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Legendre surfaces in Sasakian space forms whose mean
curvature vectors are eigenvectors

By TORU SASAHARA (Sapporo)

Abstract. We study Legendre surfaces whose mean curvature vectors are
eigenvectors of the rough Laplacian. Some classification results on such Legendre
surfaces are obtained. As an application, we classify nonminimal biharmonic
Legendre surfaces in Sasakian space forms.

1. Introduction

Let x : Mm → Nn be an isometric immersion of an m-dimensional
manifold Mm into an n-dimensional manifold Nn. Denote the rough
Laplacian acting on the sections of the induced bundle x∗TNn (resp. nor-
mal bundle T⊥Mm) by ∆ (resp. ∆D).

During the last two decades, the class of submanifolds satisfying the
following conditions has been investigated by many geometers:

∆DH = λH, (1.1)

∆H = λH, (1.2)

where H is the mean curvature vector field and λ is a constant. (See, for
instance, [5], [7]–[13], [18], [19], [22]–[24].)
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monic maps.



286 Toru Sasahara

The first result on submanifolds with (1.1) was obtained by Barros

and Garay ([5]). They classified Hopf cylinders with ∆DH = 0 in the
3-sphere. Inoguchi ([19]) generalized the classification results due to [5]
to 3-dimensional Sasakian space forms. He also classified Legendre curves
with (1.1) in 3-dimensional Sasakian space forms. In [23], the author
investigated Legendre Chen surfaces in Sasakian space forms satisfying
(1.1) under the condition that the mean curvature function is constant
along a certain direction.

The first result on submanifolds satisfying (1.2) was obtained by Chen

([11], [12]). He proved that the surface in Euclidean 3-space with (1.2) is
one of the following: (1) a minimal surface, (2) an open portion of an
ordinary sphere, (3) an open portion of a circular cylinder. For more in-
formation about submanifolds satisfying (1.2) in Euclidean space, see [13].

In the ambient space with nonconstant sectional curvature, the study
of submanifolds satisfying (1.2) has been initiated by the author. He ([22])
has studied Legendre surfaces with (1.2) in Sasakian manifolds of constant
φ-sectional curvature −3. Also, in [24] he showed that Lagrangian sur-
faces satisfying (1.2) in Lorentzian complex space form are described by
solutions of a certain system of partial differential equations of first order.

In this paper, first we establish the classification of Legendre Chen
surfaces satisfying (1.1). This is a generalization of the classification the-
orem due to [23]. Secondly we classify Legendre surfaces with (1.1) under
the condition that the mean curvature function is an eigenfunction of the
Laplacian. Finally, we determine the intrinsic and the extrinsic structures
of Legendre surfaces in Sasakian space forms satisfying (1.2), and moreover
we apply this result to the theory of polyharmonic maps of order 2.

The notion of polyharmonic map of order k was introduced by Eells

and Sampson ([17]). It is defined as a map which is a critical point of
k-energy. Harmonic maps are polyharmonic maps of order 1. They are
included in the class of polyharmonic maps of order k with k ≥ 2. The
polyharmonic maps of order 2 into Euclidean space are biharmonic in the
sense of B.-Y. Chen ([13]), i.e., the components of the position vector are
biharmonic functions of the Laplacian. On this reason, the polyharmonic
map of order 2 is frequently called biharmonic map. Caddeo, Montaldo

and Oniciuc ([7]) completely determined nonminimal biharmonic surface
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in S3(1). They ([8]) also stated that minimal submanifolds in Sn
(

1√
2

)
are

nonminimal biharmonic submanifolds in Sn+1(1).
In [19] Inoguchi classified nonminimal biharmonic Legendre curves

and Hopf cylinders in 3-dimensional Sasakian space forms.
In the last section, we classify nonminimal biharmonic Legendre sur-

faces in 5-dimensional Sasakian space forms. It is a 2-dimensional version
of Inoguchi’s result. Contrary to the 1-dimensional case, there exists a
nonminimal biharmonic Legendre surface in the unit sphere. In fact, we
obtain the explicit representation of such an immersion.

2. Preliminaries

A (2n+1)-dimensional manifold M2n+1 is said to be an almost contact
manifold if the structure group GL2n+1R of its linear frame bundle is
reducible to U(n) × {1}. This is equivalent to the existence of a tensor
field φ of type (1,1), a vector field ξ and one-form η satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1. (2.1)

It follows that
η ◦ φ = 0, φξ = 0. (2.2)

Moreover, since U(n)×{1} ⊂ O(2n+1), there exists a Riemannian metric
g which satisfies

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), g(ξ,X) = η(X), (2.3)

for all X,Y ∈ TM2n+1. The structure (φ, ξ, η, g) is called an almost contact
metric structure and the manifold M2n+1 with an almost contact metric
structure is said to be an almost contact metric manifold. If an almost
contact metric manifold satisfies

dη(X,Y ) = g(X,φY ), (2.4)

for all X,Y ∈ TM2n+1, then M is said to be a contact metric manifold.
On contact metric manifold, the vector field ξ is called the characteristic
vector field.
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A contact metric manifold is said to be a Sasakian manifold if it sat-
isfies [φ, φ] + 2dη ⊗ ξ = 0 on M2n+1, where [φ, φ] is the Nijenhuis torsion
of φ.

The sectional curvature of a tangent plane which is invariant under φ

is called φ-sectional curvature. If the sectional curvature is constant on all
p ∈ M2n+1 and all tangent planes in TpM

2n+1 which is invariant under φ,
then M2n+1 is said to be of constant φ-sectional curvature. Complete and
connected Sasakian manifolds of constant φ-sectional curvature are called
Sasakian space forms. Denote Sasakian space forms of constant φ-sectional
curvature ε by M2n+1(ε). The curvature tensor R̄ of M(ε) is given by

R̄(X,Y )Z =
ε + 3

4
{g(Y,Z)X − g(Z,X)Y } +

ε − 1
4

{η(X)η(Z)Y

− η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ

+ g(Z, φY )φX − g(Z, φX)φY + 2g(X,φY )φZ}.
(2.5)

Let x : Nm → M2n+1(ε) be an isometric immersion. If η restricted to
Nm vanishes, then Nm is an integral submanifold, in particular if m = n,
it is called a Legendre submanifold.

Denote the Levi–Civita connection of M2n+1(ε) (resp. Nm) by ∇̄
(resp. ∇). The formulas of Gauss and Weingarten are given respectively
by

∇̄XY = ∇XY + h(X,Y ), (2.6)

∇̄XV = −AV X + DXV, (2.7)

where X,Y ∈ TNm, V ∈ T⊥Nm, h, A and D are the second fundamental
form, the shape operator and the normal connection. The mean curvature
vector H is given by H = 1

m trace h. Its length ‖H‖ is called the mean
curvature function of Mm.

If Nn is a Legendre submanifold, from [6] we have

AφY X = −φh(X,Y ) = AφXY, Aξ = 0. (2.8)

For more details see [6].
In the case that Nn is a Legendre submanifold, the equations of Gauss,

Codazzi, Ricci are equivalent to

〈R(X,Y )Z,W 〉 = 〈[AφZ , AφW ]X,Y 〉 + 〈R̄(X,Y )Z,W 〉, (2.9)



Legendre surfaces in Sasakian space forms. . . 289

(∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z), (2.10)

where (∇̄Xh)(Y,Z) := DXh(Y,Z) − h(∇XY,Z) − h(Y,∇XZ).
The rough Laplacian acting on the sections of the induced bundle

x∗TM2n+1(ε) (resp. normal bundle) is defined by ∆ = −∑m
i=1(∇̄ei∇̄ei −

∇̄∇eiei) (resp. ∆D = −∑m
i=1(DeiDei − D∇eiei)), where {ei} is a local

orthonormal frame of Nm.
One can obtain the following existence and uniqueness theorem by the

similar way to those given in [14] and [15].

Theorem 1. Let (Mn, 〈·, ·〉) be an n-dimensional simply connected

Riemannian manifold. Let σ be a symmetric bilinear TMn-valued form

on Mn satisfying

(1) 〈σ(X,Y ), Z〉 is totally symmetric,

(2) (∇σ)(X,Y,Z) = ∇Xσ(Y,Z) − σ(∇XY,Z) − α(Y,∇XZ) is totally

symmetric,

(3) R(X,Y )Z = ε+3
4 (g(Y,Z)X − g(X,Z)Y )

+ σ(σ(Y,Z),X) − σ(σ(X,Z), Y ).

Then there exists a Legendre immersion x : (Mn, 〈·, ·〉) → N2n+1(ε) such

that the second fundamental form h satisfies h(X,Y ) = φσ(X,Y ).

Theorem 2. Let x1, x2 : Mn → N2n+1(ε) be two Legendre immer-

sions of a connected Riemannian n-manifold into a Sasakian manifold

N2n+1(ε) with second fundamental form h1 and h2. If

〈h1(X,Y ), φx1
∗Z〉 = 〈h2(X,Y ), φx2

∗Z〉

for all vector fields X, Y , Z tangent to Mn, there exists an isometry A of

N2n+1(ε) such that x1 = A ◦ x2.

3. Legendre surfaces whose mean curvature
vectors are eigenvectors

Let x : M2 → N5(ε) be a Legendre immersion. In the rest of paper
we assume that the mean curvature function is nowhere zero. Let {ei} be
an orthonormal frame along M2 such that e1, e2 are tangent to M2 and
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H = α
2 φe1 = α

2 e3, with α > 0. We shall work with such a frame in the
remainder of this section. Then the second fundamental form takes the
form:

h(e1, e1) = (α − c)φe1 + bφe2,

h(e1, e2) = bφe1 + cφe2, (3.1)

h(e2, e2) = cφe1 − bφe2,

for some functions b, c. From the equation of Codazzi we get

e1c + 3bω2
1(e1) = e2b + (α − 3c)ω2

1(e2), (3.2)

−e1b + 3cω2
1(e1) = e2c + 3bω2

1(e2), (3.3)

e2(α − c) − 3bω2
1(e2) = e1b + (α − 3c)ω2

1(e1), (3.4)

where ωj
i (ek) = 〈∇ek

ei, ej〉. Combining (3.3) and (3.4) yields

e2α = αω2
1(e1). (3.5)

Suppose that M2 satisfies ∆DH = λH. Then by comparing the com-
ponents of φe1, φe2 and ξ of that condition, we obtain

∆Mα + α
{
1 − λ + (ω2

1(e1))2 + (ω2
1(e2))2

}
= 0, (3.6)

2e1αω2
1(e1) + 2e2αω2

1(e2) + α
{
e1(ω2

1(e1)) + e2(ω2
1(e2))

}
= 0, (3.7)

e1α + αω2
1(e2) = 0, (3.8)

where ∆M is the Laplace operator acting on C∞(M). Using (3.5) and
(3.8), a straightforward computation shows[

1
α

e1,
1
α

e2

]
= 0. (3.9)

Consequently, we obtain that there exists local coordinates x, y such that

e1 = α∂x, e2 = α∂y. (3.10)

Here ∂x = ∂
∂x and ∂y = ∂

∂y . It follows from (3.10) that the metric tensor
is given by

g =
1
α2

dx2 +
1
α2

dy2. (3.11)
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Thus we have
ω2

1(e1) = αy, ω2
1(e2) = −αx, (3.12)

where fx = ∂xf and fx = ∂xf .
By (3.12) we obtain that (3.7) is satisfied automatically. The relation

(3.6) can be rewritten as

−ααyy − ααxx + 1 − λ + (αx)2 + (αy)2 = 0. (3.13)

From the Gauss equation, (3.12) and (3.13) we have

αc − 2c2 − 2b2 +
ε + 3

4
= 〈R(e1, e2)e2, e1〉

= −(ω2
1(e1))2 − (ω2

1(e2))2 + e2(ω2
1(e1)) − e1(ω2

1(e2))

= −(αy)2 − (αx)2 + ααyy + ααxx = 1 − λ.

(3.14)

Therefore we obtain the following.

Proposition 3. Let M2 be a Legendre surface of N5(ε). If M2 satis-

fies ∆DH = λH for a constant λ, then the Gauss curvature G = 1 − λ.

The allied mean curvature vector a(H) of M2 in N5(ε) is defined by

5∑
r=4

(trace AHAer)er.

If a(H) vanishes identically on M2, it is called a Chen surface. In [23] the
author has classified Legendre Chen surfaces of N5(ε) with ∆DH = λH

under the condition φH‖H‖ = 0 or (φH)⊥‖H‖ = 0, where (φH)⊥ is the
unit vector field perpendicular to φH in TM2. More precisely, the author
obtained the following theorem.

Theorem 4 ([23]). Let M2 be a Legendre Chen surface of N5(ε)
satisfying ∆DH = λH with non-constant mean curvature function. If

(φH)⊥‖H‖ = 0 (resp. φH‖H‖ = 0), then 1− 4λ− ε = 0 and there exists a

coordinate system {x, y} defined in a neighborhood V ⊂ I ×R of p ∈ M2

such that the metric tensor of M2 is given by

g = dx2 + F (x)2dy2, (3.15)
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and the second fundamental form is given by

h(∂x, ∂x) =
1

2F
φ∂x,

h(∂y, ∂y) =
F

2
φ∂x, (3.16)

h(∂x, ∂y) =
1

2F
φ∂y,

(resp. h(∂x, ∂x) = h(∂x, ∂y) = 0, h(∂y, ∂y) = φ∂y) , (3.17)

where F : I → R : x → F (x) is one of the following functions which are

positive on I:

c1 cos
√

ε + 3
2

x + c2 sin
√

ε + 3
2

x (ε > −3), (3.18)

c1x + c2 (ε = −3), (3.19)

c1 exp
(√−ε − 3

2
x

)
+ c2 exp

(
−
√−ε − 3

2
x

)
(ε < −3), (3.20)

where c1, c2 are some constants.

Conversely, suppose that c1, c2, ε = 1 − 4λ are constants and F (x) is

a function which is positive on an open interval I satisfying one of (3.18)–
(3.20). Let g be the metric tensor on a simply-connected domain V ⊂ I×R
defined by (3.15). Then, up to rigid motions of N5(ε), there exists a unique

Legendre Chen immersion of (V, g) into N5(ε) whose second fundamental

form is given by (3.16) (resp. (3.17)). Moreover such a surface satisfies

∆DH = λH and (φH)⊥‖H‖ = 0 (resp. φH‖H‖ = 0).

Remark 5. The mean curvature function ‖H‖ of surfaces obtained in
Theorem 4 is given by 1

2F (x) .

We shall investigate Legendre Chen surfaces with ∆DH = λH without
the additional condition φH‖H‖ = 0 or (φH)⊥‖H‖ = 0.

If M2 is a Chen surface, we have b = 0 by using (3.1). Then the
relations (3.2)–(3.4) reduce to the following.

αcx = −(α − 3c)αx, (3.21)

3cαy = αcy. (3.22)
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On the other hand, differentiating (3.14) by y, we have

αyc + (α − 4c)cy = 0. (3.23)

Combining (3.22) and (3.23) implies

αyc(α − 3c) = 0. (3.24)

If α = 3c on an open set, it follows from (3.22) that αy = 0 on that open
set. Hence by continuity we have that (3.24) can be replaced by

αyc = 0. (3.25)

If c = 0 on an open set, we have from (3.21) that αx = 0 on that open
set. Therefore by continuity we obtain αxαy = 0. Consequently, we get
the following.

Proposition 6. Let M2 be a Legendre surface of N5(ε) satisfying

∆DH = λH. Assume that the mean curvature function vanishes nowhere.

If M2 is a Chen surface, then φH‖H‖ = 0 or (φH)⊥‖H‖ = 0.

Remark 7. Theorem 4 and Proposition 6 determine Legendre Chen
surfaces in Sasakian space forms satisfying (1.1).

Next we shall classify Legendre surfaces with (1.1) and ∆M‖H‖ =
µ‖H‖.

Proposition 8. Let M2 be a Legendre surface of N5(ε) satisfying

∆DH = λH and ∆Mα = µα for constants λ and µ. Suppose that α is not

constant and nowhere zero. Then µ = 0. If a(H) ≡ 0, then 1− 4λ− ε = 0
and there exists a suitable coordinate system {x, y} on a neighborhood U

of p ∈ M2 such that the metric tensor and the second fundamental form

take the form (3.15) and (3.16) with F (x) = C exp
(±√−ε−3

2 x
)

for some

constant C. Conversely, such a surface is locally obtained by F (x). If

a(H) 
= 0 at each point, there exists a suitable coordinate system {x, y}
on a neighborhood U of p ∈ M2 such that

(1) α is written as

α =
√

λ − 1 cos θx +
√

λ − 1 sin θy + E (> 0), (3.26)
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and the metric tensor of M is given by

g =
1
α2

(dx2 + dy2), (3.27)

where θ and E (> 0) are constant.

(2) the second fundamental form is given by (3.1), where e1 = α∂x,

e2 = α∂y,

b =
√

8αc − 16c2 + 2ε − 2 + 8λ
4

, (3.28)

and c is a solution of the following system of differential equations of first

order.

αcx ± 3b
√

λ − 1 sin θ

= ±α

(
(α − 4c)cy +

√
λ − 1 sin θc

4b

)
− (α − 3c)

√
λ − 1 cos θ, (3.29)

αcy ∓ 3b
√

λ − 1 cos θ

= ∓α

(
(α − 4c)cx +

√
λ − 1 cos θc

4b

)
+ 3c

√
λ − 1 sin θ, (3.30)

(double signs in same order)

where θ is constant.

Conversely, suppose that α(x, y) =
√

λ − 1 cos θx+
√

λ − 1 sin θy + E,

with E > 0, is a function which is positive on a simply-connected domain

U ⊂ R2 and c is a solution of the system of differential equations (3.29)
and (3.30). Let g be the metric tensor on U defined by (3.27). Then, up to

rigid motions of N5(ε), there exists a unique Legendre immersion of (V, g)
into N5(ε) whose second fundamental form is given by (3.1). Moreover

such a surface satisfies ∆DH = λH and ∆Mα = 0.

Proof. Let M2 be a Legendre surface of N5(ε) which satisfies ∆DH =
λH. As mentioned before, there exits a coordinate system {x, y} such that
the metric tensor is given by (3.27). We put e1 = α∂x and e2 = α∂y. We
shall use this local orthonormal frame field.
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Suppose that α satisfies ∆Mα = µα for a constant µ. We put f =
ω2

1(e1) and g = ω2
1(e2). Then we get

e2f − e1g = −µ. (3.31)

Furthermore it follows from (3.6) that

f2 + g2 = λ − 1 − µ. (3.32)

Differentiating (3.32) by e1 and e2, we obtain

fe1f + ge1g = 0, fe2f + ge2g = 0. (3.33)

It is clear that e1f + e2g = 0 by (3.12). Combining this relation, (3.31)
and (3.33) yields

fe1f + ge2f = −µg, −ge1f + fe2f = 0. (3.34)

Since α is not constant, we have f2 + g2 
= 0 from (3.5) and (3.8). By
solving (3.34) with respect to e1f and e2f , we obtain

e1f =
−µfg

λ − 1 − µ
, e2f =

−µg2

λ − 1 − µ
. (3.35)

We replace (3.31) and (3.35) by the derivatives with respect to x and y.
Since e1f + e2g = 0 holds, we have

fx =
−µfg

α(λ − 1 − µ)
, fy =

−µg2

α(λ − 1 − µ)
, (3.36)

gx =
−µg2

α(λ − 1 − µ)
+

µ

α
, gy =

µfg

α(λ − 1 − µ)
. (3.37)

We shall consider the case of µ 
= 0. Then it follows from the integra-
bility conditions gxy = gyx and (3.37) that

fxg + fgx = −2ggy . (3.38)

By substituting (3.36) and (3.37) into (3.38), we have fµ = 0 and hence
f = 0. Then (3.31) and (3.32) give us µ = 0. It is a contradiction. Thus
we obtain that µ must be 0. Then (3.36) and (3.37) imply that f and g
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are constant. Therefore it follows from (3.32) and (3.12) that α can be
written as

α =
√

λ − 1 cos θx +
√

λ − 1 sin θy + E, (3.39)

where θ and E (> 0) are constant.
When a(H) ≡ 0, we have ε − 1 + 4λ = 0 and moreover cos θ = 1 or

sin θ = 1 in (3.39) from Theorem 4 and Proposition 6. Using the suitable
coordinate change, we prove the assertion.

When a(H) 
= 0 at each point, the relations (3.2)–(3.4) and (3.14)
imply (3.28)–(3.30). The converse is proved by applying Theorems 1 and 2.

�

Remark 9. The system of equations (3.29) and (3.30) is complicated.
However, in case that ε − 1 + 4λ = 0 and cos θ = ± sin θ, we can find a
solution c = α

4 of the differential system. Here the double signs are in same
order.

Finally we shall determine Legendre surfaces satisfying ∆H = λH in
N5(ε). We obtain the following.

Theorem 10. Let M2 be a nonminimal Legendre surface in N5(ε)
satisfying ∆H = λH. Then at each point p ∈ M2 there exists a suitable

local coordinate system {x, y} on a neighborhood of p such that the metric

tensor g and the second fundamental form h take the following forms:

(1) g = dx2 + dy2,

(2) the second fundamental form takes the following form:

h(∂x, ∂x) =
√

λ − 1 cos θφ∂x,

h(∂x, ∂y) =
√

λ − 1 sin θφ∂y,

h(∂y, ∂y) =
√

λ − 1 sin θφ∂x,

where θ is a constant which satisfies

sin θ(cos θ − sin θ) =
ε + 3

4(1 − λ)
. (3.40)

Conversely, suppose that θ, λ (> 1) and ε are constants satisfying

(3.40). Let g = dx2 + dy2 be the metric tensor on a simply-connected
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domain V ⊂ R2. Then, up to rigid motions of N5(ε), there exists a unique

Legendre immersion of (V, g) into N5(ε) whose second fundamental form

is given by (2). Moreover such a surface satisfies ∆H = λH.

Proof. By the Gauss and Weingarten formulae we have

∆H = tr(∇̄AH) + ∆DH + (trA2
φe1

)H + a(H), (3.41)

where tr(∇̄AH) =
∑2

i=1(ADei Hei + (∇eiAH)ei). Suppose that ∆H = λH

for a constant λ. By comparing of the component of φe2,

2e1αω2
1(e1) + 2e2αω2

1(e2)

+ α
{
e1(ω2

1(e1)) + e2(ω2
1(e2))

}
+ 〈a(H), φe2〉 = 0. (3.42)

From (3.12) and (3.42) we have a(H) = 0, i.e. M2 is a Chen surface.
Since tr∇̄AH = 0, we get

2(α − c)e1α + α{(α − c)ω2
1(e2) + e1(α − c)} = 0, (3.43)

2ce2α + α{(α − c)ω2
1(e1) + e2(α − c)} = 0. (3.44)

By replacing (3.2), (3.3), (3.43) and (3.44) by the derivatives with respect
to x and y, we have

αcx = −(α − 3c)αx, (3.45)

3cαy = αcy, (3.46)

2(α − c)αx − (α − c)αx + α(α − c)x = 0, (3.47)

2cαy + (α − c)αy + α(α − c)y = 0. (3.48)

Solving the system (3.45)–(3.48), we obtain that α and c are constant.
Thus the equation of Gauss yields

αc − 2c2 +
ε + 3

4
= 0. (3.49)

Also since the relation 〈∆DH + (trA2
φe1

− λ)H,φe1〉 = 0 holds, we have

(α − c)2 + c2 = λ − 1. (3.50)
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Consequently, we obtain that with respect to a suitable coordinate
system {x, y}, the metric tensor and the second fundamental form are
given by (1) and (2) respectively. The proof of converse follows from
applying Theorems 1 and 2. �

The mean curvature vector H is said to be C-parallel if DH‖ξ. Baik-

oussis and Blair ([2]) classified Legendre surfaces in N5(ε) whose mean
curvature vector is C-parallel. From Theorem 10 we see that the mean
curvature vector of Legendre surfaces with (1.2) in N5(ε) is C-parallel.

Remark 11. Theorem 10 is a generalization of the classification result
on Legendre Chen surfaces in a Sasakian space form N5(−3) due to [22].

Remark 12. In case ε = −3 (resp. 1), we obtain the explicit represen-
tation of the position vectors of Legendre surfaces with ∆H = λH in R5

(resp. R6) by virtue of [22] (resp. [1]).

4. Biharmonic Legendre surfaces

In this section, by applying Theorem 10 we determine nonminimal
biharmonic Legendre surfaces in Sasakian space forms.

Let (Mm, g) and (Nn, h) be Riemannian manifolds and φ : M → N a
smooth map. We denote by ∇ and ∇̄ the Levi–Civita connections on M

and N respectively. Then the tension field τ(φ) is a section of the vector
bundle φ∗TN defined by

τ(φ) := tr(∇φdφ) =
m∑

i=1

{∇φ
ei

dφ(ei) − dφ(∇eiei)}.

Here ∇φ and {ei} denote the induced connection by φ on the bundle φ∗TN ,
which is the pull-back of ∇̄, and a local orthonormal frame field of M ,
respectively.

A smooth map φ is said to be a harmonic map if its tension field
vanishes. It is well known that φ is harmonic if and only if φ is a critical
point of the energy:

E(φ) =
∫

Ω

m∑
i=1

h(dφ(ei), dφ(ei))dvg
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over every compact supported region Ω of M .
Eells and Sampson ([17]) suggested to study polyharmonic maps of

order k which are critical points of k-energy Ek:

Ek(φ) =
∫

Ω
|(d + d∗)kφ|2dvg.

Here d∗ is the codifferential operator and | · | denotes the Hilbert–Schmidt
norm. They are frequently called k-harmonic maps. The 1-harmonic map
coincides with the harmonic map. In case of k = 2, we have

E2(φ) =
∫

Ω
h(τ(φ), τ(φ))dvg .

The Euler–Lagrange equation of the functional E2 was computed by
Jiang ([20], [21]) as follows.

τ2(φ) := −Jφ(τ(φ)) = 0. (4.1)

Here the operator Jφ is the Jacobi operator defined by

Jφ(V ) := ∆̄φV −Rφ(V ), V ∈ Γ(φ∗TN), (4.2)

∆̄φ := −
m∑

i=1

(∇φ
ei
∇φ

ei
−∇φ

∇ei
ei

)
, (4.3)

Rφ(V ) :=
m∑

i=1

RN (V, dφ(ei))dφ(ei), (4.4)

where RN is the curvature tensor of N .

Remark 13. Let φ : M → N be an isometric immersion. Then its
tension field is mH. Thus the functional E2 is given by

E2(φ) = m2

∫
Ω

h(H,H)dvg .

In case that M is 2-dimensional, E2(φ) is the total mean curvature of Ω
up to constant multiple. (See [10], Section 5.3.)

In particular, if N is the Euclidean n-space En and φ is an isometric
immersion, then

τ2(φ) = ∆M∆Mφ,
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since ∆Mφ = −mH. Thus the 2-harmonicity for an isometric immersion
into Euclidean space is equivalent to the biharmonicity in the sense of
Chen. (See [13].) 2-harmonic maps are frequently called biharmonic maps.

Now consider the case that m = 2 and N is a Sasakian space form
N5(ε). Then from (4.1)–(4.4) and (2.5) we see that φ is an isometric
biharmonic Legendre immersion if and only if

∆H −
(

5ε + 3
4

)
H = 0, (4.5)

where ∆ is the Laplace operator described in Section 2.
We put λ = 5ε+3

4 in Theorem 10. Since α and c in (3.49) and (3.50)
are real numbers, ε must satisfy ε ≥ −11+32

√
2

41 . Solving (3.49) and (3.50)
with respect to α and c implies the following.

Corollary 14. Let M2 be a nonminimal biharmonic Legendre surface

in N5(ε). Then ε ≥ −11+32
√

2
41 and at each point p ∈ M3 there exists a

suitable local coordinate system {x, y} on a neighborhood of p such that

the metric tensor g and the second fundamental form h take the following

forms:

(1) g = dx2 + dy2,

(2) h(∂x, ∂x) =
ε − 1

α
φ∂x

h(∂y , ∂y) =
(

α − ε − 1
α

)
φ∂x,

h(∂x, ∂y) =
(

α − ε − 1
α

)
φ∂y

where

α =




√
13ε−9±√

41ε2+22ε−47
8 (ε 
= 1),

1 (ε = 1).

Conversely, suppose that ε is a constant satisfying ε ≥ −11+32
√

2
41 and

let g be the metric tensor on a simply-connected domain V ⊂ R2 defined

by (1). Then, up to rigid motions of N5(ε), there exists a unique Legendre

immersion of (V, g) into N5(ε) whose second fundamental form is given

by (2). Moreover such an immersion is nonminimal biharmonic.
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We consider the complex Euclidean (n + 1)-space Cn+1 and identify
z = (x1 +iy1, . . . , xn+1 +iyn+1) ∈ Cn+1 with (x1, . . . , xn+1, y1, . . . , yn+1) ∈
E2n+2. Let J be its usual almost complex structure. It is well-known that
a Sasakian space form N2n+1(1) is isomorphic to S2n+1(1) endowed with
the Sasakian structure induced by J of Cn+1. (For example, see [6].)

By Corollary 14 and the same computations as in [1], we can explicitly
represent nonminimal biharmonic Legendre immersions into S5(1) in C3

as follows.

Corollary 15. Let fL : M2 → S5(1) ⊂ C3 be a nonminimal bihar-

monic Legendre immersion. Then the position vector fL = fL(x, y) of M2

in C3 is given by

fL(x, y) =
1√
2

(
eix, ie−ix sin

√
2y, ie−ix cos

√
2y

)
. (4.6)

We see that fL(x, y) is doubly periodic. More precisely, fL(x, y) is
periodic with period 2π w.r.t. x and

√
2π w.r.t. y. Thus, fL is a nonminimal

biharmonic Legendre immersion from a torus into S5(1).
Let f : M → En be an isometric immersion. If the position vector f

can be written as

f = f1 + f2, ∆Mf1 = λ1f1, ∆Mf2 = λ2f2,

for two different constants λ1 and λ2, then f is said to be of 2-type. Now,
we put

f1(x, y) :=
1√
2
(eix, 0, 0),

f2(x, y) :=
1√
2
(0, ie−ix sin

√
2y, ie−ix cos

√
2y).

Then we have fL = f1 + f2, ∆Mf1 = f1 and ∆Mf2 = 3f2. Thus (4.6) is of
2-type.

In case that the ambient space is S5(1), by [1]–[3], Theorem 10 and
Corollary 14 we obtain the following inclusions between the different con-
ditions for nonminimal Legendre surfaces:

Biharmonic ⊂ ∆H = λH ⊂ 2-type in E6 ⊂ DH ‖ ξ. (4.7)
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Now, put

g1(x, y) := (cos x, sin x),

g2(x, y) :=
1√
2
(1, sin

√
2y, cos

√
2y).

Then we see that fL(x, y) can be written as fL(x, y) = g1 ⊗ g2 (see [16]).
g2 is a biharmonic curve in S2(1) ([8]) and hence fL is a tensor product of
two biharmonic curves in the unit sphere.

Remark 16. In case that Nn is a real space form or a Sasakian space
form or a complex space form, the geometry of submanifolds with ∆H =
λH is closely related to that of biharmonic submanifolds. (See [24] for
Lagrangian surfaces satisfying ∆H = λH.)
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