On a class of Einstein space-time manifolds

By ADELA MIHAI (Bucharest) and RADU ROSCA (Paris)

Abstract

We deal with a general space-time (M, g) with usual differentiability conditions and hyperbolic metric g of index 1 , which carries 3 skewsymmetric Killing vector fields X, Y, Z having as generative the unit time-like vector field e of the hyperbolic metric g. It is shown that such a space-time (M, g) is an Einstein manifold of curvature -1 , which is foliated by space-like hypersurfaces M_{s} normal to e and the immersion $x: M_{s} \rightarrow M$ is pseudo-umbilical. In addition, it is proved that the vector fields X, Y, Z and e are exterior concurrent vector fields and X, Y, Z define a commutative Killing triple, M admits a Lorentzian transformation which is in an orthocronous Lorentz group and the distinguished spatial 3-form of M is a relatively integral invariant of the vector fields X, Y and Z.

0. Introduction

Let (M, g) be a general space-time with usual differentiability conditions and hyperbolic metric g of index 1.

We assume in this paper that (M, g) carries 3 skew-symmetric Killing vector fields (abbr. SSK) X, Y, Z having as generative the unit time-like vector field e of the hyperbolic metric g (see [R1], [MRV]. Therefore, if ∇ is the Levi-Civita connection and \wedge means the wedge product of vector

[^0]fields, one has
\[

$$
\begin{equation*}
\nabla X=X \wedge e, \quad \nabla Y=Y \wedge e, \quad \nabla Z=Z \wedge e \tag{0.1}
\end{equation*}
$$

\]

Setting $\alpha=X^{b}, \beta=Y^{b}, \gamma=Z^{b}\left(b: T M \rightarrow T^{*} M, X \mapsto X^{b}\right.$, denotes the musical isomorphism defined by g), one derives by (0.1)

$$
\begin{equation*}
d \alpha=2 \omega \wedge \alpha, \quad \omega=e^{b} \tag{0.2}
\end{equation*}
$$

and clearly similar equations for β and γ.
Since one finds that ω is an exact form, equations (0.2) may be written in terms of d^{ω}-cohomology as $d^{-2 \omega} \alpha=0$ and say that α, β, γ are $d^{-2 \omega_{-}}$ exact forms. From (0.2) it also follows that the existence of such a spacetime is determined by an exterior differential system in involution [C2].

The following theorem is proved:
Any space-time (M, g) satisfying (0.1) is an Einstein manifold of curvature -1 , which is foliated by space-like hypersurfaces M_{s} normal to e and the immersion $x: M_{s} \rightarrow M$ is pseudo-umbilical [Ch].

The following additional properties are also obtained.
i) the vector fields X, Y, Z and e are exterior concurrent vector fields (abbr. EC) and X, Y, Z define a commutative Killing triple;
ii) M admits a Lorentzian transformation which is in an orthocronous Lorentz group [CWD];
iii) the 3-form $\varphi=\alpha \wedge \beta \wedge \gamma$ is a relatively integral invariant of the vector fields X, Y and Z.

1. Preliminaries

Let (M, g) be a pseudo-Riemannian C^{∞}-manifold and let ∇ be the covariant differential operator defined by the metric tensor g. We assume that M is oriented and that ∇ is the Levi-Civita connection. Let $\Gamma T M$ be the set of sections of the tangent bundle $T M$ and $b: T M \rightarrow T^{*} M$ and $\sharp: T^{*} M \rightarrow T M$ the classical musical isomorphisms defined by g.

Following $[\mathrm{P}]$, we set $A^{q}(M, T M)=\Gamma \operatorname{Hom}\left(\Lambda^{q} T M, T M\right)$ and notice that elements of $A^{q}(M, T M)$ are vector valued q-forms, $q \leq \operatorname{dim} M$.

Denote by $d^{\nabla}: A^{q}(M, T M) \rightarrow A^{q+1}(M, T M)$ the exterior covariant derivative operator with respect to ∇ (it should be noticed that generally $d^{\nabla^{2}}=d^{\nabla} \circ d^{\nabla} \neq 0$, unlike $d^{2}=d \circ d=0$).

If $p \in M$, then the vector valued 1 -form $d p \in A^{1}(M, T M)$ is called the soldering form of M ($d p$ is the canonical vector valued 1-form of M and one has $\left.d^{\nabla}(d p)=0\right)$. The operator $d^{\omega}=d+e(\omega)$ acting on ΛM is called the cohomology operator, where $e(\omega)$ means the exterior product by the closed 1-form $\omega \in \Lambda^{1} M$, i.e. $d^{\omega} u=d u+\omega \wedge u$, for any $u \in \Lambda M$. We have $d^{\omega} \circ d^{\omega}=0$ and if $d^{\omega} u=0, u$ is said to be d^{ω}-closed [GL].

Any vector field $X \in \Gamma T M$ such that

$$
d^{\nabla}(\nabla X)=\nabla^{2} X=\pi \wedge d p \in A^{2}(M, T M)
$$

is said to be an exterior concurrent vector field.
The 1 -form π, which is called the concurrence form, is given by

$$
\pi=f X^{b}, \quad f \in C^{\infty} M
$$

If \mathcal{R} denotes the Ricci tensor of ∇, we have

$$
\mathcal{R}(X, Y)=-(n-1) f g(X, Z), \quad Z \in Г T M, n=\operatorname{dim} M,
$$

and consequently

$$
f=-\frac{1}{n-1} \operatorname{Ric}(X),
$$

where $\operatorname{Ric}(X)$ means the Ricci curvature of M with respect to X.
Let $\mathcal{O}=\left\{e_{A} \mid A \in\{1, \ldots, n\}\right\}$ be an adapted local field of orthonormal frames on M and let $\mathcal{O}^{*}=\left\{\omega^{A}\right\}$ be its associated coframe.

With respect to \mathcal{O} and \mathcal{O}^{*}, the soldering form $d p$ and E. Cartan's structure equations in indexless form are

$$
\begin{gather*}
d p=\omega^{A} \otimes e_{A} \in A^{1}(M, T M), \tag{1.1}\\
\nabla e=\theta \otimes e \in A^{1}(M, T M), \tag{1.2}\\
d \omega=-\theta \wedge \omega, \tag{1.3}\\
d \theta=-\theta \wedge \theta+\Theta . \tag{1.4}
\end{gather*}
$$

In the above equations, θ, respectively Θ, are the local connection forms in the bundle $\mathcal{O}(M)$, respectively the curvature forms on M.

2. Main result

Let (M, g) be a general space-time with usual differentiability conditions and normal hyperbolic metric g, i.e. of index 1. Let $\mathcal{O}=\left\{e_{A} \mid A \in\right.$ $\{1, \ldots, n\}\}$ be an adapted local field of orthonormal frames on M and let $\mathcal{O}^{*}=\left\{\omega^{A}\right\}$ be its associated coframe. We agree to denote by e_{a}, $a, b \in\{1,2,3\}$ and by e_{4} the space-like vector basis and the time-like vector basis, respectively, w.r.t. g. Then, by reference to [C1] (see also [MRV]), one has

$$
\begin{equation*}
d p=-\omega^{a} \otimes e_{a}+\omega^{4} \otimes e_{4} \Longrightarrow\langle d p, d p\rangle=\left(\omega^{4}\right)^{2}-\sum_{a=1}^{3}\left(\omega^{a}\right)^{2} \tag{2.1}
\end{equation*}
$$

and Cartan's structure equations are expressed by

$$
\begin{align*}
& \left\{\begin{array}{l}
\nabla e_{a}=-\theta_{a}^{b} e_{b}+\theta_{a}^{4} \otimes e_{4}, \\
\nabla e_{4}=-\theta_{4}^{a} \otimes e_{a},
\end{array}\right. \tag{2.2}\\
& \left\{\begin{array}{l}
d \omega^{a}=-\omega^{b} \wedge \theta_{b}^{a}+\omega^{4} \otimes \theta_{4}^{a}, \\
d \omega^{4}=-\omega^{a} \wedge \theta_{a}^{4},
\end{array}\right. \tag{2.3}\\
& \left\{\begin{array}{l}
d \theta_{a}^{b}=\Theta_{a}^{b}-\theta_{a}^{c} \wedge \theta_{c}^{b}+\theta_{a}^{4} \wedge \theta_{4}^{b}, \\
d \theta_{4}^{a}=\Theta_{4}^{a}-\theta_{4}^{c} \wedge \theta_{c}^{a} .
\end{array}\right. \tag{2.4}
\end{align*}
$$

In the following, in order to simplify, we set $\omega^{4}=\omega$ and $e_{4}=e$.
In this paper we assume that the manifold M under consideration carries 3 space-like vector fields X, Y, Z which are skew-symmetric Killing vector fields (abbr. SSK) [R1], [MRV] having as generative the unit timelike vector field e. In order to simplify, we also set

$$
\begin{equation*}
X^{b}=\alpha, \quad Y^{b}=\beta, \quad Z^{b}=\gamma . \tag{2.5}
\end{equation*}
$$

Under these conditions, by reference to [R1], [MRV], one has

$$
\left\{\begin{array}{l}
\nabla X=X \wedge e=\omega \otimes X-\alpha \otimes e \tag{2.6}\\
\nabla Y=Y \wedge e=\omega \otimes Y-\beta \otimes e \\
\nabla Z=Z \wedge e=\omega \otimes Z-\gamma \otimes e
\end{array}\right.
$$

and since X, Y, Z are space-like, we set

$$
\begin{equation*}
X=X^{a} e_{a}, \quad Y=Y^{a} e_{a}, \quad Z=Z^{a} e_{a} \tag{2.7}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\|X\|^{2}=-\sum_{a=1}^{3}\left(X^{a}\right)^{2}, \quad\|Y\|^{2}=-\sum_{a=1}^{3}\left(Y^{a}\right)^{2}, \quad\|Z\|^{2}=-\sum_{a=1}^{3}\left(Z^{a}\right)^{2} . \tag{2.8}
\end{equation*}
$$

From (2.2) and (2.6), one derives

$$
\begin{equation*}
d X^{a}-X^{b} \theta_{b}^{a}=X^{a} \omega \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha=-X^{a} \theta_{a}^{4} \tag{2.10}
\end{equation*}
$$

Hence, it follows from (2.10)

$$
\begin{equation*}
\theta_{a}^{4}=-\omega^{a} \tag{2.11}
\end{equation*}
$$

Setting $2 \varphi_{x}=\sum_{a=1}^{3}\left(X^{a}\right)^{2}, 2 \varphi_{y}=\sum_{a=1}^{3}\left(Y^{a}\right)^{2}, 2 \varphi_{z}=\sum_{a=1}^{3}\left(Z^{a}\right)^{2}$, one gets at once from (2.9)

$$
\begin{equation*}
\frac{d \varphi_{x}}{2 \varphi_{x}}=\omega, \quad \frac{d \varphi_{y}}{2 \varphi_{y}}=\omega, \quad \frac{d \varphi_{z}}{2 \varphi_{z}}=\omega \tag{2.12}
\end{equation*}
$$

which shows that the generative ω (i.e. the time-like covector) is exact. Further, taking the exterior differential of α, one finds by (2.9) and by the structure equations (2.3)

$$
\begin{equation*}
d \alpha=2 \omega \wedge \alpha \tag{2.13}
\end{equation*}
$$

which is the general equation of a SSK vector field [R1].
Now, by (2.11) and the second equation (2.4), one derives on behalf of the structure equations (2.3) regarding the space-like covectors ω^{a}

$$
\begin{equation*}
\Theta_{4}^{a}=-\omega^{a} \wedge \omega . \tag{2.14}
\end{equation*}
$$

Further, taking the exterior differentials of (2.4)

$$
\left\{\begin{array}{l}
X^{2}\left(\Theta_{1}^{2}-\omega^{1} \wedge \omega^{2}\right)+X^{3}\left(\Theta_{1}^{3}-\omega^{1} \wedge \omega^{3}\right)=0 \\
X^{1}\left(\Theta_{2}^{1}-\omega^{2} \wedge \omega^{1}\right)+X^{3}\left(\Theta_{2}^{3}-\omega^{2} \wedge \omega^{3}\right)=0
\end{array}\right.
$$

Since, clearly, similar equations hold for Y and Z, one infers

$$
\begin{equation*}
\Theta_{b}^{a}=\omega^{b} \wedge \omega^{a} . \tag{2.15}
\end{equation*}
$$

So, by reference to a known formula regardind space forms, we conclude by (2.14) and (2.15) that the space-time manifold (M, g) under consideration is an Einstein manifold of curvature - 1 .

Since $d \omega=0$, it is seen that (M, g) is foliated by space-like hypersurfaces M_{s} and by (2.11) and the equation (2.2), one has

$$
\begin{equation*}
\nabla e=\omega^{a} \otimes e_{a}=-d p_{s}, \tag{2.16}
\end{equation*}
$$

where $d p_{s}$ is the spatial component of the soldering form $d p$. Then the second fundamental form $I I=-\left\langle d p_{s}, d p_{s}\right\rangle$ associated with the immersion $x: M_{s} \rightarrow M$ being conformal to the metric tensor g_{s} of M_{s}, it follows [Ch] that the immerssion x is pseudo-umbilical.

On the other hand, clearly, Y and Z enjoy the same properties as X and one may write

$$
\left\{\begin{array}{l}
d \beta=2 \omega \wedge \beta \Leftrightarrow d^{-2 \omega} \beta=0, \tag{2.17}\\
d \gamma=2 \omega \wedge \gamma \Leftrightarrow d^{-2 \omega} \gamma=0
\end{array}\right.
$$

(since ω is an exact form one may say that, cohomologically, the dual forms α, β, γ of the SSK vector fields X, Y, Z are $d^{-2 \omega}$-exact).

Finally, by $(2.12),(2.13)$ and (2.17), it is seen that the existence of the considered space-time is defined by an exterior differential system Σ, whose characteristic numbers [C2] are $r=4, s_{0}=1, s_{1}=3$. Consequently, we conclude that Σ is in involution, in the sense of Cartan [C2], and depends of 3 arbitrary functions of one argument.

Since the vector fields X, Y, Z are orthogonal to e, one easily finds by (2.6)

$$
[X, Y]=0, \quad[X, Z]=0, \quad[Y, Z]=0,
$$

which proves that the SSK vector fields X, Y, Z define a commutative triple.

Summing up, we state the following.
Theorem. Let (M, g) be a space-time manifold with normal hyperbolic metric g. Assume that M carries 3 skew-symmetric Killing vector
fields X, Y, Z having as generative the unit time-like vector field e of the hyperbolic metric g. Then M is an Einstein manifold of curvature -1 . The existence of the triple $\{X, Y, Z\}$ is assured by an exterior differential system Σ in involution. Such a manifold (M, g) has also the following properties:
i) M is foliated by space-like hypersurfaces M_{s} tangent to $\{X, Y, Z\}$, normal to e and the immersion $x: M_{s} \rightarrow M$ is pseudo-umbilical;
ii) the vector fields $\{X, Y, Z\}$ define a commutative triple of Killing vector fields.

3. Additional properties

In this section we shall make some additional considerations regarding the Einstein manifold defined in Section 2.

By using (2.16) and operating by d^{∇}, one may write

$$
\begin{equation*}
d^{\nabla}\left(d p_{s}\right)=\omega \wedge d p_{s} \tag{3.1}
\end{equation*}
$$

Because $d p=\omega \otimes e-d p_{s}$, one derives

$$
\begin{equation*}
\nabla^{2} e=\omega \wedge d p \tag{3.2}
\end{equation*}
$$

By reference to [R1], [PRV], the above equation proves that e is an EC vector field. Hence, following the general theory [PRV], if W is any vector field on M, one may write $\mathcal{R}(e, W)=-3 g(e, W)$ (we notice that for any space-like vector field Z_{s} one has $\left.\mathcal{R}\left(e, Z_{s}\right)=0\right)$.

Recall that the sectional curvature $K_{U \wedge V}$ of any vector fields U, V is expressed by

$$
\begin{equation*}
K_{U \wedge V}=\frac{g(R(U, V) V, U)}{\|U\|^{2}\|V\|^{2}-g(U, V)^{2}} \tag{3.3}
\end{equation*}
$$

Then by (2.6) and recalling that X, Y, Z are space-like vector fields, one finds $K_{X \wedge Y}=K_{Y \wedge Z}=K_{Z \wedge X}=-1$, which means that M is of curvature -1 .

Next, operating by d^{∇} on the vector fields X, Y, Z, one derives

$$
\begin{equation*}
\nabla^{2} X=\alpha \wedge d p, \quad \nabla^{2} Y=\beta \wedge d p, \quad \nabla^{2} Z=\gamma \wedge d p \tag{3.4}
\end{equation*}
$$

From (3.4) it follows that the SSK vector fields X, Y, Z are also exterior concurrent, as the time-like vector field e.

Next, setting $\alpha=\lambda U^{1}, \beta=\lambda U^{2}, \gamma=\lambda U^{3}$ as a space-like covector basis, one may define a subgroup of Lorentz by the group of space-like rotations $O(3)$ (orthocronous transformations [CWD]) preserving the timelike vector field e.

Also, one has

$$
\begin{equation*}
U^{4}=\omega^{4}=\omega, \quad \alpha^{2}+\beta^{2}+\gamma^{2}=\lambda^{2} \sum_{a=1}^{3}\left(\omega^{a}\right)^{2}, \tag{3.5}
\end{equation*}
$$

where λ is a scalar field.
Equations (3.5) imply

$$
\begin{equation*}
\sum_{a=1}^{3}\left[\left(X^{a}\right)^{2}+\left(Y^{a}\right)^{2}+\left(Z^{a}\right)^{2}\right]=\lambda^{2} \tag{3.6}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\sum_{a \neq b}\left[X^{a} X^{b}+Y^{a} Y^{b}+Z^{a} Z^{b}\right]=0, \tag{3.7}\\
\sum_{a \neq b}\left[X^{a} X^{c}+Y^{a} Y^{c}+Z^{a} Z^{c}\right]=0, \\
\sum_{a \neq b}\left[X^{b} X^{c}+Y^{b} Y^{c}+Z^{b} Z^{c}\right]=0
\end{array}\right.
$$

Making use of equations (2.9), one finds that the differentiation of (3.7) holds good and the differentiation of (3.6) gives

$$
\begin{equation*}
\frac{d \lambda}{\lambda}=\omega \tag{3.8}
\end{equation*}
$$

(recall that ω is an exact form).
Finally, we shall outline a certain property of the Lie algebra induced by the space-like vector fields X, Y, Z. We agree to call the 3 -form

$$
\begin{equation*}
\varphi=\alpha \wedge \beta \wedge \gamma \tag{3.9}
\end{equation*}
$$

the distinguished spatial form of M.

By (2.13) one gets at once

$$
\begin{equation*}
d \varphi=6 \omega \wedge \varphi \Longleftrightarrow d^{-6 \omega} \varphi=0 \Longleftrightarrow \mathcal{L}_{e} \varphi=6 \varphi \tag{3.10}
\end{equation*}
$$

which shows that φ is an $d^{-6 \omega}$-exact form and e defines an infinitesimal conformal transformation of φ.

By (2.12) one has

$$
\begin{equation*}
\frac{d g(X, X)}{4 g(X, X)}=\frac{d g(Y, Y)}{4 g(Y, Y)}=\frac{d g(Z, Z)}{4 g(Z, Z)}=\omega, \tag{3.11}
\end{equation*}
$$

and one derives

$$
i_{X} \varphi=g(X, X) \beta \wedge \gamma+g(X, Y) \gamma \wedge \alpha+g(X, Z) \alpha \wedge \beta
$$

and similar relations for Y and Z.
So, by (2.13), one infers $d\left(i_{X} \varphi\right)=8 \omega \wedge i_{X} \varphi$, which gives $\mathcal{L}_{X} \varphi=$ $2 \omega \wedge i_{X} \varphi$.

Finally, by exterior differentiation, one may write $d\left(\mathcal{L}_{X} \varphi\right)=0$ and clearly similar relations for Y and Z hold.

Hence, following a known definition $[\mathrm{A}]$, one may state that the distinguished spatial 3 -form φ is a relatively integral invariant of the SSK vector fields X, Y, Z.

Consequently, the following results were obtained.
Theorem. Let (M, g) be the space-time manifold defined in the Section 2 and let X, Y, Z be the 3 skew-symmetric Killing vector fields which determine M and e the unit time-like vector field of the hyperbolic metric g. One has the following properties:
i) the vector fields X, Y, Z and e are exterior concurrent vector fields;
ii) M admits an orthogonal transformation of a space-like Lorentz subgroup $O(3)$;
iii) the 3-form $\varphi=\alpha \wedge \beta \wedge \gamma$ is a relatively integral invariant of the vector fields X, Y and Z.

References

[A1] R. Abraham, Foundations of Mechanics, W. A. Benjamin, New York, 1967.
[C1] E. Cartan, Oeuvres, Gauthier-Villars, Paris, 1955.
[C2] E. Cartan, Systèmes Différrentiels Extérieurs et Leurs Applications Géométriques, Hermann, Paris, 1945.
[Ch] B. Y. Chen, Geometry of Submanifolds, M. Dekker, New York, 1973.
[CWD] Y. Choquet-Bruhat, C. De Witt-Morette and M. Dillard-Bleick, Analysis, Manifolds and Physics, North Holland, 1977.
[D] J. Dieudonné, Treatise on Alnalysis, Vol. 4, Academic Press, New York, 1974.
[GL] F. Guedira and L. Lichnerowicz, Géométrie des algèbres de Lie locales de Kirilov, J. Math. Pures Appl. 63 (1984), 407-484.
[MRV] I. Mihai, R. Rosca and L. Verstraelen, Some Aspects of the Differential Geometry of Vector Fields, Vol. 2, PADGE, KU Leuven, KU Brussel, 1996.
[PRV] M. Petrovic, R. Rosca and L. Verstraelen, Exterior concurrent vector fields on Riemannian manifolds, Soochow J. Math. 15 (1989), 179-187.
[P] W. A. Poor, Differential Geometric Structures, Mc Graw Hill, 1981.
[R1] R. Rosca, Exterior concurrent vector fields on a conformal cosymplectic manifold endowed with a Sasakian structure, Libertas Math. 6 (1986), 167-174.
[R2] R. Rosca, On exterior concurrent skew symmetric Killing vector field, Rend. Sem. Mat. Messina 2 (1993), 131-145.

ADELA MIHAI
FACULTY OF MATHEMATICS
UNIVERSITY OF BUCHAREST
STR. ACADEMIEI 14
010014 BUCHAREST
ROMANIA
E-mail: adela@math.math.unibuc.ro

RADU ROSCA
59 AV. EMILE ZOLA
75015 PARIS
FRANCE

[^0]: Mathematics Subject Classification: 53C15, 53D15, 53C25.
 Key words and phrases: space-time, skew-symmetric Killing vector field, exterior concurrent vector field, orthocronous Lorentz group.
 This paper was written while the first author has visited Yamagata University, Faculty of Education, supported by a JSPS postdoctoral research fellowship. She would like to express her hearty thanks for the hospitality she received during this visit.

