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Hilbert’s inequalities and their reverses

By MARIO KRNIC (Zagreb) and JOSIP PECARIC (Zagreb)

Abstract. In this paper, we make some further generalizations of Hilbert’s
well known inequality and its equivalent form in both the integral and the discrete
case. A reverse of Hilbert’s inequality is also given in the integral case. Several
other results of this type obtained in recent years, follow as special cases of our
results.

1. Introduction

Let us first repeat the Hilbert’s well known inequality and its equiva-
lent in both the integral and the discrete case.

Theorem A. If f and g € L?[0,00), then the following inequalities
hold and are equivalent:

[ e[ e [ ) .
/o <0 a}f(+; >dy<7r/ £2(z)

where 7 and 72 are the best constants.

and
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Theorem B. The following inequalities hold and are equivalent:

oo 00 ab 0 ) 00 ) %
m—+n §W<n:1an m:1bm > ’

m=1n=1
00 00 a 2 00
m
Z<Z - > SWZ( a"2>’
m n
n=1 “m=1 m=1

where 7 and 72 are the best constants.

In recent years there were lots of generalizations of this theorem. Let
us mention some authors who gave a number of results: Yang, Hong Yong,
Gavrea, Peachey.

BRNETIC and PECARIC ([1], [2]) gave some further generalizations of
Hilbert’s inequality. We shall state their main theorems that will attract
our attention. Let us note that in all theorems and corollaries that fol-
low, we suppose that all integrals and series converge, so we shall omit of
conditions of this type.

Theorem C. If n > 2 is an integer, A\ > n — 2 and » ., z% =1,
p;i >0,1=1,2,...,n then

/OO... Oofl(xl)fQ(xQ)fn(xn)
0 0

dridzy ... d
(@ 22t F o) T104T2 Tn

1
< K(/ xn_l_/\+pi(Ai_Ai+l)fipi(x)da:) bi (1)
0

where
R 1
K=— (P(l — Ai+1pi)F()\ —-n+1+ Aini))pi R
O
-1 1
Ai € <n ) > )
Pi—1 Pi—1
i =1,2,...,n, while I' is the gamma function. We use the conventions

po = pn and A, 1 = Ar.

The two authors considered the special case n = 2 ([2]), and they
obtained equivalent forms in both the integral and the discrete case.
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Theorem D. If XA >0, % + % =1, p > 1, then the following inequali-
ties hold and are equivalent:

/ / :L‘—I—y dxdy
. . )
<L</ ol AP(A1—Az) fp(x)dx> </ 1-A+q(A2—-A1) g ¢(x )dx>q7
0 0

" * * f@) .\’
(A=1)(p—1)+p(A1 — A2) / z dx) d
/0 ’ <0 @ryr )Y

< IP < /OO xl—’\+p(A1—A2)f7’(x)dx>,
0

where L = (B(1 — Asp, A — 1 + Agp))%(B(l —Aig N —1+ Alq))%, A €

(%, %) and As € (1;>‘, %), where B is the beta function.

Theorem E. If {a,} and {b,} are nonnegative real sequences, A\ > 0,

(3)

% + % =1, p > 1, then the following inequalities hold and are equivalent:
S
P
Kowe o (m+n)
00 1 00 1
L( Z ml—A-«—p(Al—AQ)amp) 4 <Z n1—)\+q(A2—A1)bnq> q’
m=1 n=1
and
A=1D(p—1)+p(A1—Az) _ Gm p 1=Adp(A1—A2)
S (X ) <,
n=1 m=1 m=1

where L is defined as in the previous theorem, A; € (%, %), Ay €

(1;/\,17) and A1, Ay > 0.

In the proofs of these main theorems Holder’s inequality was used. In
this paper we shall use the reverse of Holder’s inequality ([4]) to obtain
appropriate reverses of the inequalities of the authors mentioned. We shall
also make some further generalizations in both the integral and the discrete
case.
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2. Integral case

First we shall generalize Theorem C and obtain the reverse inequality.
More precisely, we have the following

Theorem 1. If n > 2 is an integer, A > n — 2 and Yy ;_ 1p =1,

with 0 < p;1 <1, p; <0,¢=23,...,n, and As € (" A= 1,p1) A; €

p1
(p~1_1’ ";_’:1), i # 2, po = Pn, Ant+1 = A1, then the reverse inequality in

(1) is valid.

PRrROOF. We start with the identity

/OO [ A@) fa(xe) - fa(zn
0 0 (;U1—|—x2_|_...+xn)>\

)darldxg ... dxy,

/ / fl 371 A2f2( ) fn( n)
d;vld;vg .dx,
:c1+a:2+ -—l—:cn)

Now, if we apply the reverse of Holder’s inequality ([4]) we obtain

> > fi(za) fa(za) -+ fu(an)
/ ; (x1+x2+ +xn)>\ dl‘ldl‘gdl‘n

1

- N : n

i fipz(xi) P;

= drides ... dz, ) |
N H </ / <l‘z+1 l+1> (1‘1+,1;2_|_..._|_1»n))\ 114X T

=1

with Y7 17 L_—1,0<pi<landp <0,i=23,...,n. Observe that we
use the Conventlon Tpt1 = 21.

It can easily be seen that this inequality is strict. Namely, equality
holds if the numbers

x.Ai Pi
<fl(‘rl) Az+1> i:1727"'7n

Lit1
are proportional. In that case our integral diverges, which is a contradic-
tion.

Now, recall that for the gamma function and the beta function B(a, b)
we have the well known formula

oo ja-1 T'(a)T(b)
|, T = B~ ryy
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So, by integrating

/OO 1 PG +ug A+t uyg) ML
0o (T+ug+-Fu)r " A—1

we obtain

dus dus ... du
/0 /0 QTtup+- +up 200 "

—Q

1 00 Uy
N (/\_1)()‘_2)"'()\—71—1-2)/0 (1+u2)/\—n+2du2 (4)
1
= mr(l_a)r()\—n-i-l-i-o&).

The previous equality holds for n — A — 1 < a < 1, since the gamma
function is defined for positive reals.
Now, if we put zp = xqug, k= 2,3,...,n, then we get

A o o 1
x 1p1/ / drodrs . ..dx
Y 0 @A (pg fag o ag)h

—A
_ xln—l—/\+pl(A1—A2)/Oo. .. /OO up dus dus . .. duy, (5)
) o (I+ug+ -+ uy) ’

and the result easily follows from (4) and (5).
Taking into account that the gamma function is defined for positive
. s —2—1 1 1 —A—1
reals, we obtain the conditions Ay € (”p—l, p_1) and A; € (m, ”m—il)
for ¢ # 2. Also, note that from this we have A > n — 2.
It is interesting to consider the special case of Theorem 1, when n = 2.
We shall also give an equivalent form in that case. This is the following

Theorem 2. If)\>0and%—|—$=1 with 0 < p < 1, ¢ < 0, and
A€ (%, %), Ay € (1;%, %), then the reverse inequalities in (2) and (3)
are valid, as well as the inequality

o0 00 q
(A=1)(g—1)+q(A2—Ay) / 9(y) d) J
€T — T

/0 < o (z+y* Y

< Lq( /0 yl‘”q(AQ‘Al)gq(y)dy).
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In particular, these inequalities are equivalent.

PROOF. Let us show that the reverses in (2) and (3) are equivalent.
Suppose that the reverse in (2) is valid. If we put

o0 p—1
_ O (p—1)+p(A1 - As) / f(x) dm)
9(y) =y <  Gr)” ;

then taking into account % + l = 1 and using the reverse in (2) we have

/Ooy(/\—l)(p—l)er(Al—Az)(/ f(z) d:z:) dy _/ / d dy
0 o (z+ LU-HJ

>L< /Ooxl‘“p(Al_A”fp(x)dx);( [t angs <>d:c)‘11
ooo ) 0

L</0 xl—/\+p(A1—A2)fp(x)dx>p
® v ([ S@ O\ \e

< /0 O G-1+p(41 A2)< /0 m@ dy> ,

whence we have the reverse in (3).

Now let us suppose that the reverse inequality in (3) is valid. By
applying the reverse of Holder’s inequality ([4]) and the reverse in (2) we
have

dd
// :c+y Y

(1=N+a(Ay—Ay) [ f(x) > (1=X)+q(Ag—A)
= ) q / —— —dx Yy q gy dy
NG EES )
</°° _w</w f(@) )P)%
> Y q 2 _dx
0 o (z+y?
00 1
_ (/0 il =) o, )dy)q

1
00 00 PN »
_ (p—1)(A—1)+p(A1 — Az) / fl@) ) )p
= Yy X
/0 < o (z+y)



Hilbert’s inequalities and their reverses 321

1
(/ yl a4 —An) ga(y )dy>q
0
> L</ :L,].—A-‘rp(Al—AQ)fp(x) d[L‘>p </ y]_—)\-‘rq(AQ Al) ( )dy)q’
0 0

and so we the have reverse in (2). While the reverse in (2) is valid, the
reverse inequality in (3) holds, too. O

Another way of generalizing Theorem C and Theorem 1 arises from
the substitution z; = Cju;", i = 1,2,...,n. More precisely, we have the
following

Theorem 3. If n > 2 is an integer, A > n — 2 and Y -
pi,Ci >0,1=1,2,...,n, then

fi(@1) f2(x2) - - fn(wn)
/ / (Ch2121 + Com9®2 + - -+ + Cpn® )N dzridzs ... dx,

llpzzl’

1

< K, </OO 20 (= A+pi(Ai—Aip1)—pi)+pi—1 £pi (a:)da:) pi ’
0

where K1 =[] 10415_1HZ 10 K and A; S 11,p£1 )
1=1,2,...n. If()<p1<1andpl<(),i—23 N, thenweobtamthe

reverse inequality for any Ay € (2=2=%, L) and A € ( n—A= 1) i # 2.

P10’ p1 -1’ Pi—
Putting Ch1 = Cy = --- = (), = 1, as a special case we obtain the result
of BRNETIC and PECARIC ([1]). It is obvious that the numbers A; = p_/\
i =1,2,...,n satisfy the conditions of Theorem 3, so we obtain
Corollary 1. If n > 2 is an integer, A >n —2 and ) .- Lpr = =1 with

p; >0,1=1,2,...,n, then

fi(z1) fa(z2) - - fn(xn)
/ / (Cro19 + Cowa®? + -+ + Cnxnan)kdxld@ oo day

1
i

< K2H </ oG Hpi(l_ai)_lfi“(@d:t) p

2 n+
where Ko = [}, al Hz 1C’ b o A A 1%- Ifo<p <1

and p; < 0,1=2,3,...,n then we obtain the reverse inequality.
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GAVREA considered the special case (C; = a; = 1, i = 1,2,...,n) of
Corollary 1 in [3], but without the reverse inequality.

As before, it is interesting to describe the special case n = 2 in equiv-
alent forms. So we have

Theorem 4. If A >0 and 3 + ; = 1 withp > 1, A, B,a, 3 > 0, then
the following inequalities hold and are equivalent:

[ f(z)gly)
/0 /0 (Azo + By P

1
<1, (/ xa(l—A—i—p(Al—A2)+1—p)+p—1fp(x) dx) P (7)
0

. (/0 xﬁ(l—AJrq(Az—A1)+1—q)+q—1g<J(x) d$>q7

and

/OO yﬁ((A—l)(P—l)-FP(Al—A2)+1)—1 < /OO L d:l:)pdy
0 o (Az®+ ByP)>

< Llp /OO xa(l—k)-ﬁ-pa(Al—AQ)—(p—l)(oc—l)fp(l,) de’, (8)
0

where lea_%ﬂ_% E‘%_%+A1_AQB%_%_%+A2_A1L’ while Ale(%7 %)

and Ay € (1;%,%). If0<p<l,g<0andA; € (%,%), Ay € (1;%,%),

then the reverse inequalities in (7) and (8) are valid, as well as the following

inequality:

/ % olA=1)(g-1)+q(A2 A1) +1)~1 / () B
0 o (Az®+ ByP)A

<L /0 yAA=N+aB(A2 =A@ DB-D g1y @y (9)

These inequalities are also equivalent.

Remark that Theorem 4 is a generalization of Theorem D from the
Introduction.
Now we shall consider some special cases. Namely, if we put A; =

Ay = % in Theorem 4 (they satisfy the conditions), we obtain
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Corollary 2. If A\ > 2 — min{p,q} and %4—% =1 with p > 1,
A, B,a, (3 >0, then the following inequalities hold and are equivalent:

* [ f@)yy)
L] e m e
< Ly < /OO 201=2)+(p-1)(1-e) f2(z) da:) v (10)
0

1
< / PN Ha=D(1-5) ga () dl,)q,

0

(o) [ele) p
BO-1)(p—1)+5-1 S
I </0 Az + By dm) W

< L2p/0 xa(l—k)—(p—l)(a—l)fp(x) dz,

and

(11)

L 1 1 1 A 1 1 A _ —
where Ly = a ¢ ppqqqpq(p+22,q+22).1f0<p<1,

g <0and2—p< \<2—gq, then the reverse inequalities in (10) and (11)
are valid, as well as the following inequality

o] [ee] q
a(A-1)(g—1)+a—1 9(y)
/0 ’ </0 (A= + By ) &

<L2q/0 yﬁ(l—/\)—(q—l)(ﬁ—l)qq(y) dy.

(12)

These inequalities are also equivalent.

If we put A =B = a = =1 in Corollary 2, then we obtain the
result of YANG ([7]), but without reverse inequalities. Further, « = =1
was considered by the same author in [8].

Another interesting case that we shall consider is A1 = % and Ay =

2-) :
ST We obtain

Corollary 3. If A > 0 and % + % =1withp>1, A, B,a,3 >0 then
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the following inequalities hold and are equivalent:

[ flx)g(y)
/0 /0 (Ax“+Byﬁ)Adxdy

< L3</ x—aTM)-i-P—lfp(x) dl‘)p </ x_%—«—q—lgq(x) dl‘)q’
0 0
and
> mw_y > f(z) P /OO —aAp g
A ol LP p—1yp
A y 2 </0 (Al‘a > Byﬂ))‘ dl‘) dy < Ls ; xr 2 f (l‘) dr,

A2\

1
where L3 = a_Eﬂ_%/P a B_%B(%,%). If0 < p<1andgq <0, then
the reverse inequalities in (13) and (14) are valid, as well as the following
inequality:

o0 a>\q_1 & g(y) 7 /Oo _BXg -1
= S AV — d L9 =5 taq q du.
/0 T2 </0 (Az° + By?) y) r < Lg ; Yy 2 91(y) dy

These inequalities are also equivalent.

If we put A= B =a = =1 in Corollary 3, we obtain the result of
YANG ([6]).

On the other hand, if we put A; = 1T_b —
Theorem 4, we obtain

Corollary 4. If A > 0, 2 + ¢ =1 withp > 1, A,B,a,f > 0, 0 <
b+ % <AXand 0 < c+ é < )\, then the following inequalities hold and are
equivalent:

1

e flz)gly)
I g
/0 /0 (Azot By?» Y
- L4< / ¥ =D -0l N +Ho-D(1-a) () dx)” (14)
0

1

</ 2Ha-D A= HB-N)Ha-1)(1-5) ga () dx)‘z,
0
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and

=ty p-1)pe—1( [ f(z) P
/0 / (/0 (Ao + BypR ) W

<L / 7 el =b (=N (1-0) 22y 4y (15)
0

where

c_Ab _b_Atc ]

1 1
Li=a 13 prAr ¢ Ba » ——
4=o 9f T(\
1
1 1 1 1\\«
(r(es ) r(r-c=2)) (r (o 2)r (r-0-2))"
q q p p
If 0 <p <1 andq <0 then the reverse inequalities in (16) and (17) are
valid as well as the inequality

o0 o0 q
a(A—c)(g—1)+adb-1 g(y)
/0 ) </o (Aze + Bypp ) @

< Ly /0 y P DAmaRBO- A+ @00 ga(y) dy.  (16)

~—

S

3. Non-homogeneus discrete case

Now we shall consider the discrete case. Our main result that gener-
alizes all results of BRNETIC and PECARIC ([2]), is the following

Theorem 5. If {a,} and {b,} are nonnegative real sequences, A > 0,

+2=1,p>1, A, B,a,3 > 0, then the following inequalities hold:

1
q

0o 00 0o 1

m=1n=1 m=1

S

00 1
. < Z nB=N)+Bq(A2—A1)+(g—1)(1-B) bﬂQ) ! 7 (17)

n=1
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and

o0 o0 P
BA=1)(p—1)+pB(A1—A2)+6-1 Am
> (2 )

=t . (18)
< Llp Z ma(l—)\)+ap(A1—Az)—i—(p—l)(l—a) P

am",

m=1

where L, is defined in Theorem 4 and A; € (max{i=2 7 A 0;1 ,q) A €
(max{liTA, %}, 5). In particular, the inequalities (19) and (20) are equiv-
alent.

PRrROOF. First we will prove inequality (19). If we apply Hélder’s in-
equality we obtain

(o SIENe o]

ambn
B
m=1n= 1(Ama+Bn )
i i Ca(Am*) M55 b, (Baf) e
m=1 ”:1 Amo‘ T Bnﬂ) (Bnﬂ)AQ—i_%_z% (Ama)z‘h-i-q%—é
o X p pA1+——_ 1
<<Z (A O‘-I-B B e )pA2+ L] >”
m=1 n:l m n ( ) 8
(i ot (B )q"‘2+—‘%>%
: . " '
A= (Am® + BnP)r - (Apeyehital

Now we have

) I UL
== (Ame + Bnﬁ)’\ (Bnﬁ)PAz-i-%—l
o0 o0 1
= D am(Ame ) 1
o o1 (Ame + Bnf)) - (Bnf)P2t5 !
> d
< Z amp(Ama)pA1+q%—§ / Y
! 0 (Am® + ByP) - (ByfP 25!

— ﬂ—lB_%Al—)\'f'p(Al—AQ)""(p_l)(é_l)

o0 00 t_A2p

. Pona(l=X)+ap(A1—A2)+(p—1)(1—a)
2 an'm /0 1+0)7

dt

m=1
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_ gl b Al MR- A+ (-1 (- D) I'(1— Agp)I'(A — 1 + Agp)

I'(A)
. Z ayPm@(I-NFep(Ai—A2)+(p-1)(1-a)
m=1
Analogusly, we get
(Bnﬁ)qu—Fp%—%
1;:1 Ama + an’) (Ama)qué—l
< a-lg-t grrae-an ey DA = AP = 1+ 4ig)
L'(A)
. Z by, InPA=N+Ba(A2 = A1) +(g-1)(1-P)
n=1
so the inequality (19) holds.
Further, it is obvious that the functions
1
x) = and
f(@) (Az® + BnP)> - (a:a)quJré_l
1
9(y) =
(Ame + By - (et
are decreasing if the conditions gA; —|— = —1 > 0 and pAs + z—12>

0 are satisfied. Also, taking into account that the gamma functlon is

defined for positive reals, we obtain A; € (max{lq)‘, aa—ql ,%) and Ay €
- B=1y 1

(max{=2 =2 5 },—).

Let us show that the inequalities (19) and (20) are equivalent. Suppose

that the inequality (19) is valid. By putting

(oo} p—l
b — pfOA-DE—1+pB(A1—A2)+6-1 < 3 m )
n p )\ ,
— (Am® + BnP)

taking into account that % + % =1 and using (19), we have

o P
(A=1)(p—1)+pB(A1—A2)+[—-1
> (> e )

n=1
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o o b
Z Z Ama + Bnf)>

=1 n:l

< In <
m=1
1
. ( S SN A A a1 bﬁ) "
n=1

_ L1< S (=N tan(di-42) (-1 (1-0) amp>
m=1

o0 (o] p
. BA=1)(p—1)+pB(A1—A2)+6-1 m
(Z" <mZ: <Ama+Bnﬂ>A> ) |

n=1

8
D=

me a(1-X)+ap(A1— A2)+(p—1)(1—a)amp>

Q=

so we obtain the inequality (20).

Now, suppose that inequality (20) is valid. By applying Hélder’s in-
equality and (20) we have

0o 00 anb,
Z Z (Am® + BnP)A

m=1 n=1
i _ BN 00y A =) =0) i
= n
Ama + Bnﬂ)
n=1 m:l

BA=N)+Bq(Ag—A1)+(a=1)(1-B)
q

S =

Mg

'n
00
<2 \n

n=1

—2(B(1-A\)+Bq(A2— A1)+ b
— ( Ama + Bnﬁ)

Q= 3

<Z BU=2)+Bq(A2—A1)+(q-1)(1-B)p, )

— < ﬂ(/\—l)(p—1)+pB(A1—A2)+ﬂ—1<Z : am 7 >p>
— Ame 4+ Bn

n= m=

n

Zn

1 1
Zn B=N+Bg(A2—A1)+(g=1)(1-8)y, q)
n=1
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[e%S) 1
< L1< 3 ma(l—A)+ap(A1—A2>+<p—1)<1—a>amp> v

m=1

00 1
. < 3 nf0-A) 004 A1)+ )19 bﬁ) "

n=1
so we obtain (19). This completes the proof. O

Remark that Theorem 5 is a generalization of Theorem E from Intro-
duction.
We shall consider the same special cases for Theorem 5. First, if we
2-)

put A1 = Ay = ST in Theorem 5, then we obtain

Corollary 5. If {a,} and {b,} are nonnegative real sequences,
%Jﬁ =1withp >1, A,B > 0,0 < a,8 <1 and 2 — min{p,q} <
A <24 min{f - p,% — q}, then the following inequalities hold and are
equivalent:

(o) 1 [e'%) 1
< L2< Z ma(l—/\)+(p—1)(1—a)amp> L <Z n,@(l—)\)—i-(q—l)(l—,@)bnq) ‘17

m=1

and

o0 o0 P
BA=1)(p—1)+6-1 am
> (3 o)

n=1 m=1
o0
< LyP Z me=+@e-1)l-a), p
m=1
where Lo is defined as in Corollary 2.

If we put a=p=1, we obtain, as in the integral case, the result of
YANG ([8]).
Now we shall consider the case 4] = % and Ay = %. We obtain

Corollary 6. If {a,} and {b,} are nonnegative real sequences, 0 <

A < min{%,%}, %—F% =1,p > 1, A, B,a,8 > 0, then the following
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inequalities hold and are equivalent:

and

o0

z::ln%p*(z: (Amac—bkmBnﬁ ) < Lg? Zm o3P+ P=lg, P

where Lg is defined as in Corollary 3.

Note that Corollary 6 is a generalization of YANG’s result in [7].
Finally, if we put A; = —b — = and Ay = % — piq in Theorem 5, we

obtain the following

Corollary 7. If%—k% =1withp>1, A, B,a,0 > 0,0 < b+% <
min{1, A} and 0 < c+ é < min{%, A}, then the following inequalities hold
and are equivalent:

1
alp-1)(1-b) tale- X+ (p-1)(1-a) . p
ZZ Ama—l-Bnﬂ) <L4<Zm am>
m=1n=1 m=1
1
. ( 3 D105 N+ 1)(1-5) an> "
n=1

and

p
B(A=b)(p—1)+Bc—1 am
> (3 e Z5y)

<L Z meF=D=b+ale=X)+p-1)(1-0), p

m=1

where Ly is defined as in Corollary 4.
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