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Inhomogeneous Cauchy exponential functional equations

By BRUCE EBANKS (Mississippi State)

Abstract. We show that equations of the form f(x)f(y)−f(x+y) = Γ(x, y),
termed here inhomogeneous Cauchy exponential functional equations, can be
solved quite easily. Furthermore, their solutions are almost always unique. Both
of these results contrast starkly with the situation for the inhomogeneous Cauchy
additive functional equation f(x) + f(y) − f(x + y) = Γ(x, y).

1. Introduction

We consider functional equations of the form

f(x)f(y)− f(x + y) = Γ(x, y), (1)

where Γ is a given function and f is an unknown function. Generally we
shall assume that the domain is a commutative semigroup S or group G

and the co-domain is a (commutative) field F . So (1) is supposed to hold
for all x, y ∈ S, where Γ : S × S → F and f : S → F . When Γ = 0,
equation (1) reduces to the Cauchy exponential functional equation, so we
may call (1) the inhomogeneous Cauchy exponential functional equation.

Equation (1) resembles the inhomogeneous Cauchy additive functional
equation

f(x) + f(y) − f(x + y) = Γ(x, y), (2)
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which has been studied by several authors [2], [4]. Necessary and sufficient
conditions on Γ for the existence of solutions are known [3]. On the other
hand it is rather difficult in general to get one’s hands on a solution.
Solutions of (2) can be constructed provided Γ satisfies certain growth
conditions as x → ∞ or as x → 0. Since such growth conditions are not
necessary for the existence of solutions, it may be said that no general
method of constructing solutions of (2) is known.

In contrast to this, we will show that it is easy to construct solutions of
(1). Although we do not have a satisfactory set of necessary and sufficient
conditions on Γ for the existence of such solutions, our method provides
very specific forms of solution candidates. Then one only needs to check
these candidates to determine whether they are solutions. If they are not,
then (1) has no solutions.

We also present a complete answer to the question of uniqueness of
solutions of (1). It is almost always the case that solutions of (1) are
unique, and the few exceptional cases are given explicitly.

Another way to think about this is as follows. If one starts with an
arbitrary specified function f0 and calculates the corresponding Γ through
(1) with a specified group operation in the domain, then it is almost always
the case that f = f0 is the unique solution of the functional equation so
generated. One might say that this functional equation is robust. More-
over, most of the (already few) exceptional non-unique cases for a given
group operation may be covered by changing to a different group or semi-
group operation in the domain. For example, we show how to characterize
any given nonconstant real function as the unique solution of a functional
equation of the form (1).

2. Existence results

First we observe that the left side of (1) is symmetric in x and y.

Remark 1. A necessary condition for the existence of solutions of (1)
is that Γ must be a symmetric function.

If Γ = 0, then the solutions of (1) are the Cauchy exponentials, which
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are the functions E : S → F satisfying the Cauchy exponential equation

E(x)E(y) = E(x + y). (3)

Henceforth let us assume Γ �= 0.
If 0 is in the domain of (1), then one simple attempt to solve (1) would

be to set y = 0, resulting in f(x)[f(0)− 1] = Γ(x, 0). If f(0)− 1 �= 0, then
f(x) = aΓ(x, 0) for some constant a. The serious drawback of this method
is that it will never produce any of the solutions for which f(0) = 1. (As we
will see, such solutions exist frequently.) A better method is the following.

Since Γ �= 0, there exists some pair (x0, y0) for which Γ(x0, y0) �= 0.
From (1) we get

Γ(x, y)f(z) + Γ(x + y, z)

= [f(x)f(y) − f(x + y)]f(z) + [f(x + y)f(z) − f(x + y + z)]

= f(x)f(y)f(z) − f(x + y + z)

= f(x)[f(y)f(z) − f(y + z)] + [f(x)f(y + z) − f(x + y + z)]

= f(x)Γ(y, z) + Γ(x, y + z).

Putting (x, y) = (x0, y0), we find that

f(z) = Γ(x0, y0)−1{f(x0)Γ(y0, z) + Γ(x0, y0 + z) − Γ(x0 + y0, z)}.
Replacing f(x0) by an arbitrary constant, we have proved the following.

Theorem 2. Suppose S is a semigroup, F is a field, and Γ : S×S → F .

If Γ = 0, then every solution f : S → F of (1) is a (3) Cauchy exponential.

Otherwise there exist x0, y0 ∈ S such that Γ(x0, y0) �= 0 and every solution

of (1) is of the form

f(z) = Γ(x0, y0)−1{aΓ(y0, z) + Γ(x0, y0 + z) − Γ(x0 + y0, z)} (4)

for some constant a ∈ F .

Example 3. Let S = F = R (the real numbers), and let

Γ(x, y) = b sin(x + y) + c sin x sin y

for some constants b, c not both zero. Then (1) takes the form

f(x)f(y) − f(x + y) = b sin(x + y) + c sin x sin y. (5)
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If b = 0, then Γ(π/2, π/2) = c �= 0. Choosing x0 = y0 = π/2 in (4),
we get

f(z) = c−1{a(c sin z) + c cos z − 0} = a sin z + cos z

for some constant a. Inserting this form for f back into (5) and simplifying,
we find that

(a2 + 1) sin x sin y = c sin x sin y

must hold for all x, y in R. So we must have c ≥ 1 and
f(x) = ±√

c − 1 sinx + cos x.
On the other hand, if b �= 0, then Γ(0, π/2) = b �= 0, so we choose

x0 = 0, y0 = π/2 in (4) and get

f(z) = a cos z + d sin z,

where d = b−1(a− 1)c. Substituting this back into (5) with y = 0, we find
that

(a cos x + d sin x)(a − 1) = b sin x

for all real x. Thus a(a−1) = 0. Moreover, for x = π/2 we have d(a−1)= b.
So a − 1 cannot be zero since b �= 0. Hence a = 0, d = −b, and

f(x) = −b sinx.

Checking this in (5), we see that c = b2 is necessary.
In conclusion: (5) with (b, c) �= (0, 0) has solutions if and only if either

b = 0 and c ≥ 1, or c = b2 �= 0. In the former case f(x) = ±√
c − 1 sinx +

cos x, while in the latter case f(x) = −b sinx.

The example illustrates that equation (1) admits non-unique solutions
for certain functions Γ but not for others. In the next section we show
that there are very few forms of Γ that admit non-unique solutions, and
we exhibit all such functional forms.

3. Uniqueness results

Suppose we can find a particular solution f = f0 of the inhomogeneous
Cauchy exponential functional equation (1). Under what conditions is this
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the unique solution to the equation? We shall see that it is almost always
the case that f0 is the only solution.

Lemma 4. Let S be a set closed under the binary operation +, let

R be a ring in which 2−1exists and commutes with every element of R,

and let Γ : S × S → R. Suppose (1) has at least one solution f0, and let

f : S → R be an arbitrary solution of (1). Then the maps g, h : S → R

defined by

g(x) := f(x) − f0(x), h(x) := 2−1[f(x) + f0(x)] (6)

satisfy the functional equation

g(x + y) = g(x)h(y) + h(x)g(y) (7)

for all x, y in S.

Proof. Since both f0 and f satisfy (1) with the same Γ, we have

f0(x)f0(y) − f0(x + y) = f(x)f(y) − f(x + y),

which by rearrangement gives

f(x + y) − f0(x + y) = f(x)f(y) − f0(x)f0(y).

Defining maps g, h by (6) and using our hypotheses about R, we compute
that

g(x)h(y) + h(x)g(y)

= [f(x) − f0(x)]2−1[f(y) + f0(y)] + 2−1[f(x) + f0(x)][f(y) − f0(y)]

= 2−1{2f(x)f(y) − 2f0(x)f0(y)}
= f(x + y) − f0(x + y)

= g(x + y). �

Note that equation (6) shows that the uniqueness question for solutions
of (1) reduces to the question of whether g = 0. Next we record here a
well-known result (see for example [1], p. 212) concerning solutions of (7)
on groups.
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Proposition 5. Let G be a group and F a quadratically closed (com-

mutative) field with characteristic different from 2. The general solutions

g, h : G → F of (7) are given by

g = 0, h arbitrary; (8)

or

g(x) = (2k)−1[E1(x) − E2(x)], h(x) = 2−1[E1(x) + E2(x)]; (9)

or

g(x) = A(x)E1(x), h(x) = E1(x); (10)

where k is an arbitrary element of F\{0}; E1, E2 : G → F are arbitrary

solutions of (3); and A : G → F is an arbitrary solution of Cauchy’s

additive functional equation

A(x + y) = A(x) + A(y) (11)

for all x, y in G.

Combining the previous lemma and proposition, we see that solutions
of (1) are unique unless g, h have the forms given in (9) or (10). The next
theorem provides the details of those exceptional cases.

Theorem 6. Let G be a group and F a quadratically closed (commu-

tative) field with characteristic different from 2. Suppose Γ : G×G → F is

not the zero function, and suppose (1) has at least one solution f0 : G → F .

Then f0 is the unique solution of (1) among all maps f : G → F unless

Γ has one of two functional forms given below. In each of these two ex-

ceptional cases there are exactly two solutions f1 and f0 of (1). The two

exceptional forms of Γ, together with their corresponding f1 and f0, are

as follows.

Γ(x, y) = (b2 − 4−1)[E1(x) − E2(x)][E1(y) − E2(y)],

f1(x) = (2−1 + b)E1(x) + (2−1 − b)E2(x), (12)

f0(x) = (2−1 − b)E1(x) + (2−1 + b)E2(x);

or

Γ(x, y) = A(x)A(y)E(x + y), (13)
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f1(x) = [1 − A(x)]E(x),

f0(x) = [1 + A(x)]E(x); (14)

where b is an arbitrary constant in F\{0,±2−1}; maps E,E1, E2 : G → F

are Cauchy exponentials with E �= 0, E1 �= E2 but otherwise arbitrary;

and A : G → F is an arbitrary nonzero (11) additive function.

Proof. Let f : S → F be an arbitrary solution of (1). By the pre-
ceding lemma and proposition, we know that g, h defined by (6) are given
by one of the three forms (8), (9), or (10 ). In the first case, we have g = 0
and f0 is the unique solution of ( 1). Now let us consider the second and
third cases. Note that we can solve (6) for f and f0, obtaining

f(x) = h(x) + 2−1g(x), f0(x) = h(x) − 2−1g(x).

In the case g, h are given by (9) we have

f(x) = [2−1 + (4k)−1]E1(x) + [2−1 − (4k)−1]E2(x),

f0(x) = [2−1 − (4k)−1]E1(x) + [2−1 + (4k)−1]E2(x).

Letting b = (4k)−1, this is (12). The corresponding value of Γ can be
computed by substituting the form of f (or f0) into (1). Finally, in case
g, h are given by (10) we have

f(x) = [1 + 2−1A1(x)]E1(x), f0(x) = [1 − 2−1A1(x)]E1(x)

for some additive function A1 : G → F . Defining A := 2−1A1, E := E1,
and again computing Γ by substituting the form of f into (1), we arrive
at solution (13). This completes the proof. �

Note that (12) can be extended to contain the solution Γ = 0, f1(x) =
E1(x), f0(x) = E2(x), by permitting b = ±2−1. However in this case we
cannot conclude that there are exactly two solutions. Since E1 and E2 are
arbitrary Cauchy exponentials, there are infinitely many solutions in this
case.

This theorem explains the duplicity of solutions of (5) seen in Exam-
ple 3. There the function Γ has the form

Γ(x, y) = c sin x sin y
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for c ≥ 1. In order to obtain this function, take F = C, E1(x) = eix,
E2(x) = e−ix, and b = ± i

2

√
c − 1 in (12).

We also illustrate how one can obtain the real solutions of (1) from the
complex solutions. But in order to do that, we need the following lemma.

Lemma 7. Suppose a : R → R is an (11) additive function, θ1, θ2 :
R → R are arbitrary solutions of the congruence

θ(x + y) ≡ θ(x) + θ(y) (mod 2π), (15)

and

exp a(x) sin θ1(x) + sin θ2(x) = 0, (16)

for all x in R. Then either

θ1(x) ≡ θ2(x) ≡ 0 (mod 2π)

for all x, or

a(x) = 0 and θ1(x) ≡ −θ2(x) (mod 2π)

for all x.

Proof. First we show that if θ satisfies (15) and sin θ(x) = 0 for all x,
then θ(x) ≡ 0 (mod 2π). Indeed, sin θ(x) = 0 yields immediately θ(x) ≡ 0
(mod π). But then θ(2x) ≡ 2θ(x) ≡ 0 (mod 2π). Since R is divisible by 2,
we have θ(u) ≡ 0 (mod 2π).

If a(x) = 0, then (16) shows that

sin θ1(x) = − sin θ2(x) (17)

for all x. This shows that for each x, either

θ1(x) ≡ −θ2(x) (mod 2π) or θ1(x) ≡ θ2(x) + π (mod 2π). (18)

Replacing x by 2x in (17) and using (15) with a double angle identity, we
get sin θ1(x) cos θ1(x) = − sin θ2(x) cos θ2(x). Therefore

sin θ1(x)[cos θ1(x) − cos θ2(x)] = 0.

If sin θ1(x) = 0 for all x, then as shown above θ1(x) ≡ 0 (mod 2π). Sim-
ilarly θ2(x) ≡ 0 (mod 2π), so we have θ1(x) ≡ 0 ≡ −θ2(x) (mod 2π).
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If on the other hand sin θ1(x1) = 0 for some x1, then we have cos θ1(x1) =
cos θ2(x1) and so either θ1(x1) ≡ −θ2(x1) (mod 2π) or θ1(x1) ≡ θ2(x1)
(mod 2π). Combining this alternative with (18), we have θ1(x1) ≡ −θ2(x1)
(mod 2π).

Now suppose there exists a real number x0 for which a(x0) �= 0. Ob-
serve that (15) implies θ(0) ≡ 0 (mod 2π) and θ(−x) ≡ −θ(x) (mod 2π).
Similarly, a(−x) ≡ −a(x). Hence replacing x by −x in (16) and comparing
the result with (16), we find that exp a(x) sin θ1(x) = exp[−a(x)] sin θ1(x),
or

sinh a(x) sin θ1(x) = 0 (19)

for all real x. Replacing x by x + y, expanding, and reducing by (19), we
get

sinha(x) cosh a(y) cos θ1(x) sin θ1(y)

+ cosh a(x) sinh a(y) sin θ1(x) cos θ1(y) = 0

for all x, y. Putting x = x0 here, we deduce that

cosh a(y) cos θ1(x0) sin θ1(y) = 0, (20)

since sinha(x0) �= 0 by hypothesis and thus sin θ1(x0) = 0 by (19). But
then cos θ1(x0) �= 0 and (20) reduces to

sin θ1(y) = 0,

for all real y. Hence θ1(y) ≡ 0 (mod 2π) for all y, and now (16) yields also
θ2(x) ≡ 0 (mod 2π) for all x. �

Now we are ready to find the real solutions of (1).

Theorem 8. Let G be the additive group of the reals, and let F = R.

Suppose (1) has at least one solution f0 : R → R for some given Γ :
R × R → R that is not the zero function. Then f0 is the unique solution

of (1) among all functions f : R → R, unless Γ has one of four functional

forms. In each of these exceptional cases there are exactly two solutions f1

and f0 of (1). The exceptional (nonzero) forms of Γ, together with their

corresponding f1 and f0, are as follows.

Γ(x, y) =
1
4
(c2 − 1) exp A1(x + y),
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f1(x) =
1
2
(1 − c) exp A1(x), (21)

f0(x) =
1
2
(1 + c) exp A1(x);

or

Γ(x, y) =
1
4
(c2 − 1)[exp A1(x) − exp A3(x)][exp A1(y) − exp A3(y)],

f1(x) =
1
2
(1 + c) exp A1(x) +

1
2
(1 − c) exp A3(x),

f0(x) =
1
2
(1 − c) exp A1(x) +

1
2
(1 + c) exp A3(x);

(22)

or
Γ(x, y) = (d2 + 1) exp A1(x + y) sin θ(x) sin θ(y),

f1(x) = exp A1(x)[cos θ(x) + d sin θ(x)],

f0(x) = exp A1(x)[cos θ(x) − d sin θ(x)];

(23)

or
Γ(x, y) = A2(x)A2(y) exp A1(x + y),

f1(x) = [1 − A2(x)] exp A1(x),

f0(x) = [1 + A2(x)] exp A1(x).

(24)

Here c is an arbitrary constant in R\{0,±1}; d is an arbitrary constant in

R\{0}; A1, A2, A3 : R → R are arbitrary additive functions with A2 �= 0,
A3 �= A1; and θ : R → R is an arbitrary (not congruent to zero) solution

of the congruence (15).

Proof. Since R is a subfield of C, we may apply the previous theorem
with f, f0 : R → C and Γ : R × R → C. The conclusion is that f0 is the
unique solution unless Γ and f0 are of the forms given in (12) or (13), with
A,E1, E2 : R → C. Let us consider first (12). Now we require that f0 and
f1 take real values. That is, we must have

f1(x) = (1/2 + b)E1(x) + (1/2 − b)E2(x) ∈ R,

f0(x) = (1/2 − b)E1(x) + (1/2 + b)E2(x) ∈ R,
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for all x in R. Taking the sum and difference of these equations, we find
that

E1(x) + E2(x) ∈ R, b[E1(x) − E2(x)] ∈ R, (25)

for all x in R. The general forms of Cauchy exponentials E : R → C are
given by (see [1], p. 54)

E = 0 and E(x) = exp[a(x) + iθ(x)],

where a : R → R is additive and θ : R → R is an arbitrary solution of the
congruence (15). Since Γ �= 0, we cannot have E1 = E2 = 0. We consider
two cases.

First, suppose one of E1 or E2 is zero. Without loss of generality, let
us say E2 = 0. Then E1(x) = exp[a(x) + iθ(x)] and because of (25) we
have E1(x) ∈ R, bE1(x) ∈ R. Hence b is real, and (since b �= 0)

E1(x) = exp a(x)[cos θ(x) + i sin θ(x)] ∈ R,

for all x in R. As we saw in the proof of the previous lemma, sin θ(x) = 0
for θ satisfying (15) means θ(x) ≡ 0 (mod 2π) for all x. Therefore E1 has
the form

E1(x) = exp a(x),

and this case leads to solution (21) with c := 2b and A1 := a.
Next, suppose that neither E1 nor E2 is zero. That is we have

E1(x) = exp[a1(x) + iθ1(x)], E2(x) = exp[a2(x) + iθ2(x)],

with a1, a2 additive and θ1, θ2 “additive modulo 2π”. Because of (25) we
must have

ea1(x)[cos θ1(x) + i sin θ1(x)] + ea2(x)[cos θ2(x) + i sin θ2(x)] ∈ R,

b
{
ea1(x)[cos θ1(x) + i sin θ1(x)] − ea2(x)[cos θ2(x) + i sin θ2(x)]

} ∈ R,
(26)

for all real x. Note that the first of these two inclusions implies

ea1(x) sin θ1(x) + ea2(x) sin θ2(x) = 0,

or
ea1(x)−a2(x) sin θ1(x) + sin θ2(x) = 0.
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Since a1−a2 is additive whenever a1, a2 are, we conclude from the previous
lemma that either

θ1(x) ≡ θ2(x) ≡ 0 (mod 2π)

for all x, or

a1(x) = a2(x) and θ1(x) ≡ −θ2(x) (mod 2π) (27)

for all x. In case of the former equation, we deduce from (26) that b is
real. Now (12) reduces to

Γ(x, y) = (b2 − 1/4)[ea1(x) − ea2(x)][ea1(y) − ea2(y)],

f1(x) = (1/2 + b)ea1(x) + (1/2 − b)ea2(x),

f0(x) = (1/2 − b)ea1(x) + (1/2 + b)ea2(x).

Defining c := 2b, A1 := a1, and A3 := a2, we have solution (22). Note that
A3 �= A1 since Γ �= 0.

On the other hand, in case (27) holds, then it follows from (26) that b

is purely imaginary, say

b = (d/2)i, d ∈ R\{0}.
In this case (12) takes the form of (23), where we define A1 := a1, θ := θ2.

Finally, we come to the exceptional case (13). Since f0 and f1 must
take real values, we have

f1(x) + f0(x) = E(x) ∈ R,

f1(x) − f0(x) = A(x)E(x) ∈ R,

so both A and E are real-valued. (Note: A must be real-valued because
E �= 0.) With A2 := A, E := exp A1, we have (24), and the proof is
complete. �

Note that (23) of the theorem contains the duplicitous solutions seen
in Example 3.

The theorem above shows that almost every function f0 : R → R is
characterized by its Cauchy exponential difference f0(x)f0(y)−f0(x+y).
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The only functions not characterized uniquely in this way are those from
the short list in the theorem and the Cauchy exponential functions them-
selves, for which the difference is zero.

4. Extensions

It may be possible to obtain unique characterizations of the “excep-
tional” functions listed in the foregoing results by changing to a different
group or semigroup operation in the domain. We start this section by
illustrating how this can be done for real functions.

The functions f0 : R → R that are not uniquely characterized in
Theorem 8 are

f0(x) = E(x),

f0(x) =
1
2
(1 + c) exp A1(x),

f0(x) =
1
2
(1 − c) exp A1(x) +

1
2
(1 + c) exp A3(x),

f0(x) = exp A1(x)[cos θ(x) − d sin θ(x)],

f0(x) = [1 + A2(x)] exp A1(x);

where E : R → R is an arbitrary Cauchy exponential; c is an arbitrary
constant in R\{0,±1}; d is an arbitrary constant in R\{0}; A1, A2, A3 :
R → R are arbitrary additive functions with A2 �= 0, A3 �= A1; and
θ : R → R is an arbitrary (not congruent to zero) solution of the congruence
(15). The first in the list arises from Γ = 0. We show how each of these
listed functions except the constant ones can be characterized.

In order to set up our next theorem, we first establish the following.

Lemma 9. Let f0 : R → R be any nonconstant function that is not

uniquely characterized in Theorem 8. Specifically, f0 takes one of the forms

f0(x) = E(x), (28)

f0(x) = k exp A2(x), (29)
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f0(x) = (1 − k) exp A1(x) + k exp A3(x), (30)

f0(x) = exp A1(x)[cos θ(x) − d sin θ(x)], (31)

f0(x) = [1 + A2(x)] exp A1(x), (32)

where E is a Cauchy exponential with E �= 0, E �= 1; where A1, A2, A3

are additive functions with A2 �= 0, A1 �= A3; where k, d are real constants

with k /∈ {0, 1/2, 1}, d �= 0; and where θ is any (not congruent to 0) solution

of (15). Then f0(0) �= 0 and f0 �= 1.

Proof. In case f0 is given by (28), we only have to prove that E(0)�=0.
But if E(0) = 0, then E = 0 (just put y = 0 in (3)), which is excluded.

If f0 is given by (29), then f0(0) = k �= 0, and f0 �= 1 since the only
constant additive function is the zero function but A2 �= 0.

In case of (30), (31), or (32), it is clear that f0(0) = 1. It only remains
to be shown that f0 �= 1 in each of these three cases. In the first case,
f0 = 1 only if

(1 − k) exp A1(x) + k exp A3(x) = 1 (33)

for all x. Substituting x + y for x and expanding, we get

(1 − k) exp A1(x) exp A1(y) + k exp A3(x) exp A3(y) = 1.

By (33) this can be re-written as

k exp A3(x)[exp A3(y) − exp A1(y)] = 1 − exp A1(y).

Since A1 �= A3, there exists a real number y0 for which A1(y0) �= A3(y0).
Thus we have

k exp A3(x) =
1 − exp A1(y0)

exp A3(y0) − exp A1(y0)

which means (since k �= 0) that A3 is constant. So A3 = 0 and (33) reduces
to

(1 − k) exp A1(x) = 1 − k.

But this is impossible because k �= 1 and A1 �= A3 = 0.
In case of (31), f0 = 1 only if

exp A1(x)[cos θ(x) − d sin θ(x)] = 1 (34)
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for all x. Replacing x by −x and adding the result to (34), we find that

2 cos θ(x) = 2 cosh A1(x).

This is impossible since θ is not congruent to zero modulo 2π.
Finally we come to (32). In this case, f0 = 1 only if

1 + A2(x) = exp(−A1(x)) (35)

for all x. Again, replacing x by −x and adding the result to (35), we find
that

2 = 2 cosh A1(x).

Hence A1 = 0. But now (35) is impossible, since A2 �= 0. This completes
the proof of the lemma. �

The preparations are in place for our next theorem, in which the group
operation of addition on R is replaced by the semigroup operation of mul-
tiplication in the domain.

Theorem 10. Let f0 : R → R be any nonconstant function that is

not uniquely characterized in Theorem 8. That is, f0 takes one of the five

forms listed in the preceding lemma. Then f = f0 is the unique solution

of the functional equation

f(x)f(y) − f(xy) = Γ(x, y), (36)

where Γ is generated by

Γ(x, y) = f0(x)f0(y) − f0(xy). (37)

Proof. Comparing (36) and (37) with y = 0, we see that

[f(x) − 1]f(0) = [f0(x) − 1]f0(0)

for all real x. By the lemma we have f0(0) �= 0 and f0 �= 1. Thus f(0) �= 0
and

f(x) = λf0(x) + 1 − λ (38)

for some constant λ. Our goal is to prove that λ = 1, and therefore f = f0.
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Suppose to the contrary that λ �= 1. Substituting (38) and (37) into
(36), we obtain

[λf0(x) + 1− λ][λf0(y) + 1− λ]− [λf0(xy) + 1− λ] = f0(x)f0(y)− f0(xy),

which can be transformed into

(λ2 − 1)f0(x)f0(y)+λ(1−λ)[f0(x)+ f0(y)]+ (1−λ)f0(xy)−λ(1−λ) = 0.

Then division by (1 − λ) yields

−(λ + 1)f0(x)f0(y) + λ[f0(x) + f0(y)] + f0(xy) − λ = 0. (39)

We consider two cases.
In case f0 is given by (28), (30), (31), or (32), we have f0(0) = 1. This

is clear for (30), (31), or (32). For (28), it follows from (3) by putting
x = y = 0 and using E �= 0. Therefore in this case (39) with y = 0
reduces to

−f0(x) + 1 = 0

which contradicts f0 �= 1.
In case f0 is given by (29), equation (39) takes the form

−(λ + 1)k2 exp A2(x + y) + λk[exp A2(x)

+ expA2(y)] + k exp A2(xy) − λ = 0,
(40)

with A2 �= 0, k /∈ {0, 1/2, 1}. Putting y = 0 here we find that

[λ − (λ + 1)k][k exp A2(x) − 1] = 0.

Because A2 �= 0 it follows that

λ =
k

1 − k
.

Now after some manipulations (40) reduces to

k exp A2(x + y) − k[exp A2(x) + exp A2(y)] + (k − 1) exp A2(xy) + 1 = 0.

That is, defining h : R → R by

h(x) := exp A2(x) − 1,
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we have
k

1 − k
h(x)h(y) = h(xy) (41)

for all x, y in R. With y = 1 we deduce that

h(x)
[

k

1 − k
h(1) − 1

]
= 0.

Since h �= 0 (because A2 �= 0) we see that h(1) = (1 − k)/k. Then
x = y = −1 in (41) yields

h(−1) = ±h(1) = ±1 − k

k
. (42)

Next, y = −1 in (41) gives

k

1 − k
h(x)h(−1) = h(−x),

so, combining this with (42), we see that h is either even or odd. If h

is even, then from its definition we get A2 = 0, which is prohibited. On
the other hand if h is odd, then by definition we find that cosh A2(x) = 1
which again contradicts A2 �= 0. Since there are no other cases, we have
shown that λ �= 1 cannot hold.

Therefore λ = 1, f = f0, and the proof is finished. �

Here it should be emphasized that, although our uniqueness theorem
requires the domain to be a group and the co-domain to be a quadratically
closed field, for our existence theorem we need only that the domain is a
semigroup and the co-domain is a field.

To illustrate another way that Theorem 8 can be extended, we con-
clude with the following.

Theorem 11. Let G be the multiplicative group of R+ (the positive

reals), and let F = R. Suppose (36) has at least one solution f0 : R+ → R

for some given Γ : R+ × R+ → R that is not the zero function. Then f0 is

the unique solution of (36) among all functions f : R+ → R, unless Γ has

one of the forms listed below. In each of these exceptional cases there are

exactly two solutions f1 and f0 of (36). The exceptional (nonzero) forms

of Γ, together with their corresponding f1 and f0, are as follows.

Γ(x, y) =
1
4
(c2 − 1) exp A1(log xy),
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f1(x) =
1
2
(1 − c) exp A1(log x),

f0(x) =
1
2
(1 + c) exp A1(log x);

or

Γ(x, y) =
1
4
(c2 − 1)[exp A1(x) − exp A3(x)][exp A1(y) − exp A3(y)],

f1(x) =
1
2
(1 + c) exp A1(log x) +

1
2
(1 − c) exp A3(log x),

f0(x) =
1
2
(1 − c) exp A1(log x) +

1
2
(1 + c) exp A3(log x);

or

Γ(x, y) = (d2 + 1) exp A1(log xy) sin θ(log x) sin θ(log y),

f1(x) = exp A1(log x)[cos θ(log x) + d sin θ(log x)],

f0(x) = exp A1(log x)[cos θ(log x) − d sin θ(log x)];

or

Γ(x, y) = A2(log x)A2(log y) exp A1(log xy),

f1(x) = [1 − A2(log x)] exp A1(log x),

f0(x) = [1 + A2(log x)] exp A1(log x).

Here c is an arbitrary constant in R\{0,±1}; d is an arbitrary constant in

R\{0}; A1, A2, A2 : R → R are arbitrary additive functions with A2 �= 0,
A3 �= A1; and θ : R → R is an arbitrary (not congruent to zero) solution

of the congruence (15).

Proof. Equation (36)

f(x)f(y) − f(xy) = Γ(x, y)

for x, y in R+ can be transformed immediately into equation (1)

f̃(u)f̃(v) − f̃(u + v) = Γ̃(u, v)
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for u, v in R by setting x = eu, y = ev, and defining f̃ : R → R, Γ̃ :
R × R → R by

f̃(u) := f(eu), Γ̃(u, v) := Γ(eu, ev).

Now we may apply the results of Theorem 8. �

Note that the same method can be used to treat the functional equa-
tion

f(x)f(y) − f(φ−1[φ(x) + φ(y)]) = Γ(x, y)

for x, y in some set I, where φ : I → R is a bijection of I onto R. Just
define

f̃ := f ◦ φ−1, Γ̃(u, v) := Γ(φ−1(u), φ−1(v))

and apply the theorem to f̃ , Γ̃.
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