z
1−tz + xnf

(
z

1−tz

))
= ∞. On

the other hand, in view of (25), we have

xn +
z

1 − tz
f(xn) < xn +

z

1 − tz

(
−1
z

+ t

)
xn = 0 for n ∈ N.

Hence, using (15), we get f
(
xn + z

1−tzf(xn)
)

≤ M for n ∈ N. Conse-
quently,

lim
n→∞

∣∣∣∣f
(

z

1 − tz
+ xnf

(
z

1 − tz

))
− f

(
xn +

z

1 − tz
f(xn)

)∣∣∣∣ = ∞,

which contradicts to (3).

Step 2. We show that

f(x) = 1 − x

z
for x ∈ (z,∞). (26)

Fix a y ∈ (z,∞). From (2) and (24) it follows that

lim
x→∞

f(x+ yf(x))
x

= lim
x→∞

f(x)
x

f(y) = −1
z
f(y). (27)

and

lim
x→∞

(
1 + y

f(x)
x

)
= 1 − y

z
�= 0.

Thus limx→∞ x
(

1 + y f(x)
x

)
= limx→∞(x + yf(x)) = ∞, so according to

(24) and (27), we obtain

−1
z

= lim
x→∞

f(x+ yf(x))
x+ yf(x)

= lim
x→∞

f(x+yf(x))
x

1 + y f(x)
x

=
f(y)
y − z

.

Hence f(y) = 1 − y
z , which proves (26).

Step 3. We prove that

f(x) = 0 for x ∈ (−∞, z]. (28)

For x = z (28) trivially occurs. Fix a y ∈ (−∞, z). According to (2) and
(23), we have f(x+yf(x)) ≤ ε+ε2 for x ∈ (−∞, z]. Moreover, using (26),
we get

x+ yf(x) = x+ y
(

1 − x

z

)
=

(
1 − y

z

)
x+ y <

(
1 − y

z

)
z + y = z < 0
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for x ∈ (z,∞). Hence, in view of (15), f(x+ yf(x)) ≤ M for x ∈ (z,∞).
Consequently, f(x + yf(x)) ≤ max{ε + ε2,M} for x ∈ R, so taking into
account (3), we obtain that f(y+xf(y)) ≤ max{3ε+ε2,M+2ε} for x ∈ R.
Now, if f(y) were different form 0, we would have that f is bounded above,
which contradicts to Lemma 1(iii). Therefore f(y) = 0, which proves (28).

Finally, from (26) and (28) it follows that f has the form (20) with
a := −1

z , which completes the proof. �

It is easy to check that for every non-zero real constant a, the function
f given by (19) or (20) is a continuous solution of (2). Therefore, we can
reformulate Theorem 1 in the following way:

Theorem 2. If f : R → R is a continuous function satisfying (2),
then either f is bounded or f is a solution of (1).

Remark 1. Note that the idea of the introduction of the function ψz

(cf. (4)) to a given solution f of (1), as well as the idea of the determination
of the set of all possible zeroes of f have already been used in the study
of the Go�la̧b–Schinzel equation (cf. e.g. [5], [10], [11]).
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