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Randers spaces with reversible geodesics

By MIKE CRAMPIN (Gent)

Abstract. A Finsler space is said to have reversible geodesics if for every
one of its oriented geodesic paths, the same path traversed in the opposite sense is
also a geodesic. The conditions for a Randers space to have reversible geodesics
are obtained; this leads to a new simple proof of a well-known theorem giving
necessary and sufficient conditions for a Randers space to be Berwald.

A geodesic in a Finsler space (where the Finsler function is positively
homogeneous) should be thought of as an oriented path, that is, an imbed-
ded one-dimensional submanifold with a sense of direction, or an equiv-
alence class of curves determined up to reparametrization with positive
derivative. There is in general no reason why a path which coincides with
a geodesic as a point set but is traversed in the opposite direction should
be a geodesic. If a Finsler space has the property that all of its geodesics
remain geodesics when their orientation is reversed I shall say that the
space has reversible geodesics. If the space is such that when t +— z°(¢) is a
geodesic with constant Finslerian speed then t — z%(—t) is also a geodesic
with constant Finslerian speed then I shall say that the space has strictly
reversible geodesics.

A Riemannian space has strictly reversible geodesics; more generally,
so has a Finsler space whose Finsler function is absolutely homogeneous.
However, these examples do not by any means exhaust the possibilities for
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Finsler spaces with reversible geodesics. Consider a Randers space, with
Finsler function

F(z,y) = a+ 6= /aijyiyi + by’

where a,-jbibj < 1. The equation for its geodesics with constant Finslerian
speed is [1]
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where Fjik are the connection coefficients of the Levi—Civita connection of

the Riemannian metric a;;, and b;; are the components of the covariant

differential of b; with respect to tl‘lje same connection. It is clear that if
bjii = b;j; then the Finslerian geodesics are projectively equivalent to the
Riemannian ones, and so the Randers space is reversible, while if b;; = 0
the Finslerian geodesics are identical with the Riemannian ones, and the
Randers space is strictly reversible. It is useful to recall that a Finsler
space whose geodesics are projectively affine, as in the first case, is called
a Douglas space, while one whose geodesics with constant Finslerian speed
are affine, as in the second case, is called a Berwald space.

One aim of this note is to prove the converse to these results, namely
that if a Randers space has reversible geodesics then bj; = b;;, and if

it has strictly reversible geodesics then b;; = 0. These results generalize

in some small way the well-known theor|e]m that the vanishing of b;; is
the necessary and sufficient condition for a Randers space to be Berwald,
and enable one to view that result from a new perspective, as well as
providing a simple proof of it, different from the one in [3], that requires
practically no calculation (which cannot be said of the derivation of the
explicit geodesic spray coefficients of a Randers space quoted above).

I shall discuss the reversibility of geodesics in some generality. In fact
the definitions of reversibility, and the corresponding conditions, can be

formulated for any spray. Consider a spray
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where the f? are positively homogeneous of degree 2 in the y’. A curve
t — x'(t) is a base integral curve of the spray if and only if it satisfies the
equations &' = fi(x,4). The curve t — x'(—t) is a base integral curve,
up to reparametrization, if for some function (t), &' = fi(z, —) + pi’.
Thus the spray is reversible, in the sense that the paths defined by its base
integral curves remain so when their orientation is reversed, if and only if

fi(‘ra _y) = fz(xay) + )‘(‘ray)yl

for all ¢ # 0, for some function A, which must clearly be absolutely ho-
mogeneous of degree 1 in y’. The condition for the spray to be strictly
reversible, in the sense that for every base integral curve t — z%(t), the
curve t — z'(—t) is also a base integral curve (without reparametrization)
is that fi(z, —y) = fi(z,y).

We can express the condition for reversibility in a rather more elegant
form, as follows. Denote by p the ‘reflection map’ (z,y) — (x,—y), and
for any spray I' set I' = —p,I" (note the necessity of the minus sign: p,I" is
not a spray). Then

; O
F:y&xi

+ g
so it is natural to call ' the reverse of I'. Then T is reversible if and only
if it is projectively equivalent to its reverse, and strictly reversible if and
only if the two are equal.

The concept of reversibility is a projective one; that is to say, if a spray
is reversible so are all sprays projectively equivalent to it. In fact a spray
is reversible if and only if its projective equivalence class is invariant under
the map which takes a spray to its reverse.

Since we have to deal with projectively equivalent sprays, the follow-
ing simple observations about the geodesic sprays of Finsler spaces will
prove very useful. Let F' be a Finsler function — by assumption, posi-
tively homogeneous, and strongly convex, so that its fundamental tensor
gij is positive-definite, and in particular non-singular. The geodesics of
7

F are the solutions z'(t), y* = i’, of the Euler-Lagrange equation with

Lagrangian F',
d oF _ oF 0
dt \ 9yt oxt
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Because of the homogeneity of F' these equations do not determine the
curves t — z*(t) completely, but only up to sense-preserving reparametriza-
tion. This is a consequence of the fact that a vector (v') satisfies

. O*F

v =
oytoyd

if and only if v* = ky’ for some scalar k; the fact that this quantity vanishes
if v' = ky' is due to the assumed homogeneity of F, while the fact that
it vanishes only if v* = ky’ follows, via the non-singularity of gij, from
the assumption of strong convexity. These observations may be presented
in a different light. The Euler—Lagrange equation may be regarded as an
equation for geodesic sprays I', in the form

oF oF
T - — - = (.
<8y1> oai "

Assuming, as before, that F' is homogeneous and strongly convex we see
that two sprays I, I satisfy the equation if and only if I' = I' + AA where
A is the Liouville vector field, A = y'0/0y’, and A is homogeneous of
degree 1 in 4. That is to say, the geodesic sprays of F' form a projective
equivalence class of sprays, and a spray I' belongs to this class if and only
if it satisfies the Euler—Lagrange equation as written above.

The geodesic spray I' with constant Finslerian speed is singled out

from amongst all those satisifying the Euler-Lagrange equation by the
additional condition that I'(F) = 0. I shall speak of ‘a geodesic spray’
when I mean any spray of the projective class of solutions of the Fuler—
Lagrange equation for F', and ‘the geodesic spray’ when I mean the one
with constant Finslerian speed. With this choice, if T = I' + MA is a
geodesic spray of F', and therefore projectively equivalent to the geodesic
spray I', then
[(F) =T(F) + MA(F) = \F,

so we have an explicit expression for )\, namely

(Though it may not be immediately obvious, these results are essentially
equivalent to those given by SHEN in [5], Theorem 12.2.6. See also [6] for
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an intrinsic formulation of this and equivalent conditions, originally due
to RAPCSAK [4].)
It follows that a Finsler space has reversible geodesics if and only if

_ (OF OF
r - | — — =0,
oyt or?
where T is the reverse of a geodesic spray I'; it will be enough to check
reversibility when I' is the geodesic spray. The Finsler space has strictly

reversible geodesics if and only if I' = I', where T is the geodesic spray.

Now if F is any Finsler function, and F is defined by F(x,y) =
F(x,—y) then F is also a Finsler function; it is certainly positively homoge-
neous in y', and its fundamental tensor g;; is given by g;;(z,y) = gi;(z, —y)
(where g;; is the fundamental tensor of F), so g;j, like g;;, is everywhere
positive definite. The geodesic spray I' of F is just the reverse of the
geodesic spray of F.

We can now apply these observations to a Randers space, with

F=a+ 8=/ ajyiyl + by,

to show that the necessary and sufficient condition for the space to have
reversible geodesics is that by; = bjj;, and the necessary and sufficient
condition for the space to have strictly reversible geodesics is that b, = 0.
Of course, another way of saying that by|; = b, is that the 1-form b = b;dz’
is closed. Given that b is closed, another way of saying that b;; = 0 is
that the function 8 = b;y* is a first integral of the geodesic flow of the
Riemannian metric a;;. So we may equivalently say that the necessary and
sufficient condition for the Randers space to have reversible geodesics is
that b is closed, and the necessary and sufficient condition for its geodesics
to be strictly reversible is that b is closed and 3 = by’ is a first integral of
the Riemannian geodesic flow.

These results about reversibility of geodesics in a Randers space are
in fact particular cases (though probably the most interesting ones) of
more general, but similar, results concerning Randers changes. Let Fy be
a Finsler function, and b = b;dz® a 1-form on the base manifold such that

sup \biyi\ <1;
Fo(y)=1
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then F(z,y) = Fy(x,y)+b;(z)y’ is again a Finsler function, and the process
of transforming Fj to F is called a Randers change (see, for example, [5]
and [6]). Suppose that Fy is absolutely homogeneous; then the necessary
and sufficient condition for F' to have reversible geodesics is that b is closed,
and the necessary and sufficient condition for the geodesics to be strictly
reversible is that b is closed and 8 = b;y/’ is a first integral of the geodesic
flow of Fjy. I shall devote the rest of this note to proving these assertions.

The necessary and sufficient condition for F' to have reversible geode-

sics is that OF oF
r ] - — =0
<6y1> ox'

where T is the reverse of I', the geodesic spray of F; moreover, I' is the
geodesic spray of F. Now F = Fy+ 3 where Fj is absolutely homogeneous.
Then F = Fy — 3, so F = F + 23. Since

_/oF\  oF
I ) — . =
<8yz> o
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F<8y"> ~ Oaf 2<F <0yi> _038")
2 <f(bi) - %?ﬂ)

(o b
_2<8:cj 8xi>y'

It follows that if F' is obtained by a Randers change from an absolutely
homogeneous Finsler function then it is geodesically reversible if and only

we have

if the 1-form defining the Randers change is closed.
Notice that for any spray I,

p (2090 _ (i _9bi
oyt ot oxd  Ox*

So for the geodesic spray I'g of the ‘reference’ Finsler function Fj

L(OF\ _OF _ (08 98 _ (b _0b;\
Nayi) oz \oyi) ar \ow  02i)7
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from which it follows that b being closed is also the necessary and suffi-
cient condition for I'y to be projectively equivalent to I'; if b is closed we
have I' = Ty — AA with A = T'o(F)/F = To(8)/(Fo + ), and similarly
[ =Ty — pA with u = —T(8)/(Fy — 3). Thus given that b is closed,
the condition for F' to have strictly reversible geodesics, so that I' =T, is

that I'o(8)/(Fo + 8) = —T'o(8)/(Fo — B), or T'o(B) = 0; then I'=T=T".
In fact, when b is closed the geodesic sprays of both F' and F' are projec-
tively equivalent to the (strictly reversible) geodesic spray of Fy; and when
['o(B) = 0 the two geodesic sprays coincide with the geodesic spray of Fp.
(Projective equivalence under a Randers change is discussed in [5] and [6].
The condition on b was originally found by HAsHIGUCHI and ICHIIYO [2].)

The necessary and sufficient conditions for a Randers space to be Dou-
glas or Berwald are simple corollaries of the results just obtained. Those
results apply of course to a Randers space, with Fj the Riemannian Finsler
function. If a Randers space is a Douglas space, so that its geodesic spray
is projectively equivalent to an affine spray, then the geodesics of the Ran-
ders space must be reversible, so b must be closed. If a Randers space is
Berwald, so that its geodesic spray is affine, its geodesics must be strictly
reversible, so § must be a first integral of the Riemannian geodesic flow.
In each case, the affine spray is the Riemannian geodesic spray.

Finally, I shall point out how an example of SHEN’s [5] provides a
memorable illustration of a Randers space with non-reversible geodesics.
We start with the spray I on R? given by

P:ui—l—vi—a(vi—ug), a=\u?+v?

where now (z,y) are the base coordinates and (u,v) the fibre coordinates.
This spray is manifestly non-reversible. Its base integral curves are in fact
circles of constant radius 1, traversed in the anti-clockwise sense. To see
this, note first that I'(u?+v?) = 0, which means that #2+? is constant on
any base integral curve. For a point describing the circle with centre (a, b)
and radius 1, with constant speed « in the anti-clockwise sense, we have
(z—a)+(y—b)2 = L iz —a)+§(y—b) = 0; & = —a(y—b), § = az—a)
with o = /42 + 92 constant — note that at = a + 1, y = b we have
=0,y =a >0 as is required for the motion to be anti-clockwise; and

finally & = —aw, § = a, so the circle is indeed a base integral curve of I'.
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Consider now the function
F(ZL’,y,’LL,’U): U2+U2+%(yu—xv):a+ﬁ.

I show that I' is a geodesic spray of this function, by calculating the Euler—
Lagrange expressions, using the fact that (due to rotational symmetry)

0 0
<v% - u%> () = 0;
we easily find that

OF oF U

OF or v 1 1 1

Now F is a Finsler function on the open disc 22 + y? < 4; so we have here
an example of a Finsler function whose geodesics are unit circles — but
always traversed in the anti-clockwise sense.
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