Factors of small degree of some difference polynomials $f(x)-g(t)$ in $F[t][x]$
 By FRANÇOIS BERRONDO (Brest) and LUIS GALLARDO (Brest)

Abstract

Let $s \in F[t] \backslash F$ be a nonconstant polynomial over a perfect field F of characteristic 2. There are no factors of degree 2 of the polynomial $T=$ $x^{m}+g(x)^{2}+s \in F[t][x]$ where $m>3$ is an odd integer and $g(x) \in F[x] \backslash\{0\}$ is an additive polynomial of degree $d<(m-1) / 2$ with $g(0)=0$.

1. Introduction

It is unknown whether or not a general method to find small degree factors of polynomials $P \in k[x]$ in one variable x with coefficients in some field k of characteristic $p \geq 0$ can exist. There are several results in the literature (see [2]-[5]) concerning the special case when P is a trinomial $x^{n}+A x^{m}+B$, in which the exponents m, n satisfy $n>m>0$, we have $\operatorname{gcd}(p, m n(m-n))=1$ and $p>0$, while A, B satisfy some technical conditions and lie in a finite extension of $k(y)$ where y is a variable vector; or when $p=0$ and k is an algebraic number field. However, nothing is known in the case when the field of coefficients is a rational field of finite characteristic $p>0$ where p divides $m n(m-n)$.

It is natural to work first in the simplest case where $k=F(t)$ for some field F and some indeterminate t. We wish to study in detail in this paper the special case in which P is a polynomial of the form $T=x^{m}+g(x)^{2}+s$

[^0]where $m>3$ is an odd integer and $0 \neq g(x) \in F[x]$ is a nontrivial additive polynomial of degree $d<(m-1) / 2$ with $g(0)=0$, while $s \in F[t]$ is non constant, and F is a perfect field of characteristic 2 . We believe that the use of the canonical derivation over such a field k is the key to obtain useful information about the factors of T in $F[t][x]$.

Our main result is:

1) T has no quadratic factors in $F[t][x]$ provided $m>3$, (see Theorems 1 and 2).
A key lemma for a neat proof of our result above was suggested by the referee (see Lemma 2). Moreover, 1) is a first step in order to generalize some results of Bilu (see [1]) who classified the difference polynomials with quadratic factors in characteristic 0 .

We shall use the following notations: For a field F we let \bar{F} denote, as usual, a fixed algebraic closure of F. If E is an extension of the field F, then we denote by $[E: F]$ the degree of E over F, i.e. the dimension of E considered as a vector space over F. If $f(x) \in F[t][x]$ has degree $d<4$ then we denote by K its splitting field over the rational field k. We denote by Tr the trace of K over k. We denote by N the norm of K over k, provided the degree of the extension $[K: k] \neq 6$. Observe that when [$K: k]=6$ we denote by N the square root of the norm, instead of the norm itself. Concerning differentiation, we denote by the same classical symbol ()' the canonical extension to K of the derivation relative to t in k, and the derivation itself.

The derivation relative to x will be denoted by $\partial / \partial x$.
First of all we recall the definition of additive polynomials:
Definition 1. A polynomial $A \in F[z]$ where F is some field and z is an indeterminate is called additive if

$$
A(x+y)=A(x)+A(y)
$$

for all $x, y \in \bar{F}$.

2. We may assume that s is not a square

Lemma 1. Let $m>1$ be an odd integer. Assume that $s=r^{2}$ is a nonconstant square in $F[t] \backslash F$ where F is a perfect field of characteristic 2 .

If the difference polynomial $T=x^{m}+g(x)^{2}+s \in F[t][x]$, where $g(x) \in F[x]$ is a polynomial of degree $<m / 2$, has a factor $f(x) \in F[t][x]$ of degree d with $0<d<4$, then all coefficients of $f(x)$ are squares in $F[t]$ and $f\left(x^{2}\right)^{1 / 2}$ divides $\left(T\left(x^{2}\right)\right)^{1 / 2}=x^{m}+g_{1}(x)^{2}+s$, where the coefficients of g are the squares of the coefficients of g_{1}.

Proof. We may assume that $f(x)$ is monic and irreducible. Set $e=$ [$K: k]$. Let $c \in F[t]$ denote the coefficient of any monomial appearing in $f(x)$. It suffices to prove that c is a square in k. Observe that every root $\alpha \in K$ of $f(x)$ is a square in K, since s is a square in $F[t]$ and

$$
\alpha\left(\left(\alpha^{(m-1) / 2}\right)^{2}\right)=s+g(\alpha)^{2} .
$$

It follows from the relations between coefficients and roots of $f(x)$ that c is a square in K. Thus c is a square in $F[t]$ when $e \in\{1,3\}$. Otherwise, let us consider first the case when $d=\operatorname{deg}(f)=2$. Then $e=2$, and assuming the separability of the extension K over k, one obtains immediately that $f(x)=x^{2}+a x+b$ where b is a nonzero square in K so that $a \neq 0$.

We explain in more detail why the extension K over k cannot be inseparable, i.e. we always have $a \neq 0$.

Assume that for some $Q(x) \in F[t][x]$ we have

$$
\begin{equation*}
x^{m}+g(x)^{2}+r^{2}=\left(x^{2}+b\right) Q(x) . \tag{1}
\end{equation*}
$$

We claim that $\alpha \in F[t]$. Indeed, since $\alpha^{2}=b$, it follows from (1) that

$$
\alpha=\frac{h(b)+r^{2}}{b^{(m-1) / 2}} \in k
$$

where the coefficients of h are the squares of the coefficients of g, proving the claim.

Since c is a square in $K=k[\alpha]$ one has

$$
\begin{equation*}
c=(y+z \alpha)^{2}=y^{2}+\alpha^{2} z^{2} \tag{2}
\end{equation*}
$$

for some $y, z \in k$. Taking the trace Tr in (2) one has $0=c+c=\operatorname{Tr}(c)=$ $z^{2} a^{2}$, so that $z=0$ and $c=y^{2}$, with $y \in F[t]$.

Now, we treat the case in which $d=\operatorname{deg}(f)=3$, so that $e \in\{3,6\}$. We may assume that $e=6$ and that $K=k(\gamma, \beta)$ where $\beta^{2}+\beta=g$, and $\gamma^{3}+a \gamma+b=0$, for some $a, b, g \in k$.

Assume that $c=z^{2}$ for some $z \in K$:

$$
z=a_{0}+a_{1} \gamma+a_{2} \gamma^{2}+\left(b_{0}+b_{1} \gamma+b_{2} \gamma^{2}\right) \beta
$$

where the a_{i} 's and b_{j} 's are in k. After some computation we get

$$
\begin{equation*}
c=a_{0}^{2}+g b_{0}^{2}+u_{1} \gamma+u_{2} \gamma^{2}+b_{0}^{2} \beta+u_{4} \beta \gamma+u_{5} \beta \gamma^{2}, \tag{3}
\end{equation*}
$$

where the u_{i} 's are certain quadratic polynomials in the a_{i} 's and b_{j} 's with coefficients in $\{a, b, g\}$. It follows immediately from (3) that $b_{0}=0$ so that $c=a_{0}^{2}$ as claimed.

Set $T / f(x)=t_{0}+t_{1} x+\ldots+t_{m} x^{m}$ with $t_{m} \neq 0$ and $t_{n} \in F[t]$ for all $0 \leq n \leq m$. Since trivially $T=(T / f(x)) f(x)$, it follows that t_{0} is also a square in $F[t]$. It follows by induction on n that all these coefficients t_{n} of $T / f(x)$ are also squares in $F[t]$, so that $f\left(x^{2}\right)^{1 / 2}$ divides $\left(T\left(x^{2}\right)\right)^{1 / 2}=x^{m}+g_{1}(x)^{2}+s^{1 / 2}$ in $F[t][x]$, where the coefficients of g are the squares of the coefficients of g_{1}.

This completes the proof of the lemma.

3. T has at most one root in $F[t]$

Theorem 1. Let F be a perfect field of characteristic 2. Suppose $m>3$ is odd and $0 \neq g(x) \in F[x]$ is an additive polynomial of degree $d<(m-1) / 2$, with $g(0)=0$. Let s be a nonconstant polynomial in $F[t] \backslash F$. If the difference polynomial $T=x^{m}+g(x)^{2}+s \in F[t][x]$ has a root $r \in F[t]$, then r is the only root of T in $F[t]$.

Proof. This follows immediately from Theorem 2.
In the special case when $g(x)=x$, there are two other proofs of this result, a direct one, omitted for brevity, and another proof that is a corollary of the "abc" theorem for rational fields, i.e. a corollary of Mason's theorem, (see e.g. [6]).

This latter proof is sketched below:
By Lemma 1, we do assume that s is not a square in $F[t]$. Suppose that v is another root of T in $F[t]$. Set $d=\operatorname{gcd}(r, v)$ and let r_{1}, v_{1} in
$F[t]$ be defined by $r=d r_{1}, v=d v_{1}$, so that $\operatorname{gcd}\left(r_{1}, v_{1}\right)=1$. After some computation we get

$$
\begin{equation*}
\left(r_{1}^{m}+v_{1}^{m}\right) r_{1}^{m} v_{1}^{m}=r_{1}^{m} v_{1}^{m}\left(\frac{\left(r_{1}+v_{1}\right)\left(r_{1}+v_{1}\right)}{d^{m-2}}\right) \tag{4}
\end{equation*}
$$

then (since $r^{\prime} \neq 0$ and $v^{\prime} \neq 0$), the "abc" theorem applied to $A=r_{1}^{m}$, $B=v_{1}^{m}, C=A+B$ in (4) implies:

$$
\begin{gathered}
m \operatorname{deg}\left(r_{1}\right)<n\left(r_{1}\right)+n\left(v_{1}\right)+2 n\left(r_{1}+v_{1}\right) \\
\leq \operatorname{deg}\left(r_{1}\right)+\operatorname{deg}\left(r_{1}\right)+2 \operatorname{deg}\left(r_{1}\right)=4 \operatorname{deg}\left(r_{1}\right)
\end{gathered}
$$

where $n(P)$ means the number of distinct roots of $P \in F[t]$ in \bar{k}; i.e. we get the contradiction $m<4$.

4. T has no quadratic factors in $F[t][x]$ provided $m>3$

The following lemma, discovered by the referee, is the key to obtain a neat proof of the main result of the section.

Lemma 2. Let $f, g \in F[x]$, where F is a field of characteristic 2 , $m=\operatorname{deg}(f)$ is odd and $n=\operatorname{deg}(g)$ is positive. If $f(x)-g(t)$ has in $F[t, x]$ a factor $x^{2}+a(t) x+b(t)$, then $a b \neq 0$ and

$$
\operatorname{deg}(b)=2 \operatorname{deg}(a) .
$$

Proof. Since m is odd, the equation $f(x)-g(t)=0$ has in the algebraic closure of $F(t), m$ distinct zeros x_{j}, with the expansions at ∞ given by $\zeta_{m}^{j} \gamma^{1 / m} t^{n / m}+T_{j}$, where ζ_{m} is a primitive root of unity of order m in \bar{F}, γ is the leading coefficient of g, and T_{j} is the sum of terms of lower degree than n / m. Since by the assumption

$$
x^{2}+a(t) x+b(t) \mid f(x)-g(t)
$$

we have for some $i \neq j$

$$
x^{2}+a(t) x+b(t)=\left(x+x_{i}\right)\left(x+x_{j}\right)=x^{2}+\left(x_{i}+x_{j}\right) x+x_{i} x_{j},
$$

thus at $t=\infty$

$$
a(t)=\left(\zeta_{m}^{i}+\zeta_{m}^{j}\right) \gamma^{1 / m} t^{n / m}+T_{i}+T_{j}, \quad b(t)=\zeta_{m}^{i+j} \gamma^{2 / m} t^{2 n / m}+U
$$

where U is the sum of terms of degree lower that $2 n / m$.
However, $\zeta_{m}^{i}+1, \zeta_{m}^{j} \neq 0$ since $\zeta_{m}^{i} \neq \zeta_{m}^{j}$ and also $\zeta_{m}^{i+j} \neq 0$. This gives $a b \neq 0$ and $\operatorname{deg}(b)=2 \operatorname{deg}(a)$, thereby completing the proof of the lemma.

The following lemma presents some necessary conditions that a possible quadratic factor $f(x) \in F[t][x]$ of T must satisfy.

Lemma 3. Let F be a perfect field of characteristic 2. Let $m>1$ be an odd integer. Let $s \in F[t] \backslash F$ be a polynomial that is not a square in $F[t]$. Let T be the polynomial $T=x^{m}+g(x)^{2}+s \in F[t][x]$ where $m>3$ is an odd integer and $g(x) \in F[x]$ is a nonzero additive polynomial of degree $d<m / 2$ with $g(0)=0$. Assume that $f(x)=x^{2}+a x+b \in F[t][x]$ having roots $\alpha, \beta \in K$, is a factor of T. We have
a) $b^{m}=(s+g(\alpha) g(\beta))^{2}+(g(\alpha)+g(\beta))^{2} s$.
b) $a b^{\prime} \neq 0$.
c) $b^{m-1}\left(b^{\prime}\right)^{2} a^{2}=(g(\alpha)+g(\beta))^{4}\left(\left(b^{\prime}\right)^{2}+b^{\prime} a^{\prime} a+\left(a^{\prime}\right)^{2} b\right)$.
d) $a \in F[t]$ is not constant, i.e. $a \notin F$.

Proof. From

$$
\alpha^{m}=s+g(\alpha)^{2}, \quad \beta^{m}=s+g(\beta)^{2}
$$

we get

$$
b^{m}=(s+g(\alpha) g(\beta))^{2}+(g(\alpha)+g(\beta))^{2} s
$$

which proves a).
First of all observe that $g(\alpha)+g(\beta)$ and $g(\alpha) g(\beta)$ are polynomials in a, b so that they are elements of $F[t]$. To prove that $b^{\prime} \neq 0$, assume that b is a square in $F[t]$. If $g(a)=g(\alpha)+g(\beta) \neq 0$ then from a) it follows that s is also a square, which is impossible. If $g(a)=0$ then either $a=0$ which is impossible by Lemma 2 , or a is a nonzero constant in F. By Lemma 2 this implies that b is also a nonzero constant in F. Observing that

$$
T=x^{m}+g(x)^{2}+s=\left(x^{2}+a x+b\right) A(t, x)
$$

for some polynomial $A \in F[t][x]$, we get on differentiating relative to t above:

$$
\begin{equation*}
s^{\prime}=\left(x^{2}+a x+b\right) \frac{\partial A(t, x)}{\partial(t)} \tag{5}
\end{equation*}
$$

which implies, by putting $x=\alpha$ in both sides of (5),

$$
s^{\prime}=0
$$

But this is impossible. Result b) follows.
In order to prove c) we set $h=g(\alpha)+g(\beta)$ and we differentiate $\alpha^{2}=a \alpha+b$ relative to t to obtain

$$
\begin{equation*}
\alpha^{\prime} a=a^{\prime} \alpha+b^{\prime} \tag{6}
\end{equation*}
$$

On the other hand, since $\alpha^{m}=g(\alpha)^{2}+s$ and $\beta^{m}=g(\beta)^{2}+s$ one has

$$
\begin{equation*}
\delta=\alpha^{m+1}+\beta^{m+1}=(\alpha+\beta) \beta^{m}+\left(\alpha^{m}+\beta^{m}\right) \alpha=(a \beta) \beta^{m-1}+h^{2} \alpha \tag{7}
\end{equation*}
$$

so that (recalling that $m+1$ and $m-1$ are even), we get by differentiating (7) relative to t :

$$
\delta^{\prime}=0=\beta^{m-1}(\beta a)^{\prime}+\alpha^{\prime} a^{2}
$$

But $\beta a=\beta \alpha+\beta^{2}$, so that $(\beta a)^{\prime}=(\beta \alpha)^{\prime}=b^{\prime}$ and we obtain

$$
\begin{equation*}
\beta^{m-1} b^{\prime}=\alpha^{\prime} h^{2}, \quad \alpha^{m-1} b^{\prime}=\beta^{\prime} h^{2} \tag{8}
\end{equation*}
$$

This together with (6) gives

$$
\begin{equation*}
\beta^{m-1} b^{\prime} a=h^{2}\left(a^{\prime} \alpha+b^{\prime}\right), \quad \alpha^{m-1} b^{\prime} a=h^{2}\left(a^{\prime} \beta+b^{\prime}\right) \tag{9}
\end{equation*}
$$

On multiplying the corresponding sides of the equations in (9), one obtains c) since $\alpha \beta=b$, while $g(\alpha)+g(\beta)=h$ and $\alpha+\beta=a$.

To prove d), assume that $a \neq 0$ is constant so that $a^{\prime}=0$. From c) it follows that

$$
b^{m-1} a^{2}=g(a)^{4}
$$

since $b^{\prime} \neq 0$ by b$)$. But this means that b is constant, contrary to b$)$. This proves d).

Now we are ready to present our main result.

Theorem 2. Let s be a nonconstant polynomial in $F[t] \backslash F$ where F is a perfect field of characteristic 2 . Let $m>3$ be an odd integer and $g(x) \in F[x]$ an additive polynomial of degree $d<(m-1) / 2$ with $g(0)=0$. Then the polynomial $T=x^{m}+g(x)^{2}+s \in F[t][x]$ has no factors of degree 2.

Proof. First of all, using Lemma 1, we may assume that s is not a square. Assume, contrary to the conclusion, that T has some factor of degree 2 in $F[t][x]$.

More precisely, assume that $q=x^{2}+a x+b \in F[t][x]$ divides T. Set $h=g(a)$. We distinguish two cases:

Case 1. $a^{\prime}=0$, so that by Lemma 3 c) and by Lemma 3 b), we get $b^{m-1} a^{2}=h^{4}$. So

$$
(m-1) \operatorname{deg}(b)+2 \operatorname{deg}(a)=4 \operatorname{deg}(h) \leq 4 d \operatorname{deg}(a) .
$$

This implies by Lemma 3 d) and by Lemma 2 the contradiction $m \leq 2 d$.
Case 2. $a^{\prime} \neq 0$. Observe that $b^{\prime} \neq 0$ by Lemma 3 b$)$. We shall denote by $d_{1}=\operatorname{deg}(a), d_{2}=\operatorname{deg}(b)$, and by $d_{3}=\operatorname{deg}\left(a^{\prime}\right), d_{4}=\operatorname{deg}\left(b^{\prime}\right)$ the degrees of the derivatives of a, b relative to t. Taking degrees relative to t in Lemma 3 c) we get

$$
\begin{equation*}
(m-1) d_{2}+2 d_{4}+2 d_{1} \leq 4 d d_{1}+\max \left(2 d_{4}, d_{4}+d_{3}+d_{1}, 2 d_{3}+d_{2}\right) . \tag{10}
\end{equation*}
$$

Observe that we have
a) $2 \leq 2 d_{1}=d_{2}$ by Lemma 3 b) and Lemma 2 ,
b) $2 \leq d_{4}<d_{2}$ since by Lemma 3 b) $b^{\prime} \neq 0$ so that it has even degree,
c) $4 \leq 2 d_{3}<2 d_{1}=d_{2}$ since $a^{\prime} \neq 0$ and by Lemma 3 b) and Lemma 2,
d) $0 \leq 2 d_{4}<2 d_{2}, d_{4}+d_{3}+d_{1}<2 d_{2}, 2 d_{3}+2 d_{1}<2 d_{2}$, from a), b), c) above and Lemma 2.

Thus (10) implies

$$
(m-1) d_{2}+2 d_{4}+2 d_{1} \leq 4 d d_{1}+2 d_{2},
$$

so that, using Lemma 2, we get

$$
(m-1) d_{2}<4+(m-1) d_{2} \leq(2 d-1)\left(2 d_{1}\right)+2 d_{2} \leq(2 d+1) d_{2},
$$

i.e. we obtain the contradiction $m-1<2 d+1<m$.

5. Conjecturally, T has no cubic factors in $F[t][x]$

The key to obtain the proof that our difference polynomial $T=x^{m}+$ $g(x)^{2}+s \in F[t][x]$ has no quadratic factors in $F[t][x]$, (see Theorem 2), resides in the use of Lemma 2; i.e. it relies on the fact that we can prove that for a possible irreducible quadratic factor $q=x^{2}+a x+b \in F[t][x]$ of T we have

$$
\operatorname{deg}(b)=2 \operatorname{deg}(a)
$$

In other words, we can say that a kind of "homogeneity" must occur in q. Moreover, we may say that only this new property "earned by q " implies the nonexistence of such q.

We were unable to prove the natural analogous property for possible cubic factors in $F[t][x]$ of T :

Conjecture 1. Let $m>3$ be an odd integer and let F be a perfect field of characteristic 2. Assume that $q(x)=x^{3}+a x^{2}+b x+c \in F[t][x]$ is an irreducible factor of the difference polynomial $T=x^{m}+g(x)^{2}+s \in F[t][x]$ where $m>3$ is an odd integer, s is an element of $F[t]$ that is not a square, and $g(x) \in F[x] \backslash\{0\}$ is an additive polynomial of degree $d<(m-1) / 2$ with $g(0)=0$.

We have $a b c \neq 0$ and
a) $\operatorname{deg}(c)=3 \operatorname{deg}(a)$;
b) $\operatorname{deg}(b)=2 \operatorname{deg}(a)$.

Assuming Conjecture 1, it may be proved that $d<(m-4) / 2$ implies that T has no cubic factors in $F[t][x]$. This will be included in a future paper.

Acknowledgments. We thank the organizers of the fourth European Congress of Mathematics (4ecm) at Stockholm for accepting poster 2.28 in which a short version of this paper was presented to colleagues. We also thank Jean-Marc Deshouillers who invited the second named author to show an early version of the paper at Luminy. Warm thanks to the referee for great suggestions and helpful comments.

References

[1] Y. Bilu, Quadratic factors of $f(x)-g(y)$, Acta Arith. 90 (1999), 341-355.
[2] A. Schinzel, On reducible trinomials, Dissert. Math. 329 (1993).
[3] A. Schinzel, Errata to [2], Acta Arith. 73 (1995), 399-400.
[4] A. Schinzel, On reducible trinomials II, Publ. Math. Debrecen 56, no. 3-4 (2000), 575-608.
[5] A. Schinzel, On reducible trinomials, III, Period. Math. Hung. 43, no. 1-2 (2001), 43-69.
[6] L. N. Vaserstein, Quantum (abc)-theorems, J. Number Theory 81, no. 2 (2000), 351-358.

FRANÇOIS BERRONDO
MATHEMATICS, UNIVERSITY OF BREST
6, AVENUE LE GORGEU
C.S. 93837, 29238 BREST CEDEX 3

FRANCE

UUIS GALLARDO
MATHEMATICS, UNIVERSITY OF BREST
6, AVENUE LE GORGEU
C.S. 93837, 29238 BREST CEDEX 3

FRANCE
E-mail: Luis.Gallardo@univ-brest.fr
(Received October 28, 2003; revised October 18, 2004)

[^0]: Mathematics Subject Classification: 11T06, 11R09.
 Key words and phrases: polynomials, characteristic 2, function fields.

