On problem of multiple lattice circle arrangements

By ÁGOTA H. TEMESVÁRI (Sopron)
Dedicated to Professor J. Horváth on his 70th birthday

Abstract

We deal with lattice circle arrangements which form a k-fold covering (with closed circles) and a ($k+1$)-fold packing (of open circles) for some suitable values of k. The centres of these special circle arrangements give the points of regular plane patterns yielding the least limiting variance in case of a special plane stochastic process.

1. Introduction

A system of congruent open circles forms a k-fold packing if each point of the plane belongs to at most k circles of the system. Analogously, a system of congruent closed circles is a k-fold covering if each point of the plane belongs to at least k circles of the system. The notion of multiple packing and covering was introduced by L. Fejes Tóth. A circle arrangement is called a lattice arrangement if the centers of the circles form a plane lattice.

The density of a multiple circle packing and covering can be defined analogously to the simple packing and covering. The densest simple lattice packing, the thinnest simple lattice covering, the densest 2 -fold lattice packing and one of the densest 4 -fold lattice packings (see Figure 1) have

Mathematics Subject Classification: 52C15, 11H31.
Key words and phrases: multiple packing, multiple covering, lattice circle arrangements.
an interesting property. The circles in these circle arrangements form a k-fold covering (with closed circles) and a ($k+1$)-fold packing (of open circles) for some suitable values of k.

Figure 1

The centres of these special circle arrangements give the points of regular plane patterns yielding the least limiting variance in case of a special plane stochastic process [4].

In this paper we give the possible lattice circle arrangements with the above property for $0 \leq k \leq 8$ and $k \geq 2 \cdot 10^{5}-1$. We also give some non-lattice circle arrangements of the above type.

2. Notations, definitions

The origin of the plane lattice Γ will be denoted by O (Figure 2.a). Denote by X the vector $\overrightarrow{O X}$ and its endpoint. The basis $\overrightarrow{O A}$ and $\overrightarrow{O B}$ of
Γ is reduced by Minkowski, i.e.

$$
\begin{equation*}
|A| \leq|B| \leq|B-A|, \quad 0 \leq \angle(A O B) \leq \frac{\pi}{2} . \tag{1}
\end{equation*}
$$

With the notations $a=|A| b=|B| x=\frac{a}{b}$ and $\alpha=\angle(A O B)$ (1) goes over into

$$
\begin{equation*}
0<x \leq 1, \quad 0 \leq \cos \alpha \leq \frac{x}{2} \tag{2}
\end{equation*}
$$

We consider a rectangular cartesian coordinate system $x, y=\cos \alpha$. A point of the triangle $O P Q$ with $O(0,0), P(1,0), Q\left(1, \frac{1}{2}\right)$ (Figure 2.b) can be ordered to the lattice Γ because of the inequalities (2), and a lattice belongs to a point $(x, y) \neq(0,0)$ of the triangle $O P Q$ (up to a similarity).

Figure 2
Let $T(\Gamma)$ be the area of the fundamental parallelogram and h its height perpendicular to $O A$.

Let x, y, z be the sides of a triangle and T its area. Then the radius r of the circumcircle is

$$
\begin{equation*}
r=\frac{x y z}{4 T} . \tag{3}
\end{equation*}
$$

In what follows we denote by $L(\Gamma, R)$ the circle arrangement, where Γ is the lattice of the centers of the circles, and R is the radius of the circles. The lattice circle arrangement $L(\Gamma, R)$ is of type $L_{k}^{k+1}(\Gamma, R)$ if the circles form a k-fold covering (with closed circles) and a ($k+1$)-fold packing (of open circles).

We denote by $\delta^{p}\left(B_{2}\right)$ and $\delta_{\Gamma}^{p}\left(B_{2}\right)$ the densities of the densest p-fold packings of open congruent circles in the general case and in the lattice case. We use the notations $\vartheta^{q}\left(B_{2}\right)$ and $\vartheta_{\Gamma}^{q}\left(B_{2}\right)$ for the densities of the
thinnest q-fold coverings with closed congruent circles in the general case and in the lattice case.

Let $k[X Y Z]$ be the circumcircle of the triangle $X Y Z$ and $r[X Y Z]$ its radius. We denote by $k[X Y]$ the circle with the diameter $X Y$. The radius of $k[X Y]$ is $r[X Y]$.

3. Results

3.1. The lattice Γ_{1} is reduced by Minkowski and

$$
2 \leq|A|
$$

The circle arrangements of unit circles $L\left(\Gamma_{1}, 1\right)$ are of type $L_{0}^{1}\left(\Gamma_{1}, 1\right)$ (Figure 3.a).
3.2. The lattice Γ_{2} is reduced by Minkowski and

$$
1 \leq|A| \leq \sqrt{3} \quad \text { and } \quad r[O A B]=1
$$

The circle arrangements of unit circles $L\left(\Gamma_{2}, 1\right)$ are of type $L_{1}^{2}\left(\Gamma_{2}, 1\right)$ (Figure 3.b).
3.3. The lattice Γ_{3} is reduced by Minkowski and

$$
|A|=|B|=|B-A|=1
$$

The circle arrangement of unit circles $L\left(\Gamma_{3}, 1\right)$ is of type $L_{3}^{4}\left(\Gamma_{3}, 1\right)$ (Figure 3.c).

Theorem 1. If the lattice arrangement of unit circles $L(\Gamma, 1)$ is of type $L_{k}^{k+1}(\Gamma, 1)$ and $k \leq 8$, then $\Gamma \equiv \Gamma_{1}$ or $\Gamma \equiv \Gamma_{2}$ or $\Gamma \equiv \Gamma_{3}$.

Proof. The densenst k-fold lattice packings of congruent open circles are known for $k \leq 10[5],[7],[2],[3],[18],[16],[17]$ and the thinnest k-fold lattice coverings with congruent closed circles were determined for $k \leq 8$ [10], [1], [11]-[13], [3], [6], [14], [15]. We have the inequality $\delta_{\Gamma}^{k+1}\left(B_{2}\right)<$ $\vartheta_{\Gamma}^{k}\left(B_{2}\right)$ for $6 \leq k \leq 8$ which shows that lattice arrangements of unit circles $L(\Gamma, 1)$ of type $L_{k}^{k+1}(\Gamma, 1)$ can exist for $k \leq 5$.

1. $k=0$. The statement is trivial.
2. $k=1$. The lattice Γ of the circle arrangement is reduced by Minkowski. The lattice triangle $O A B$ is not obtuse angled and the open lattice circle $k[O A B]$ does not contain lattice points. If $1>|A|$ holds, then for example the neighbourhood of the lattice point A is covered at least 3 times. In case of $r[O A B]<1$ the neighbourhood of the centre of $k[O A B]$ would be covered at least 3 times. If $r[O A B]>1$, then the neighbourhood of the centre of $k[O A B]$ is not covered. Our circle arrangement $L(\Gamma, 1)$ is of type $L_{1}^{2}(\Gamma, 1)$. Therefore we have $1 \leq|A|$ and $r[O A B]=1$. The regular triangle inscribed in the circle $k[O A B]$ with unit radius has maximal perimeter among the triangles inscribed in $k[O A B]$, namely the perimeter $3 \sqrt{3}$. It follows $|A| \leq \sqrt{3}$. Then we have $\Gamma \equiv \Gamma_{2}$ which was to be proved.
3. $k=2$. The lattice triangle $O(2 A)(A+B)$ is not obtuse angled and the open lattice circle $k[O(2 A)(A+B)]$ contains only one lattice point [8]. Our circle arrangement $L(\Gamma, 1)$ is of type $L_{2}^{3}(\Gamma, 1)$. Therefore we have $r[O(2 A)(A+B)]=1$ and $2 \leq|3 A|$. Let F be the midpoint of $O(A+B)$. The neighbourhood of F is covered at least 4 times if $|A+B|<2$. If $|A+B| \geq 2$ holds, then we have $r[O(2 A)(A+B)]>1$. This contradiction means that the circle arrangements $L(\Gamma, 1)$ can not be of type $L_{2}^{3}(\Gamma, 1)$.
4. $k=3$. We consider the circle arrangement $L(\Gamma, 1)$. The lattice Γ is reduced by Minkowski. Therefore the lattice triangle $O(2 A)(B)$ is not obtuse angled and the open lattice circle $k[O(2 A)(A+B)]$ contains only two lattice points namely A and $A+B$. Our circle arrangement $L(\Gamma, 1)$ is of type $L_{3}^{4}(\Gamma, 1)$. Therefore we have $r[O(2 A)(B)]=1,1 \leq|2 A|$ and $1 \leq|B|$.

Figure 3

The circle arrangement $L(\Gamma, 1)$ is a 3 -fold covering with closed unit circles. We distinguish three cases according to the lattice circles which contain two lattice points of Γ in their interiors and are circumcircles of not obtuse angled lattice triangles [8].
4.1. Let G be the midpoint of $A(2 A)$. If $|A+B-G| \geq \frac{3}{2}|A|$, then the lattice triangle $O(3 A)(A+B)$ is not obtuse angled and the open circle $k[O(3 A)(A+B)]$ contains the lattice points A and $2 A$ (Figure 4.a). We have the inequality $r[O(3 A)(A+B)]>r[O(2 A)(B)]=1$. Thus the neighbourhood of the centre of $k[O(3 A)(A+B)]$ is covered at least five times, that means $L(\Gamma, 1)$ is not of type $L_{3}^{4}(\Gamma, 1)$.
4.2. In case of $|A+B-G| \leq \frac{3}{2}|A|$ we consider the lattice triangle $O(2 A-$ $B)(A+B)$ (Figure 4.b). This triangle is not obtuse angled and $A, 2 A \in$ $k[O(2 A-B)(A+B)]$. We assume that $A-B$ does not belong to $k[O(2 A-$ $B)(A+B)]$. Then $k[O(2 A-B)(A+B)]=r[O(2 A)(B)]=1$ holds $(L(\Gamma, 1)$ is of type $\left.L_{3}^{4}(\Gamma, 1)\right)$. Using (3) we have

$$
\begin{gather*}
\frac{4 a^{2} b^{2}\left(4 a^{2}+b^{2}-4 a b y\right)}{16 a^{2} b^{2}\left(1-y^{2}\right)} \\
=\frac{\left(a^{2}+b^{2}+2 a b y\right)\left(a^{2}+4 b^{2}-4 a b y\right)\left(4 a^{2}+b^{2}-4 a b y\right)}{36 a^{2} b^{2}\left(1-y^{2}\right)} \tag{4}
\end{gather*}
$$

A simple calculation shows that (4) holds only for $x=1$ and $y=\frac{1}{2}$. Then $\Gamma \equiv \Gamma_{3}$ (Figure 3.c).
4.3. If $|A+B-G| \leq \frac{3}{2}|A|$ and $A-B \in k[O(2 A-B)(A+B)]$, then we consider the lattice triangle $O A(2 B)$ (Figure 4.c). This triangle is not obtuse angled and $B, A+B \in k[O A(2 B)]$. The equality $r[O A(2 B)]=1=$ $r[O(2 A)(B)]$ holds $\left(L(\Gamma, 1)\right.$ is of type $\left.L_{3}^{4}(\Gamma, 1)\right)$. From this equality we get $\Gamma \equiv \Gamma_{3}$.
5. $k=4$. We consider the circle arrangement $L(\Gamma, 1)$. The lattice Γ is reduced by Minkowski. The circle arrangement $L(\Gamma, 1)$ is of type $L_{4}^{5}(\Gamma, 1)$. Therefore we have $1 \leq\left|\frac{5}{2} A\right|,\left|\frac{3}{2} A\right| \leq 1$,

$$
\begin{equation*}
1 \leq|2 B| \quad \text { and } \quad 2 \leq|2 A+B| \tag{5}
\end{equation*}
$$

The following closed lattice circles contain six lattice points and are circumcircles of not obtuse angled lattice triangles [8]:

Figure 4
$k_{1}=k[O(4 A)(2 A+B)]$ for $x \leq \frac{1}{2}$ and $0 \leq y \leq \frac{x}{2} ; k_{2}=k[O(3 A)(2 A+B)]$ for $\frac{1}{2} \leq x \leq \sqrt{\frac{1}{2}}$ and $0 \leq y \leq \frac{x}{2} ; k_{3}=k[O(2 A+B)(2 A-B)]$ for $\sqrt{\frac{1}{2}} \leq x \leq 1$ and $\frac{2 x^{2}-1}{4 x} \leq y \leq \frac{1}{4 x} ; k_{4}=k[O(2 A)(2 B)]$ for $\sqrt{\frac{1}{2}} \leq x \leq 1$ and $\frac{1}{4 x} \leq y \leq \frac{x}{2} ; k_{5}=k[O(2 A+B)(A+2 B)]$ for $\sqrt{\frac{1}{2}} \leq x \leq 1$ and $0 \leq y \leq \frac{2 x^{2}-1}{4 x}$. Let $H_{i}(i=1,2,3,4,5)$ denote the set of the points in the triangle $O P Q$ corresponding to the lattices where the open circle ($i=1,2,3,4,5$) contains three lattice points (Figure 5).

Figure 5

The circle arrangement $L(\Gamma, 1)$ is of type $L_{4}^{5}(\Gamma, 1)$. Therefore the radius r_{i} of k_{i} is the unit. It can be proved that $2>|2 A+B|$ for $i=1,2,3,5$ and $1>|2 B|$ for $i=4$ (Γ is reduced by Minkowski). This is in contradiction to (5) which means that the circle arrangements $L(\Gamma, 1)$ cannot be of type $L_{4}^{5}(\Gamma, 1)$.
6. $k=5$. Let the circle arrangement $L(\Gamma, 1)$ be of type $L_{5}^{6}(\Gamma, 1) . L(\Gamma, 1)$ is a 5 -fold covering. Therefore we consider the closed lattice circles which are circumcircles of not obtuse angled lattice triangles and contain 7 lattice points. In [12] one can find these lattice circles and the division of the triangle $O P Q$ in the set H_{i}, similarly as in 5 . The circle arrangement $L(\Gamma, 1)$ is a 6 -fold packing. In this case we have two types of open lattice circles. The first type is the open circle $k[\Delta j]$ which is the circumcircle of the not obtuse angled lattice triangle Δj and contains 4 lattice points. In case of the second type we have the open circle $k\left[O Z_{j}\right]$ which with lattice points O, Z_{j} where 5 lattice points belong to $k\left[O Z_{j}\right]$. In [9] one can find the necessary lattice circles and the division of the triangle $O P Q$ in the set \tilde{H}_{j}.

By using the results in [12] and [9] we have the following cases:
6.1. The lattice circle $k_{8}=k[O(5 A)(2 A+B)]$ for $0<x \leq \sqrt{\frac{2}{13}}$ and $0 \leq$ $y \leq \frac{x}{2}$ or $\sqrt{\frac{2}{13}} \leq x \leq \sqrt{\frac{1}{6}}$ and $0 \leq y \leq \frac{1-6 x^{2}}{x}$ satisfies the conditions in 6 in case of 5 -fold covering. Clearly, the lattice circle $\tilde{k}_{2}=k[O(3 A) B]$ is proper for $0 \leq x \leq \sqrt{\frac{2}{3}}$ and $0 \leq y \leq \frac{x}{2}$ or $\sqrt{\frac{2}{3}} \leq x \leq 1$ and $0 \leq y \leq \frac{1}{3 x}$ in case of a 6 -fold packing. We have $r_{8}=\tilde{r}_{2}=1$. (Otherwise the neighbourhood of the centres of k_{8} and \tilde{r}_{2} would be covered at least 7 times or at most 4 times.) It is clear that $\tilde{r}_{2}<r_{8}$. This is a contradiction.
6.2. The lattice circle $k_{7}=k[O(4 A)(2 A+B)]$ for $\sqrt{\frac{1}{6}} \leq x \leq \frac{1}{2}$ and $0 \leq y \leq \frac{6 x^{2}-1}{4 x}$ or $\frac{1}{2} \leq x \leq \sqrt{\frac{2}{7}}$ and $0 \leq y \leq \frac{2-7 x^{2}}{2 x}$ satisfies the conditions in 6 in case of a 5 -fold covering. The lattice circle $\tilde{k}_{2}=k[O(3 A) B]$ is proper for the above x and y in case of a 6 -fold packing. We have a contradiction as in 6.1.
6.3. For a 5 -fold covering we have the lattice circle $k_{6}=k[O(2 A+B)$ $(3 A-B)]$ in case $\sqrt{\frac{2}{13}} \leq x \leq \sqrt{\frac{1}{6}}$ and $\frac{1-6 x^{2}}{x} \leq y \leq \frac{x}{2}$ or $\sqrt{\frac{1}{6}} \leq x \leq \frac{1}{2}$ and $\frac{6 x^{2}-1}{4 x} \leq y \leq \frac{x}{2}$ or $\frac{1}{2} \leq x \leq \sqrt{\frac{2}{7}}$ and $\frac{2-7 x^{2}}{6 x} \leq y \leq \frac{1-x^{2}}{6 x}$ or $\sqrt{\frac{2}{7}} \leq x \leq \sqrt{\frac{2}{5}}$ and $\frac{7 x^{2}-2}{8 x} \leq y \leq \frac{1-x^{2}}{6 x}$. The lattice circle $\tilde{k}_{2}=k[O(3 A) B]$ is proper for the above x and y in case of a 6 -fold packing (see 6.1). It follows $1=r_{6}>r[O(3 A)(3 A-B)]=\tilde{r}_{2}=1$ from $3 A \in k_{6}$. This contradiction means that $L(\Gamma, 1)$ cannot be a circle arrangement of type $L_{5}^{6}(\Gamma, 1)$.
6.4. The lattice circle $k_{2}=k[O(2 A)(A+2 B)]$ for $\sqrt{\frac{2}{7}} \leq x \leq \sqrt{\frac{2}{5}}$ and $0 \leq y \leq \frac{7 x^{2}-2}{8 x}$ or $\sqrt{\frac{2}{5}} \leq x \leq \sqrt{\frac{1}{2}}$ and $0 \leq y \leq \frac{x}{4}$ satisfies the conditions in 6 in case of a 5 -fold covering. The lattice circle $\tilde{k}_{2}=k[O(3 A) B]$ is proper for $0 \leq x \leq \sqrt{\frac{2}{3}}$ and $0 \leq y \leq \frac{x}{2}$ or $\sqrt{\frac{2}{3}} \leq x \leq 1$ and $0 \leq y \leq \frac{1}{3 x}$ in case of a 6 -fold packing. We have $r_{2}=\tilde{r}_{2}=1$. A simple calculation shows that $\tilde{r}_{2}<r_{2}$. This is a contradiction.
6.5. We consider the lattice circle $k_{3}=k[O(2 A)(2 B)]$ for $\sqrt{\frac{2}{5}} \leq x \leq \sqrt{\frac{1}{2}}$ and $\frac{x}{4} \leq y \leq \frac{3 x^{2}-1}{2 x}$ or $\sqrt{\frac{1}{2}} \leq x \leq \sqrt{\frac{6}{11}}$ and $\frac{x}{4} \leq y \leq \frac{3-5 x^{2}}{2 x}$. This circle satisfies the conditions in 6 in case of a 5 -fold covering. For a 6 -fold packing the open lattice circle $\tilde{k}_{5}=k[(B-A)(A-B)]$ contains 5 lattice points for $0<x \leq 1$ and $0 \leq y \leq \frac{x}{2} .(2 A)(2 B)$ can be equal to the diameter of k_{3} only for $x=\sqrt{\frac{1}{2}}$ and $y=\frac{1}{2} \sqrt{\frac{1}{2}}$. In this case the lattice circle $\tilde{k}_{4}=k[O(2 A+B)(2 A-B)]$ satisfies the conditions for a 6 -fold packing and $\tilde{r}_{4}<r_{3}$ holds. Therefore $\tilde{r}_{5}<r_{3}$ or $\tilde{r}_{4}<r_{3}$ which is in contradiction to $\tilde{r}_{5}=\tilde{r}_{4}=r_{3}=1$.
6.6. We prove that the lattice circle $k_{4}=k[O(A+B)(3 A-B)]$ for $\frac{1}{2} \leq$ $x \leq \sqrt{\frac{2}{5}}$ and $\frac{1-x^{2}}{6 x} \leq y \leq \frac{x}{2}$ or $\sqrt{\frac{2}{5}} \leq x \leq \sqrt{\frac{1}{2}}$ and $\frac{3 x^{2}-1}{2 x} \leq y \leq \frac{x}{2}$ satisfies the conditions in 6 in case of the 5 -fold covering $\sqrt{\frac{1}{2}} \leq x \leq 1$ and $\frac{1-x^{2}}{2 x} \leq y \leq \frac{x}{2}$. For a 6 -fold packing we have the open lattice circle $\tilde{k}_{5}=k[(B-A)(A-B)]$ as in 6.5. The side $(A+B)(3 A-B)$ cannot be equal to the diameter of k_{4} (the scalar product $(A+B) \cdot(3 A-B)$ is positive). Then $1=\tilde{r}_{5}<r_{4}=1$ holds. This is a contradiction.
6.7. Let $\bar{H}_{1}=\left\{(x, y) \left\lvert\, \sqrt{\frac{1}{2}} \leq x \leq 1\right.,0 \leq y \leq \frac{1-x^{2}}{2 x}\right\}$. The lattice circle $k_{1}=k[O(3 A) B]$ satisfies the conditions in 6 for a 5 -fold covering in \bar{H}_{1}. Now let $\tilde{H}_{42}=\left\{(x, y) \left\lvert\, \sqrt{\frac{1}{2}} \leq x \leq 1\right.,0 \leq y \leq \frac{2 x^{2}-1}{4 x}\right\}, \quad \tilde{H}_{5}=$ $\left\{(x, y) \left\lvert\, \sqrt{\frac{1}{2}} \leq x \leq \sqrt{\frac{7}{12}}\right., \frac{3-4 x^{2}}{4 x} \leq y \leq \frac{x}{2}\right.$ and $\left.\sqrt{\frac{7}{12}} \leq x \leq 1, \frac{4 x^{2}+1}{20 x} \leq y \leq \frac{x}{2}\right\}$, $\tilde{H}_{6}=\left\{(x, y) \left\lvert\, \sqrt{\frac{1}{2}} \leq x \leq \sqrt{\frac{7}{12}}\right., \frac{2 x^{2}-1}{x} \leq y \leq \frac{3-4 x^{2}}{4 x}\right\}$,
$\tilde{H}_{7}=\left\{(x, y) \left\lvert\, \sqrt{\frac{1}{2}} \leq x \leq \sqrt{\frac{7}{12}}\right., \frac{2 x^{2}-1}{4 x} \leq y \leq \frac{2 x^{2}-1}{x}\right.$ and $\sqrt{\frac{7}{12}} \leq x \leq 1$, $\left.\frac{2 x^{2}-1}{4 x} \leq y \leq \frac{4 x^{2}+1}{20 x}\right\}$. The following lattice circles are proper for a 6 -fold
packing: $\tilde{k}_{4}=k[O(2 A+B)(2 A-B O)]$ for $\tilde{H}_{42} \cap \bar{H}_{1}, \tilde{k}_{5}=k[(B-A)(A-B O)]$ for $\tilde{H}_{5} \cap \bar{H}_{1}, \tilde{k}_{6}=k[O(3 A)(2 A+B O)]$ for $\tilde{H}_{6} \cap \bar{H}_{1}, \tilde{k}_{7}=k[O(2 A+$ $B)(A-B O)]$ for $\tilde{H}_{7} \cap \bar{H}_{1}$. It holds $r_{1}=\tilde{r}_{i}=1(i=4,5,6,7)$ for $\tilde{H}_{i} \cap \bar{H}_{1}$ $(i=42,5,6,7)\left(L(\Gamma, 1)\right.$ is of type $\left.L_{5}^{6}(\Gamma, 1)\right)$. Calculations show that $\tilde{r}_{i}<r_{1}$ $(i=4,5,6,7)$. (The calculations are somewhat lengthy and thus they will not be presented here.) This is a contradiction.

The cases 6.1-6.7 show that the circle arrangements $L(\Gamma, 1)$ cannot be of type $L_{4}^{5}(\Gamma, 1)$. This completes the proof.

Figure 6
Remark. Using the lattice circle arrangements $L\left(\Gamma_{1}, 1\right)$ and $L\left(\Gamma_{2}, 1\right)$ we can construct an infinite number of non-lattice circle arrangements, for example using reflections on a lattice line which are of type $L_{0}^{1}(\Gamma, 1)$ and $L_{1}^{2}(\Gamma, 1)$ (Figure 6.a, 6.b). We place the centers of circles at the vertices of a regular $\{6,3\}$ tessellation, the radii of the circles being equal to the side of the hexagons. This circle arrangement is of type $L_{1}^{2}(\Gamma, 1)$ (Figure 6.c).

Theorem 2. Assume that $1<h<2$ for Γ. Then there are no lattice arrangements of unit circles $L(\Gamma, 1)$ of type $L_{k}^{k+1}(\Gamma, 1)$ for $k>3$.

Proof. Bolle proved in [3] the equalities $\delta_{\Gamma}^{k+1}\left(B_{2}\right)=(k+1) \delta_{\Gamma}^{1}\left(B_{2}\right)=$ $(k+1) \frac{\pi}{\sqrt{12}}$ and $\vartheta_{\Gamma}^{k}\left(B_{2}\right)=k \vartheta_{\Gamma}^{1}\left(B_{2}\right)=k \frac{2 \pi}{\sqrt{27}}$ for Γ with $1<h<2$ and for $k \in N$. We obtain $\delta_{\Gamma}^{k+1}\left(B_{2}\right)<\vartheta_{\Gamma}^{k}\left(B_{2}\right)$ for $k>3$ which proves the statement.

Theorem 3. There are no lattice arrangements of unit circles $L(\Gamma, 1)$ of type $L_{k}^{k+1}(\Gamma, 1)$ for $k \geq 2 \cdot 10^{5}-1$.

Proof. Using the results in [3] we have the inequalities $\frac{\delta_{\Gamma}^{k+1}}{k+1}<1-$ $\frac{0.1}{(k+1)^{\frac{3}{4}}}$ for $k \geq 2 \cdot 10^{5}-1$ and $1+\frac{0.179}{k^{\frac{3}{4}}}<\frac{v_{\Gamma}^{k}}{k}$ for $k \geq 12000$. A simple calculation shows that $\delta_{\Gamma}^{k+1}\left(B_{2}\right)<\vartheta_{\Gamma}^{k}\left(B_{2}\right)$ for $k \geq 2 \cdot 10^{5}-1$.

References

[1] W. J. Blundon, Multiple covering of the plane by circles, Mathematika 4 (1957), 7-16.
[2] W. J. Blundon, Multiple packing of circles in the plane, J. London Math. Soc. 38 (1963), 176-182.
[3] U. Bolle, Mehrfache Kreisanordnungen in der euklidischen Ebene, Dissertation, Univ. Dortmund, 1976.
[4] T. Dalenius, J. Hájek and S. Zubrzycki, On plane sampling and related geometrical problems, Proc. 4 th Berkeley Symposium on Mathematical Statistics and Probability I (1961), 125-150.
[5] L. Fejes Tóth, Lagerungen in der Ebene, auf der Kugel und im Raum, 2. Auflage, Springer Verlag, Berlin - Heidelberg - New York, 1976.
[6] A. HaAs, Die dünnste siebenfache gitterförmige Überdeckung der Ebene durch kongruente Kreise, Dissertation, Wien, 1976.
[7] A. Heppes, Mehrfache gitterförmige Kreislagerungen in der Ebene, Acta Math. Hungar. 10 (1959), 141-148.
[8] J. Horváth, Lockere gitterförmige k-fache Kreis- und Kugelüberdeckungen, Beiträge zur Alg. und Geom. 20 (1985), 59-95.
[9] J. Horváth, N. N. Yakovlev and Á. H. Temesvári, A method for finding the densest lattice k-fold packing of circles, Mat. Zametki 41/5 (1987), 625-636, (in Russian): Mat. Notes 41 (1987), 349-355.
[10] R. Kershner, The number of circles covering a set, Amer. J. Math. 61 (1939), 665-671.
[11] H. Subak, Mehrfache gitterförmige berdeckungen der Ebene durch Kreise, Dissertation, Wien, 1960.
[12] Á. H. Temesvári, Die dünnste gitterförmige 5-fache Kreisüberdeckung der Ebene, Studia Sci. Math. Hung. 19 (1984), 285-298.
[13] Á. H. Temesvári, Die dünnste gitterförmige 6 -fache Kreisüberdeckung, BDTF Tud. Közl. (Term. Tud.) IX (1992), 93-112.
[14] Á. H. Temesvári, Die dünnste gitterförmige 7 -fache Kreisüberdeckung, BDTF Tud. Közl. (Term. Tud.) IX (1992), 113-126.
[15] Á. H. Temesvári, Die dünnste gitterförmige 8-fache Kreisüberdeckung, Studia Sci. Math. Hung. 29 (1994), 323-340.
[16] Á. H. TemesvÁri, Die dichteste gitterförmige 9-fache Kreispackung, Rad Hrvatske Akad. Znan. Umj. Mat. (467) 11 (1994), 95-110.
[17] Á. H. Temesvári and A. VÉGh, Die dichteste gitterförmige 10-fache Kreispackung, BDTF Tud. Közl., (Term. Tud.) 6 (1998), 3-20.
[18] N. N. Yakovlev, On the densest lattice 8-packing on the plane, Vestn. Mosk. Gos. Univ. Ser. 1. 5 (1983), 8-16 (in Russian).

ÁGOTA H. TEMESVÁRI
institute of mathematics
UNIVERSITY OF WEST HUNGARY
SOPRON
HUNGARY
(Received September 3, 2004; revised March 1, 2005)

