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Minimality and harmonicity for vector fields
on the frame bundle

By XIAO RONG ZOU (Nanjing) and YAO WEN LI (Nanjing)

Abstract. We introduce a natural metric on the frame bundle of a Rie-
mannian manifold and show that the canonical vector fields on the frame bundle
are geodesic. For a constant curved space, we show that the canonical vector
fields are both minimal and harmonic and determine harmonic maps.

1. Introduction

Let (M,g) be an n-dimensional Riemannian manifold and (T1M,gS)
be its unit tangent bundle equipped with the corresponding Sasaki metric
gS . Furthermore, let �1(M) denote the set of smooth unit vector fields
on M which is supposed to be non-empty. A unit vector field V ∈ �1(M)
determines a mapping between M and T1M embedding M into T1M , and
the mapping is also denoted by V . If M is compact and orientable, the
consideration of unit vector fields leads to the introduction of two function-
als on �1(M): the energy of V which is the energy of the corresponding
map (see [EeSa64]) and the volume of V which is the volume of the im-
mersion. A unit vector field V is said to be harmonic if it is critical for
the energy functional and it is said to be minimal if it is critical for the
volume functional. A minimal unit vector field corresponds to a minimal
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submanifold V (M), but a harmonic unit vector fields does not necessar-
ily yield a harmonic map. We refer to [Wi95] and [Gi01] for a general
treatment of this and related problems. The harmonicity and minimality
of a unit vector field and the harmonicity of its corresponding map have
been considered in [BoVa00]–[BoVa01], and [GiLi01]–[Wo00] where a lot
of examples are provided.

The main purpose of this paper is to consider another natural class
of manifolds equipped with nonvanishing vector fields. let F (M) be the
orthonormal frame bundle of M

F (M) = {(p; v1, v2, . . . vn) : p ∈ M, vi ∈ Mp, 〈vi, vj〉 = δij}.
It is known that the tangent bundle of F (M) is trivial and there exist
globally defined vector fields {Ei, Ekl, 1 ≤ i ≤ n, 1 ≤ k < l ≤ n} that
form a basis of the tangent space everywhere. These vector fields are
called canonical vector fields. In this paper, we propose to investigate
the properties of these canonical vector fields. Endowed with the natural
metric on F (M) to make these canonical vector fields orthonormal, we first
establish explicitly the expression of the Levi–Civita connection under the
canonical vector fields (see Proposition 4.2), which directly implies

Theorem 1.1. Let M be an n-dimensional Riemannian manifold and

F (M) be the orthogonal frame bundle of M endowed with the natural

metric such that the canonical vector fields {Ei, Ekl, 1 ≤ i ≤ n, 1 ≤ k <

l ≤ n} are orthonormal. Then they are geodesic, i.e. the integral curves of

them are geodesics.

Naturally, one may consider the questions whether the canonical vec-
tor fields are harmonical and minimal and whether the induced maps are
harmonic. The answers turn out to be positive when M is of constant
curvature:

Theorem 1.2. Let M be compact constantly curved Riemannian

manifold and F (M) be the frame bundle endowed with the natural metric

such that the canonical vector fields are orthonormal, then the canonical

vector fields are minimal and harmonic, and they induce harmonic maps

between F (M) and T1(F (M)).

Since there exist plenty of constant curved compact Riemannian man-
ifolds, especially hyperbolic manifolds, Theorem 1.2 gives another class of
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Riemannian manifolds that admit minimal and harmonic unit vector fields
whose induced maps are harmonic.

2. Preliminaries

In this section we briefly recall some basic facts about minimal and
harmonic vector fields. See [GoVa02] and the references there for details.

Let (M,g) be an n-dimensional smooth Riemannian manifold, ∇ its
Levi–Civita connection and R the Riemannian curvature. Furthermore,
let �1(M) denote the set of all smooth unit vector fields on M which we
suppose to be non-empty. A unit vector field V can be regarded as an
immersion of M into its unit tangent sphere bundle (T1M,gS), where gS

denotes the Sasaki metric. Then the induced metric V ∗gS is given by

(V ∗gS)(Y,Z) = g(Y,Z) + g(∇Y V,∇ZV ).

We define two tensor fields of type (1, 1), AV and LV , by

AV = −∇V, LV = I + At
V AV ,

and a function f by f(V ) =
√

det LV . Then, for a closed oriented mani-
fold M , the energy E(V ) and the volume Vol(V ) of V are defined by

E(V ) =
1
2

∫
M

Tr LV dv =
1
2
m Vol(M) +

1
2

∫
M

|∇V |2dv,

Vol(V ) =
∫

M
f(V )dv,

where dv denotes the volume form on M . Note that E(V ) is, up to con-
stants, equal to the quantity

∫
M |∇V |2dv, known as the total bending of

V [Wi95].
The critical point conditions for the functionals E and Vol on �1(M)

have been established. To state these conditions, we introduce some tensor
fields. The one-forms µV and µ̄V associated to the unit vector field V are
defined by

µV (X) = Tr(Z → (∇ZAt
V )X),

µ̃V (X) = Tr(Z → R(AV Z, V )X).
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Let {Ei, 1 ≤ i ≤ n} be any local orthonormal frame field and define vector
field 	V by

	V :=
∑
Ei

∇Ei∇EiV −∇�Ei
Ei

V.

Then V is a critical point for the energy functional E if and only if µX

vanishes on V ⊥ or equivalently 	V vanishes on V ⊥. Here V ⊥ denotes the
distribution determined by tangent vectors orthogonal to V . A unit vector
field X on M is said to be a harmonic vector field if it is such a critical
point for the energy functional E. A harmonic field V does not always
give rise to a harmonic map of M into T1M . As was shown in [Gi01], V

determines a harmonic map if and only if V is harmonic and moreover, µ̃V

vanishes on the whole tangent bundle TM .
Next, we define a tensor field KV and a one-form ωV , associated

to V , by

KV = −f(V )L−1
V At

V ,

ωV (X) = Tr(Z → (∇ZKV )X).

Then V is a critical point for the volume functional Vol if and only if ωV

vanishes on V ⊥. A field V is minimal if and only if the submanifold V (M)
is a minimal submanifold of (T1M,gS).

3. Canonical vector fields on the frame bundle

In this section, we collect some known facts about the frame bundle
for the reader’s convenience. See [ChCh78] for reference.

Let M be an n-dimensional Riemannian manifold, and let ∇ be the
Riemannian connection over its tangent bundle. Let e = (e1, e2, . . . en) be a
local orthonormal frame field and ω := (ω1, ω2, . . . ωn)T be the dual frame
field of e. We shall make use of the following conventions about indices:
1 ≤ i, j, k, · · · ≤ n, and shall agree that repeated indices are summed over
their range. Under the local orthonormal frame field e, the connection
∇ can be expressed as ∇e = eωc, where ωc = (ωi

j) is the connection
matrix. If ẽ = (ẽ1, ẽ2, · · · ẽn) is another local orthonormal frame field
with its dual frame field ω̃ = (ω̃1, ω̃2, · · · ω̃n)T , and the transformation
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between them is given by ẽ = eA, ω̃ = Bω, where B = A−1. Then w̃c =
A−1dA + A−1ωcA. Differentiating above equation, we have Ω̃ = A−1ΩA,
where Ω = dωc+ωc∧ωc is the curvature matrix. Assume Ωi

j = 1
2Ri

jklω
k∧ωl.

We define the curvature operator as R(X,Y )ei = 〈X ∧ Y,Ωi
j〉ej . It is easy

to check that R(ei, ej)ek = Rs
kijes, and R(X,Y )Z = [∇X ,∇Y ]Z−∇[X,Y ]Z.

Set Rijkl = 〈R(ei, ej)el, ek〉. It is well-known that Rijkl = Rklij. Hence we
have

dωi
j = −ωi

k ∧ ωk
j +

1
2
Ri

jklω
k ∧ ωl = −ωi

k ∧ ωk
j +

1
2
Rijklω

k ∧ ωl. (1)

Now assume that F (M) is the orthonormal frame bundle of M :

F (M) = {(p; v1, v2, . . . vn) : p ∈ M, vi ∈ Mp, 〈vi, vj〉 = δij},

with the natural projection π : F (M) → M . The triple (F (M), π,M)
defines a O(n)-principal bundle, where O(n) is the standard orthogonal
group. Locally one can express elements in F (M) as v = eX with X =
(xi

j) ∈ O(n). Set Y = X−1 and define n + n(n−1)
2 forms on F (M) as

follows:

θi = yi
kω

k or θ = (θi) = Y ω, (2)

θi
j = yi

kdxk
j + yi

kω
k
l xl

j or (θi
j) = Y dX + Y (ωi

j)X. (3)

To verify that above definition is not dependent on the choice of local
basis e, assume v = ẽX̃=eX, then X̃ = BX and Ỹ = Y A. Therefore
θ̃ = Ỹ ω̃ = Y ABω = Y ω = θ, and

(̃θi
j) = Ỹ dX̃ + Ỹ (̃ωi

j)X̃

= Y A(dB · X + BdX) + Y A(BdA + B(ωi
j)A)BX

= Y dX + Y (ωi
j)X = (θi

j).

It is easy to see that (θi, θi
j ; i < j) generate (dui, dxi

j) and hence, by count-
ing the dimension, they form a global frame for the cotangent bundle on
F (M). Differentiate equations (2) and equation (3), we obtain the struc-
ture equations:

dθi = −θi
k ∧ θk, (4)
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and
dθi

j = −θi
k ∧ θk

j +
1
2
R(xk

i ek, x
l
jel, x

m
p em, xn

q en)θp ∧ θq. (5)

Set θij = θi
j and define the natural Riemannian metric on F (M) as follows

ds2 =
∑

i

(θi)2 +
∑

1≤k<l≤n

(θkl)2.

Let (Ei, Ekl : k < l) be the dual vector fields to (θi, θkl : k < l).

Definition 3.1. Above vector fields {Ei, Ekl : k < l} on F (M) will
be called the canonical vector fields and the orthonormal frame field they
form will be called the canonical frame field.

4. Levi–Civita connection of the frame bundle

In this section, we will study the Levi–Civita connection of F (M) with
the natural Riemannian metric defined in the last section. For the conve-
nience, we adapt double indices that are simply ordered pairs {ij, 1 ≤ i <

j ≤ n}. To compare with double index, ordinary indices 1 ≤ i, j, k, . . . ,≤ n

will be called single indices. Greek letters α, β, γ, . . . will be used to denote
double indices and capital letters A,B,C, . . . will be used to denote both
single and double indices, which will be called general indices. Again, re-
peated indices will always mean taking the summations over each of their
own ranges. So we have the index ranges for the summation of the sin-
gle indices, double indices, and general indices are from {i | 1 ≤ i ≤ n},
{kl | 1 ≤ k < l ≤ n}, and {i, kl | 1 ≤ i ≤ n, 1 ≤ k < l ≤ n} respectively.
Although double indices should be ordered pairs like kl with k < l, we will
still write kl for a double index without assuming k < l. The convention
is to switch the order of a pair if needed to make it a double index by
changing the sign. For example, c1

21,2 stands for −c1
12,2 and c21

13,32 = c12
13,23.

Since
π∗Ei(ωj) = Ei(π∗ωj) = Ei(x

j
kθ

k) = xj
i ,

therefore

π∗Ei = xj
iej , 〈π∗Ei, π∗Ej〉 = 〈Ei, Ej〉 = δij .
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Set sijkl = R(π∗Ei, π∗Ej , π∗Ek, π∗El), we rewrite equation (4) and equa-
tion (5) as follows

dθi = −θik ∧ θk, (6)

dθij = −θik ∧ θkj +
1
2
sijpqθ

p ∧ θq. (7)

Let D stand for the Levi-Civita connection for F (M), and let cA
B,C be the

connection coefficients under EA. Then we have

DEA
EB = cC

B,AEC , cB
A,C = −cA

B,C . (8)

The connection forms are defined by

ΦA
B = cA

B,CθC , ΦA
B = −ΦB

A. (9)

The structure equations are

dθi = −Φi
j ∧ θj − Φi

α ∧ θα, (10)

dθα = −Φα
k ∧ θk − Φα

β ∧ θβ, (11)

and
dΦA

B = −ΦA
C ∧ ΦC

B +
1
2
KABCDθC ∧ θD, (12)

where KABCD denotes the curvature tensor on F (M). By equation (6)
and equation (10), we have

ci
j,kθ

k ∧ θj = 0, ci
α,βθα ∧ θβ = 0, ((ci

j,α − ci
α,j)θ

α − θij) ∧ θj = 0.

So we obtain
ci
j,k = ci

k,j, ci
α,β = ci

β,α, (13)
and

ci
j,ij − ci

ij,j = 1, ci
j,α = ci

α,j if α �= ij. (14)

Hence
ci
A,i = −ci

i,A = 0, for any i and A. (15)

Similarly, from equation (7) and equation (11), we have

0 =
(

1
2
sijkl − cij

k,l

)
θk ∧ θl, (16)
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0 = cij
β,γθγ ∧ θβ − θik ∧ θkj, (17)

0 = (cα
β,i − cα

i,β)θβ ∧ θi. (18)

For convenience, we call (ij, jk, ik) a circle triple if i, j and k are different.
By equation (16) to equation (18) we have

cij
k,l = cij

l,k + sijkl, cα
i,β = cα

β,i, cij
kj,ik = 1 + cij

ik,kj, (19)

cα
β,γ = cα

γ,β if α, β, γ is not a circle triple. (20)

Combining equation (19) and equation (20), we have

cα
A,α = −cα

α,A = 0. (21)

By equation (15) and equation (21), we have

cA
A,B = cA

B,A = cB
A,A = 0 ∀A,B. (22)

For further computations, the following algebraic observation is useful.

Lemma 4.1. Let S(3) be the 3-order permutation group and P be a

set of three-fold indexed numbers

P = {P i2
i1,i3

: (i1, i2, i3) ∈ I},
such that P is closed under the natural action of S(3), namely

τ · pi2
i1,i3

:= piτ2
iτ1,iτ3

∈ P ∀τ ∈ S(3), ∀ pi2
i1,i2

∈ P.

For µ = (12) and ν = (13), assume

µ · p = −p ν · p = p ∀ p ∈ P.

Then every element in P is 0.

Proof. The lemma follows from the observation that (ν ◦ µ)3 =
(123)3 = id and the assumption (ν ◦ µ)3 · p = −p. �

According to above lemma, it is easy to see from equations (13), (19) and
(20) that

ci
j,k = ci

α,β = 0, (23)
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cα
β,γ = 0 if (α, β, γ) is not a circle triple. (24)

To handle a situation involved with a double index, there are two cases.
First we compute ci

j,ij.

ci
j,ij = −cj

i,ij = 1 − cj
ij,i = 1 + cij

j,i = 1 + cij
i,j + sijji

= 1 − sijij − ci
ij,j = 2 − sijij − ci

j,ij.
(25)

For the other double index kl �= ij, we have

ci
j,kl = −cj

i,kl = −cj
kl,i = ckl

j,i = ckl
i,j + sklji = −ci

kl,j + sklji

= −ci
j,kl + sklji.

(26)

Solving equation (25) and equation (26) and using equation (14), we obtain

ci
j,kl = δijkl − 1

2
sijkl, (27)

ci
kl,j = −1

2
sijkl, (28)

where δijkl = δikδjl − δilδjk. Similarly

ckl
il,ki = 1 + ckl

ki,il = 1 − cki
kl,il,= cki

li,kl = −cli
ki,kl = 1 − cil

kl,ik = 1 − ckl
il,ki.

So we obtain

ckl
il,ki = −ckl

ki,il =
1
2
, cα

β,γ = 0 in the other case.

In summary, we have proved

Proposition 4.2. The Levi–Civita connection on F (M) under the

canonical frame field can be expressed as:

DEijEil = −1
2
Ejl, DEαEβ = 0 otherwise,

DEiEα =
1
2
sijαEj, DEiEj = −1

2
sijαEα,

DEαEi = −δijαEj +
1
2
sijαEj .

(29)

As a corollary, one can see that geodesic vector fields {EA} are geo-
desic, which proves Theorem 1.1.
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5. The proof of Theorem 1.2

The proof of Theorem 1.2 is broken down into several propositions
and each of them involves some computations that might be lengthy, but
never tricky. From now on, M denotes a constant curved Riemannian
manifold with constant curvature c. The notation ∇, instead of D, is
used to denote the connection on F (M). The expression of the connection
under the canonical vector field frame is reduced to

∇EijEil = −1
2
Ejl, ∇EαEβ = 0 otherwise,

∇EiEα =
c

2
δijαEj, ∇EαEi =

( c

2
− 1

)
δijαEj ,

∇EiEj = − c

2
Eij .

(30)

From the above equations, we have

(∇EB
ED,∇EB

EC) = 0 if B �= C. (31)

Define Eij∨il = Ejl and Eij∨kl = 0 if the set {i, j} does not intersect with
the set {k, l}. So it is easy to see that E(ij∨il)∨ij = Eil. To simplify the
notations, set LB = LEB

and AB = AEB
. We now compute the expressions

for the operators At
B explicitly. Since

(At
iEj , El) = (Ej , AiEl) = (Ej ,−∇lEi) =

(
Ej ,

c

2
δliβEβ

)
= 0,

and

(At
iEj , Eα) = (Ej , AiEα) = −(Ej ,∇EαEi) =

(
1 − c

2

)
δijα.

So we have
At

i(Ej) =
(
1 − c

2

)
Eij . (32)

Similar calculations imply

At
i(Eα) = − c

2
δijαEj, At

α(Ei) =
c

2
δijαEj , At

α(Eβ) =
1
2
Eα∨β . (33)

From the equation (32) and equation (33), one can explicitly express the
operators LB as follow.

Li(Ej) =
(

1 +
c2

4

)
Ej , Li(Eα) =

(
1 +

(
1 − c

2

)
εiα

)
Eα, (34)
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where εiα is 1 if i ∈ α and 0 otherwise. and

Lα(Ei) =
(

1 +
c2

4
εiα

)
Ei, Lα(Eβ) =

(
1 +

1
4
εα∨β

)
Eβ. (35)

Where εα∨β = 1 if Eα∨β �= 0 and εα∨β = 0 otherwise. Therefore LB is
diagonalized with constant eigenvalues and

√
det(LB) is constant. By the

definition, (KC(ED), EB) is constant for any B,C and D. Therefore we
obtain

(∇EB
(KC(ED)), EB) = −(KC(ED),∇EB

EB) = 0, (36)

and for any indices B,C and D such that C �= D

(KC(∇EB
ED), EB) = const(At

C(∇EB
ED), EB)

= const(∇EB
ED, AC(EB))

= − const(∇EB
ED,∇EB

(EC)) = 0.

(37)

Combining equation (36) and equation (37), we have

ωEC
(ED) = (∇EB

KEC
)ED, EB)

= (∇EB
(KEC

ED), EB) − KEC
(∇EB

ED), EB) = 0,

for any indices B,C and D such that C �= D. Therefore we have proved

Proposition 5.1. Each of the canonical vector fields is a minimal

unit vector field.

Now we prove that {EB} are unit harmonic vector fields and they
induce harmonic maps from F (M) to the sphere bundle T1(F (M)).

Proposition 5.2. Each of the canonical vector field is a unit harmonic

vector field.

Proof. For any single index i, we have by equations (30)

	Ei = ∇Ej∇EjEi + ∇Eα∇EαEi

=
c

2
∇Ej(δijαEα) +

( c

2
− 1

)
∇EαδijαEj

=
c2

4
δijαδjkαEk +

( c

2
− 1

)2
δijαδjkαEk
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= −
(

c2

4
+

( c

2
− 1

)2
)

Ei.

Similarly, for any double index β, we have

	Eβ = ∇Ej∇EjEβ + ∇Eα∇EαEβ =
c

2
∇Ej(δjiβEi) − 1

2
∇EαEα∨β

= −c2

4
δijβδjiδEδ − 1

4
(2n − 4)Eβ = −c2 + n − 2

2
Eβ .

Therefore 	EC ≡ 0mod (EC) for any C, which implies that EC is har-
monic. �

Proposition 5.3. Each of the canonical vector field induces a har-

monic map.

Proof. First of all, by definition, the curvature operator R can be
explicitly expressed as follow:

R(Eα∨β, Eα)Eβ = 0,

R(Ek, Ej)Eβ = −c2

4
δjlβδklαEα +

c2

4
δklβδjlαEα − c

2
Ekj∨β,

R(Ej, Eα)Ei =
c

2

(
1 − c

2

)
δikαδjkβEβ +

c

4
δijβEα∨β − c

2
δjkαδikβEβ.

For any single index j, using the above expressions for the curvature op-
erator R, we have

R(Aj(Ei), Ej)Ei + R(Aj(Eβ), Ej)Eβ

=
c

2
δijβR(Eβ , Ej)Ei −

( c

2
− 1

)
δjkβR(Ek, Ej)Eβ

= − c

2
δijβR(Ej , Eβ)Ei − c − 2

2
δjkβR(Ek, Ej)Eβ +

c2 − 2c
4

δjkβEjk∨β

= −c2

4

(
1 − c

2

)
δijβδikβδjkαEα +

c

4
δijβδijαEβ∨α − c

2
δijβδjkβδikαEα = 0,

which implies µ̃Ej = 0. Similarly for any double index α, we have

R(Aα(Ei), Eα)Ei + R(Aα(Eβ), Eα)Eβ
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= − c

2
δijαR(Ej , Eα)Ei +

1
2
R(Eβ∨α, Eα)Eβ

= −c2

4

(
1 − c

2

)
δijαδikαδjkβ +

c

4
δijαδijβEα∨β − c

2
δijαδjkαδikβEβ = 0.

Therefore µ̃Eα = 0. Thus all the canonical vector fields induce harmonic
maps between F (M) and T1(F (M)). �

We have completed the proof of Theorem 1.2 by Propositions 5.1, 5.2
and 5.3.

Acknowledgement. The authors are very grateful to the referee for
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