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Randers spaces with reversible geodesics

By MIKE CRAMPIN (Gent)

Abstract. A Finsler space is said to have reversible geodesics if for every
one of its oriented geodesic paths, the same path traversed in the opposite sense is
also a geodesic. The conditions for a Randers space to have reversible geodesics
are obtained; this leads to a new simple proof of a well-known theorem giving
necessary and sufficient conditions for a Randers space to be Berwald.

A geodesic in a Finsler space (where the Finsler function is positively
homogeneous) should be thought of as an oriented path, that is, an imbed-
ded one-dimensional submanifold with a sense of direction, or an equiv-
alence class of curves determined up to reparametrization with positive
derivative. There is in general no reason why a path which coincides with
a geodesic as a point set but is traversed in the opposite direction should
be a geodesic. If a Finsler space has the property that all of its geodesics
remain geodesics when their orientation is reversed I shall say that the
space has reversible geodesics. If the space is such that when t �→ xi(t) is a
geodesic with constant Finslerian speed then t �→ xi(−t) is also a geodesic
with constant Finslerian speed then I shall say that the space has strictly
reversible geodesics.

A Riemannian space has strictly reversible geodesics; more generally,
so has a Finsler space whose Finsler function is absolutely homogeneous.
However, these examples do not by any means exhaust the possibilities for
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Finsler spaces with reversible geodesics. Consider a Randers space, with
Finsler function

F (x, y) = α + β =
√

aijyiyj + biy
i

where aijb
ibj < 1. The equation for its geodesics with constant Finslerian

speed is [1]

ẍi + Γ i
jkẋ

j ẋk + aij(bj|k − bk|j)ẋkα(ẋ)

=
1
F

ẋi
(
ajlbl(bj|k − bk|j)ẋkα(ẋ) − bj|kẋjẋk

)

where Γ i
jk are the connection coefficients of the Levi–Civita connection of

the Riemannian metric aij , and bi|j are the components of the covariant
differential of bi with respect to the same connection. It is clear that if
bj|i = bi|j then the Finslerian geodesics are projectively equivalent to the
Riemannian ones, and so the Randers space is reversible, while if bi|j = 0
the Finslerian geodesics are identical with the Riemannian ones, and the
Randers space is strictly reversible. It is useful to recall that a Finsler
space whose geodesics are projectively affine, as in the first case, is called
a Douglas space, while one whose geodesics with constant Finslerian speed
are affine, as in the second case, is called a Berwald space.

One aim of this note is to prove the converse to these results, namely
that if a Randers space has reversible geodesics then bj|i = bi|j, and if
it has strictly reversible geodesics then bi|j = 0. These results generalize
in some small way the well-known theorem that the vanishing of bi|j is
the necessary and sufficient condition for a Randers space to be Berwald,
and enable one to view that result from a new perspective, as well as
providing a simple proof of it, different from the one in [3], that requires
practically no calculation (which cannot be said of the derivation of the
explicit geodesic spray coefficients of a Randers space quoted above).

I shall discuss the reversibility of geodesics in some generality. In fact
the definitions of reversibility, and the corresponding conditions, can be
formulated for any spray. Consider a spray

Γ = yi ∂

∂xi
+ f i(x, y)

∂

∂yi
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where the f i are positively homogeneous of degree 2 in the yi. A curve
t �→ xi(t) is a base integral curve of the spray if and only if it satisfies the
equations ẍi = f i(x, ẋ). The curve t �→ xi(−t) is a base integral curve,
up to reparametrization, if for some function ϕ(t), ẍi = f i(x,−ẋ) + ϕẋi.
Thus the spray is reversible, in the sense that the paths defined by its base
integral curves remain so when their orientation is reversed, if and only if

f i(x,−y) = f i(x, y) + λ(x, y)yi

for all yi �= 0, for some function λ, which must clearly be absolutely ho-
mogeneous of degree 1 in yi. The condition for the spray to be strictly
reversible, in the sense that for every base integral curve t �→ xi(t), the
curve t �→ xi(−t) is also a base integral curve (without reparametrization)
is that f i(x,−y) = f i(x, y).

We can express the condition for reversibility in a rather more elegant
form, as follows. Denote by ρ the ‘reflection map’ (x, y) �→ (x,−y), and
for any spray Γ set Γ̄ = −ρ∗Γ (note the necessity of the minus sign: ρ∗Γ is
not a spray). Then

Γ̄ = yi ∂

∂xi
+ f i(x,−y)

∂

∂yi
,

so it is natural to call Γ̄ the reverse of Γ. Then Γ is reversible if and only
if it is projectively equivalent to its reverse, and strictly reversible if and
only if the two are equal.

The concept of reversibility is a projective one; that is to say, if a spray
is reversible so are all sprays projectively equivalent to it. In fact a spray
is reversible if and only if its projective equivalence class is invariant under
the map which takes a spray to its reverse.

Since we have to deal with projectively equivalent sprays, the follow-
ing simple observations about the geodesic sprays of Finsler spaces will
prove very useful. Let F be a Finsler function – by assumption, posi-
tively homogeneous, and strongly convex, so that its fundamental tensor
gij is positive-definite, and in particular non-singular. The geodesics of
F are the solutions xi(t), yi = ẋi, of the Euler–Lagrange equation with
Lagrangian F ,

d

dt

(
∂F

∂yi

)
− ∂F

∂xi
= 0.
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Because of the homogeneity of F these equations do not determine the
curves t �→ xi(t) completely, but only up to sense-preserving reparametriza-
tion. This is a consequence of the fact that a vector (vi) satisfies

vj ∂2F

∂yi∂yj
= 0

if and only if vi = kyi for some scalar k; the fact that this quantity vanishes
if vi = kyi is due to the assumed homogeneity of F , while the fact that
it vanishes only if vi = kyi follows, via the non-singularity of gij , from
the assumption of strong convexity. These observations may be presented
in a different light. The Euler–Lagrange equation may be regarded as an
equation for geodesic sprays Γ, in the form

Γ
(

∂F

∂yi

)
− ∂F

∂xi
= 0.

Assuming, as before, that F is homogeneous and strongly convex we see
that two sprays Γ, Γ̃ satisfy the equation if and only if Γ̃ = Γ + λ∆ where
∆ is the Liouville vector field, ∆ = yi∂/∂yi, and λ is homogeneous of
degree 1 in yi. That is to say, the geodesic sprays of F form a projective
equivalence class of sprays, and a spray Γ belongs to this class if and only
if it satisfies the Euler–Lagrange equation as written above.

The geodesic spray Γ with constant Finslerian speed is singled out
from amongst all those satisifying the Euler–Lagrange equation by the
additional condition that Γ(F ) = 0. I shall speak of ‘a geodesic spray’
when I mean any spray of the projective class of solutions of the Euler–
Lagrange equation for F , and ‘the geodesic spray’ when I mean the one
with constant Finslerian speed. With this choice, if Γ̃ = Γ + λ∆ is a
geodesic spray of F , and therefore projectively equivalent to the geodesic
spray Γ, then

Γ̃(F ) = Γ(F ) + λ∆(F ) = λF,

so we have an explicit expression for λ, namely

λ =
Γ̃(F )

F
.

(Though it may not be immediately obvious, these results are essentially
equivalent to those given by Shen in [5], Theorem 12.2.6. See also [6] for
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an intrinsic formulation of this and equivalent conditions, originally due
to Rapcsák [4].)

It follows that a Finsler space has reversible geodesics if and only if

Γ̄
(

∂F

∂yi

)
− ∂F

∂xi
= 0,

where Γ̄ is the reverse of a geodesic spray Γ; it will be enough to check
reversibility when Γ is the geodesic spray. The Finsler space has strictly
reversible geodesics if and only if Γ̄ = Γ, where Γ is the geodesic spray.

Now if F is any Finsler function, and F̄ is defined by F̄ (x, y) =
F (x,−y) then F̄ is also a Finsler function; it is certainly positively homoge-
neous in yi, and its fundamental tensor ḡij is given by ḡij(x, y) = gij(x,−y)
(where gij is the fundamental tensor of F ), so ḡij , like gij , is everywhere
positive definite. The geodesic spray Γ̄ of F̄ is just the reverse of the
geodesic spray of F .

We can now apply these observations to a Randers space, with

F = α + β =
√

aijyiyj + biy
i,

to show that the necessary and sufficient condition for the space to have
reversible geodesics is that bk|j = bj|k, and the necessary and sufficient
condition for the space to have strictly reversible geodesics is that bj|k = 0.
Of course, another way of saying that bk|j = bj|k is that the 1-form b = bidxi

is closed. Given that b is closed, another way of saying that bj|k = 0 is
that the function β = biy

i is a first integral of the geodesic flow of the
Riemannian metric aij . So we may equivalently say that the necessary and
sufficient condition for the Randers space to have reversible geodesics is
that b is closed, and the necessary and sufficient condition for its geodesics
to be strictly reversible is that b is closed and β = biy

i is a first integral of
the Riemannian geodesic flow.

These results about reversibility of geodesics in a Randers space are
in fact particular cases (though probably the most interesting ones) of
more general, but similar, results concerning Randers changes. Let F0 be
a Finsler function, and b = bidxi a 1-form on the base manifold such that

sup
F0(y)=1

|biy
i| < 1;
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then F (x, y) = F0(x, y)+bi(x)yi is again a Finsler function, and the process
of transforming F0 to F is called a Randers change (see, for example, [5]
and [6]). Suppose that F0 is absolutely homogeneous; then the necessary
and sufficient condition for F to have reversible geodesics is that b is closed,
and the necessary and sufficient condition for the geodesics to be strictly
reversible is that b is closed and β = biy

i is a first integral of the geodesic
flow of F0. I shall devote the rest of this note to proving these assertions.

The necessary and sufficient condition for F to have reversible geode-
sics is that

Γ̄
(

∂F

∂yi

)
− ∂F

∂xi
= 0

where Γ̄ is the reverse of Γ, the geodesic spray of F ; moreover, Γ̄ is the
geodesic spray of F̄ . Now F = F0 +β where F0 is absolutely homogeneous.
Then F̄ = F0 − β, so F = F̄ + 2β. Since

Γ̄
(

∂F̄

∂yi

)
− ∂F̄

∂xi
= 0,

we have

Γ̄
(

∂F

∂yi

)
− ∂F

∂xi
= 2

(
Γ̄

(
∂β

∂yi

)
− ∂β

∂xi

)

= 2
(

Γ̄(bi) − ∂bj

∂xi
yj

)

= 2
(

∂bi

∂xj
− ∂bj

∂xi

)
yj .

It follows that if F is obtained by a Randers change from an absolutely
homogeneous Finsler function then it is geodesically reversible if and only
if the 1-form defining the Randers change is closed.

Notice that for any spray Γ̃,

Γ̃
(

∂β

∂yi

)
− ∂β

∂xi
=

(
∂bi

∂xj
− ∂bj

∂xi

)
yj .

So for the geodesic spray Γ0 of the ‘reference’ Finsler function F0

Γ0

(
∂F

∂yi

)
− ∂F

∂xi
= Γ0

(
∂β

∂yi

)
− ∂β

∂xi
=

(
∂bi

∂xj
− ∂bj

∂xi

)
yj,
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from which it follows that b being closed is also the necessary and suffi-
cient condition for Γ0 to be projectively equivalent to Γ; if b is closed we
have Γ = Γ0 − λ∆ with λ = Γ0(F )/F = Γ0(β)/(F0 + β), and similarly
Γ̄ = Γ0 − µ∆ with µ = −Γ0(β)/(F0 − β). Thus given that b is closed,
the condition for F to have strictly reversible geodesics, so that Γ = Γ̄, is
that Γ0(β)/(F0 + β) = −Γ0(β)/(F0 −β), or Γ0(β) = 0; then Γ = Γ0 = Γ̄.
In fact, when b is closed the geodesic sprays of both F and F̄ are projec-
tively equivalent to the (strictly reversible) geodesic spray of F0; and when
Γ0(β) = 0 the two geodesic sprays coincide with the geodesic spray of F0.
(Projective equivalence under a Randers change is discussed in [5] and [6].
The condition on b was originally found by Hashiguchi and Ichijyō [2].)

The necessary and sufficient conditions for a Randers space to be Dou-
glas or Berwald are simple corollaries of the results just obtained. Those
results apply of course to a Randers space, with F0 the Riemannian Finsler
function. If a Randers space is a Douglas space, so that its geodesic spray
is projectively equivalent to an affine spray, then the geodesics of the Ran-
ders space must be reversible, so b must be closed. If a Randers space is
Berwald, so that its geodesic spray is affine, its geodesics must be strictly
reversible, so β must be a first integral of the Riemannian geodesic flow.
In each case, the affine spray is the Riemannian geodesic spray.

Finally, I shall point out how an example of Shen’s [5] provides a
memorable illustration of a Randers space with non-reversible geodesics.
We start with the spray Γ on R2 given by

Γ = u
∂

∂x
+ v

∂

∂y
− α

(
v

∂

∂u
− u

∂

∂v

)
, α =

√
u2 + v2,

where now (x, y) are the base coordinates and (u, v) the fibre coordinates.
This spray is manifestly non-reversible. Its base integral curves are in fact
circles of constant radius 1, traversed in the anti-clockwise sense. To see
this, note first that Γ(u2+v2) = 0, which means that ẋ2+ ẏ2 is constant on
any base integral curve. For a point describing the circle with centre (a, b)
and radius 1, with constant speed α in the anti-clockwise sense, we have
(x−a)2 +(y−b)2 = 1; ẋ(x−a)+ ẏ(y−b) = 0; ẋ = −α(y−b), ẏ = α(x−a)
with α =

√
ẋ2 + ẏ2 constant – note that at x = a + 1, y = b we have

ẋ = 0, ẏ = α > 0 as is required for the motion to be anti-clockwise; and
finally ẍ = −αẏ, ÿ = αẋ, so the circle is indeed a base integral curve of Γ.
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Consider now the function

F (x, y, u, v) =
√

u2 + v2 + 1
2(yu − xv) = α + β.

I show that Γ is a geodesic spray of this function, by calculating the Euler–
Lagrange expressions, using the fact that (due to rotational symmetry)

(
v

∂

∂u
− u

∂

∂v

)
(α) = 0;

we easily find that

Γ
(

∂F

∂u

)
− ∂F

∂x
= Γ

(u

α
+ 1

2y
)

+ 1
2v = −v + 1

2v + 1
2v = 0

Γ
(

∂F

∂v

)
− ∂F

∂y
= Γ

( v

α
− 1

2x
)
− 1

2u = u − 1
2u − 1

2u = 0.

Now F is a Finsler function on the open disc x2 + y2 < 4; so we have here
an example of a Finsler function whose geodesics are unit circles – but
always traversed in the anti-clockwise sense.
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