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On the torsion-free connections on higher
order frame bundles

By IVAN KOLÁŘ (Brno)

Abstract. Using the r-jets of flows of vector fields, we show that every
torsion-free linear r-th order connection Γ on the tangent bundle of a manifold
M determines a reduction of the (r + 1)-st order frame bundle of M to the
general linear group. We deduce that this reduction coincides with the well known
reduction determined by the principal connection induced by Γ on the r-th order
frame bundle of M .

Introduction

Our starting point is the fact that the principal connections on the
r-th order frame bundle P rM of a manifold M are in bijection with the
linear r-th order connections on the tangent bundle TM , i.e. with the
linear splittings

Γ : TM → JrTM (1)

of the jet projection JrTM → TM . We shall write

Γ̃ : P rM → J1P rM (2)
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for the principal connection corresponding to (1). Its lifting map, denoted
by the same symbol,

Γ̃ : P rM ×M TM → TP rM

is determined by

Γ̃(u,A) = PrX(u), u ∈ P rM, A ∈ TxM, x ∈M, (3)

where PrX is the flow prolongation of a vector field X : M → TM satis-
fying jrxX = Γ(A), [3].

The structure group of P rM is Grm, m = dimM . There is a canonical
R
m × gr−1

m -valued one-form Θr on P rM . P. C. Yuen, [5], introduced the
torsion of Γ̃ as the exterior covariant differential

D
Γ̃

Θr, (4)

see also [1]. On the other hand, the (r − 1)-jet at x of the bracket [X,Y ] of
two vector fields X, Y on M depends on jrxX and jrxY only. This defines
a map

[ , ]r−1 : JrTM ×M JrTM → Jr−1TM. (5)

The torsion of Γ can be introduced, [6], as a map

τΓ : TM ×M TM → Jr−1TM

defined by

τΓ(A,B) = [Γ(A),Γ(B)]r−1, A,B ∈ TxM . (6)

In [3] we deduced that the torsions DΓ̃Θr and τΓ coincide in a natural way.
There is a canonical injection ir+1 : P r+1M → J1P rM , see formula

(13) below. If Γ̃ is torsion-free, there is a well-known map �(Γ̃) : P 1M →
P r+1M defined by the induction

ir+1 ◦ �(Γ̃) = Γ̃ ◦ �(Γ̃r−1), (7)

where Γ̃r−1 is the underlying connection on P r−1M , so that �(Γ̃r−1) :
P 1M → P rM by the induction hypothesis. If we consider the canonical
injection GL(m,R) ↪→ Gr+1

m , [4], p. 130, then �(Γ̃)(P 1M) is a reduction of
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P r+1M to GL(m,R). This establishes the well-known bijection between
the torsion-free connections on P rM and the reductions of P r+1M to
GL(m,R), [2], [3].

In Section 1 of the present paper we use the r-jets of flows of vector
fields to construct a map σ(Γ) : P 1M → P r+1M for every torsion-free lin-
ear r-th order connection Γ on TM . Our proof of the fact that σ(Γ)(P 1M)
is a reduction of P r+1M to GL(m,R) is based on two interesting lemmas
concerning the r-jets of the bracket of vector fields, the proofs of which
we postpone to Section 3. In Section 2 we deduce σ(Γ) = �(Γ̃), i.e. both
constructions of a reduction of P r+1M to GL(m,R) coincide.

All manifolds and maps are assumed to be infinitely differentiable.
Unless otherwise specified, we use the terminology and notation from the
book [4].

1. The reduction σ(Γ)

Consider Γ : TM → JrTM . For a linear frame u ∈ P 1
xM , u =

(A1, . . . , Am), Ai ∈ TxM , we take vector fields Xi satisfying jrxXi = Γ(Ai),
i = 1, . . . ,m. Then (

FlX1

t1
◦ · · · ◦ FlXm

tm
)
(x)

is a local map R
m →M and we define

σ(Γ)(u) = jr+1
0

(
FlX1

t1
◦ · · · ◦ FlXm

tm
)
(x) ∈ P r+1

x M, (8)

where 0 ∈ R
m. One verifies easily that σ(Γ)(u) depends on u and Γ only.

Proposition 1. If Γ is torsion-free, then σ(Γ)(P 1M) is a reduction

of P r+1M to GL(m,R).

The proof will be based on the following two lemmas, the proofs of
which we postpone to the last section.

Consider two vector fields X and Y on M . Then
(
FlXt ◦ FlYτ

)
(x)

is a local map R
2 → M , so that jr+1

0,0

(
FlXt ◦ FlYτ

)
(x) ∈ (T r+1

2 M)x is a
(2, r + 1)-velocity on M .

Lemma 1. If jr−1
x [X,Y ] = 0, then

jr+1
0,0

(
FlXt ◦ FlYτ

)
(x) = jr+1

0,0

(
FlYτ ◦ FlXt

)
(x). (9)
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Further,
(
FlXt ◦ FlYt

)
(x) is a local map R → M , so that jr+1

0

(
FlXt ◦

FlYt
)
(x) ∈ (T r+1

1 M)x is a (1, r + 1)-velocity on M .

Lemma 2. If jr−1
x [X,Y ] = 0, then

jr+1
0

(
FlXt ◦ FlYt

)
(x) = jr+1

0

(
FlX+Y

t

)
(x). (10)

Now we prove Proposition 1 by using Lemmas 1 and 2. We shall also
use the well known formula

FlXat = FlaXt , a ∈ R. (11)

Take g = (aij) ∈ GL(m,R), u = (Ai) ∈ P 1
xM and consider ug = (ajiAj).

Write Γ(Ai) = jrxXi. Since Γ is torsion-free, by (10), (11) and (9) we
obtain gradually

σ(Γ)(ug) = jr+1
0

(
Fl

a11X1+···+am
1 Xm

t1
◦ · · · ◦ Fla

1
mX1+···+am

mXm

tm
)

= jr+1
0

(
Fl

a11X1

t1
◦ · · · ◦ Fla

m
1 Xm

t1
◦ · · · ◦ Fla

1
mX1

tm ◦ · · · ◦ Fla
m
mXm

tm
)

= jr+1
0

(
FlX1

a11t
1 ◦ · · · ◦ FlXm

am
1 t

1 ◦ · · · ◦ FlX1

a1mt
m ◦ · · · ◦ FlXm

am
mt

m

)

= jr+1
0

(
FlX1

a11t
1+···+a1mtm

◦ · · · ◦ FlXm

am
1 t

1+···+am
mt

m

)
.

This proves Proposition 1.

2. The main result

We shall use the following form of the canonical injection
ir+1 : P r+1M → J1P rM . We have P rM ⊂ T rmM , where T rm is the functor
of (m, r)-velocities. Clearly, jr0f ∈ T rmM , f : R

m → M , can be expressed
in the form

jr0f =
(
T rmf

)
(e), e = jr0 idRm . (12)

Write Ei = ∂
∂t

∣∣
0
jr0τ

i
t ∈ TeT

r
mR

m, where τ it : R
m → R

m is the translation
t̄1 = t1, . . . , t̄i = ti + t, . . . , t̄m = tm. If we consider jr+1

0 ψ ∈ P r+1M , then
(
TT rmψ

)
(Ei) (13)

is an m-tuple of tangent vectors at jr0ψ ∈ P rM . The linear span of these
vectors defines ir+1(jr+1

0 ψ) ∈ J1P rM .
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Proposition 2. If Γ is a torsion-free linear r-th order connection

on TM and Γ̃ is the corresponding principal connection on P rM , then

σ(Γ) = �(Γ̃).

Proof. We proceed by induction. If Γr−1 and Γ̃r−1 are the underly-
ing connections in the order r − 1, then

σ(Γr−1) = �(Γ̃r−1) (14)

by the induction hypothesis. Consider u = (A1, . . . , Am) ∈ P 1
xM and write

v = σ
(
Γr−1

)
(u) = �

(
Γ̃r−1

)
(u).

By (13), ir+1

(
jr+1
0

(
FlX1

t1
◦ · · · ◦FlXm

tm
)
(x)

)
is the linear span of the vectors

TT rm
(
FlX1

t1
◦ · · · ◦ FlXm

tm
)
(Ei). (15)

Using the basic properties of flows, Lemma 1 and (12), we deduce that
(15) is equal to

∂

∂t

∣∣∣
0
T rm

(
FlX1

t1
◦ · · · ◦ FlXi

t+ti
◦ · · · ◦ FlXm

tm
)
(e)

=
∂

∂t

∣∣∣
0

(
Fl

T r
mXi
t ◦ FlT

r
mX1

t1
◦ · · · ◦ FlT

r
mXm

tm
)
(e)

= T r
mXi

(
T rm(FlX1

t1
◦ · · · ◦ FlXm

tm )(e)
)

= T r
mXi(v),

where T r
mXi denotes the flow prolongation of Xi. By (3) and by the in-

duction hypothesis, this m-tuple spans �(Γ̃)(v). �

3. The proofs of Lemmas 1 and 2

In general, if we have two maps f , g : R
m → R

m, it suffices to verify the
condition jr0f = jr0g on all curves of the form xi = ait, i = 1, . . . ,m, [4]. By
the flow property (11), Lemma 1 follows from the fact that jr−1

x [X,Y ] = 0
implies

jr+1
0

(
FlXt ◦ FlYt

)
(x) = jr+1

0

(
FlYt ◦ FlXt

)
(x) ∈ T r+1

1 M. (16)

But this is a direct consequence of Lemma 2. So it suffices to prove
Lemma 2. We have the following 3 cases.
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I. If X(x) = Y (x) = 0, then the (r + 1)-jets of the flows of X and Y are
in the group of all invertible (r + 1)-jets of M into M with source x and
target x and we have a well known result concerning Lie groups.

II. IfX(x) �= 0, we can consider such local coordinates on M that X = ∂
∂x1 .

Then jr−1
x [ ∂

∂x1 , Y ] = 0 means

Dα
∂Y i(x)
∂x1

= 0 , 0 ≤ ‖α‖ ≤ r − 1, (17)

where Y i are the coordinate components of Y and Dα denotes the partial
derivative with respect to a multiindex α of the range m.

The flow ψi(t, x) of the vector field ∂
∂x1 + Y satisfies

∂ψi(t, x)
∂t

= δi1 + Y i
(
ψ(t, x)

)
. (18)

If ηi(t, x) denotes the flow of Y , then the coordinate expression of FlXt ◦FlYt
is

µi(t, x) = δi1t+ ηi(t, x). (19)
Hence

∂µi(t, x)
∂t

= δi1 +
∂ηi(t, x)

∂t
= δi1 + Y i

(
η(t, x)

)
. (20)

From (19) we obtain

∂kµi(t, x)
∂tk

=
∂kηi(t, x)

∂tk
, k ≥ 2. (21)

For t = 0, (18) and (20) yield directly ∂ψi(0,x)
∂t = ∂µi(0,x)

∂t . Then we find
by direct evaluation

∂2ψi(t, x)
∂t2

=
∂Y i

(
ψ(t, x)

)
∂xj

∂ψj(t, x)
∂t

, (22)

∂2µi(t, x)
∂t2

=
∂Y i

(
η(t, x)

)
∂xj

∂ηj(t, x)
∂t

. (23)

Hence (17) implies
∂2ψi(0, x)

∂t2
=
∂2µi(0, x)

∂t2
. (24)

By iteration we deduce (10) for every r.
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III. The case Y (x) �= 0 can be reduced to II by using FlXt ◦FlYt =
(
FlY−t ◦

FlX−t
)−1.
This proves Lemmas 1 and 2.
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