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On problem of multiple lattice circle arrangements

By ÁGOTA H. TEMESVÁRI (Sopron)

Dedicated to Professor J. Horváth on his 70th birthday

Abstract. We deal with lattice circle arrangements which form a k-fold
covering (with closed circles) and a (k +1)-fold packing (of open circles) for some
suitable values of k. The centres of these special circle arrangements give the
points of regular plane patterns yielding the least limiting variance in case of a
special plane stochastic process.

1. Introduction

A system of congruent open circles forms a k-fold packing if each point
of the plane belongs to at most k circles of the system. Analogously, a sys-
tem of congruent closed circles is a k-fold covering if each point of the plane
belongs to at least k circles of the system. The notion of multiple packing
and covering was introduced by L. Fejes Tóth. A circle arrangement
is called a lattice arrangement if the centers of the circles form a plane
lattice.

The density of a multiple circle packing and covering can be defined
analogously to the simple packing and covering. The densest simple lattice
packing, the thinnest simple lattice covering, the densest 2-fold lattice
packing and one of the densest 4-fold lattice packings (see Figure 1) have
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an interesting property. The circles in these circle arrangements form a
k-fold covering (with closed circles) and a (k + 1)-fold packing (of open
circles) for some suitable values of k.

Figure 1

The centres of these special circle arrangements give the points of
regular plane patterns yielding the least limiting variance in case of a
special plane stochastic process [4].

In this paper we give the possible lattice circle arrangements with the
above property for 0 ≤ k ≤ 8 and k ≥ 2 · 105 − 1. We also give some
non-lattice circle arrangements of the above type.

2. Notations, definitions

The origin of the plane lattice Γ will be denoted by O (Figure 2.a).
Denote by X the vector �OX and its endpoint. The basis �OA and �OB of
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Γ is reduced by Minkowski, i.e.

|A| ≤ |B| ≤ |B − A|, 0 ≤ ∠(AOB) ≤ π

2
. (1)

With the notations a = |A| b = |B| x = a
b and α = ∠(AOB) (1) goes over

into
0 < x ≤ 1, 0 ≤ cos α ≤ x

2
. (2)

We consider a rectangular cartesian coordinate system x, y = cos α.
A point of the triangle OPQ with O(0, 0), P (1, 0), Q

(
1, 1

2

)
(Figure 2.b)

can be ordered to the lattice Γ because of the inequalities (2), and a lattice
belongs to a point (x, y) �= (0, 0) of the triangle OPQ (up to a similarity).

Figure 2

Let T (Γ) be the area of the fundamental parallelogram and h its height
perpendicular to OA.

Let x, y, z be the sides of a triangle and T its area. Then the radius r

of the circumcircle is
r =

xyz

4T
. (3)

In what follows we denote by L(Γ, R) the circle arrangement, where Γ
is the lattice of the centers of the circles, and R is the radius of the circles.
The lattice circle arrangement L(Γ, R) is of type Lk+1

k (Γ, R) if the circles
form a k-fold covering (with closed circles) and a (k + 1)-fold packing (of
open circles).

We denote by δp(B2) and δp
Γ(B2) the densities of the densest p-fold

packings of open congruent circles in the general case and in the lattice
case. We use the notations ϑq(B2) and ϑq

Γ(B2) for the densities of the
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thinnest q-fold coverings with closed congruent circles in the general case
and in the lattice case.

Let k[XY Z] be the circumcircle of the triangle XY Z and r[XY Z] its
radius. We denote by k[XY ] the circle with the diameter XY . The radius
of k[XY ] is r[XY ].

3. Results

3.1. The lattice Γ1 is reduced by Minkowski and

2 ≤ |A| .

The circle arrangements of unit circles L(Γ1, 1) are of type L1
0(Γ1, 1)

(Figure 3.a).

3.2. The lattice Γ2 is reduced by Minkowski and

1 ≤ |A| ≤
√

3 and r[OAB] = 1.

The circle arrangements of unit circles L(Γ2, 1) are of type L2
1(Γ2, 1)

(Figure 3.b).

3.3. The lattice Γ3 is reduced by Minkowski and

|A| = |B| = |B − A| = 1.

The circle arrangement of unit circles L(Γ3, 1) is of type L4
3(Γ3, 1)

(Figure 3.c).

Theorem 1. If the lattice arrangement of unit circles L(Γ, 1) is of

type Lk+1
k (Γ, 1) and k ≤ 8, then Γ ≡ Γ1 or Γ ≡ Γ2 or Γ ≡ Γ3.

Proof. The densenst k-fold lattice packings of congruent open circles
are known for k ≤ 10 [5], [7], [2], [3], [18], [16], [17] and the thinnest k-fold
lattice coverings with congruent closed circles were determined for k ≤ 8
[10], [1], [11]–[13], [3], [6], [14], [15]. We have the inequality δk+1

Γ (B2) <

ϑk
Γ(B2) for 6 ≤ k ≤ 8 which shows that lattice arrangements of unit circles

L(Γ, 1) of type Lk+1
k (Γ, 1) can exist for k ≤ 5.

1. k = 0. The statement is trivial.
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2. k = 1. The lattice Γ of the circle arrangement is reduced by Minkowski.
The lattice triangle OAB is not obtuse angled and the open lattice circle
k[OAB] does not contain lattice points. If 1 > |A| holds, then for example
the neighbourhood of the lattice point A is covered at least 3 times. In
case of r[OAB] < 1 the neighbourhood of the centre of k[OAB] would be
covered at least 3 times. If r[OAB] > 1, then the neighbourhood of the
centre of k[OAB] is not covered. Our circle arrangement L(Γ, 1) is of type
L2

1(Γ, 1). Therefore we have 1 ≤ |A| and r[OAB] = 1. The regular triangle
inscribed in the circle k[OAB] with unit radius has maximal perimeter
among the triangles inscribed in k[OAB], namely the perimeter 3

√
3. It

follows |A| ≤ √
3. Then we have Γ ≡ Γ2 which was to be proved.

3. k = 2. The lattice triangle O(2A)(A + B) is not obtuse angled and
the open lattice circle k[O(2A)(A + B)] contains only one lattice point
[8]. Our circle arrangement L(Γ, 1) is of type L3

2(Γ, 1). Therefore we have
r[O(2A)(A + B)] = 1 and 2 ≤ |3A|. Let F be the midpoint of O(A + B).
The neighbourhood of F is covered at least 4 times if |A + B| < 2. If
|A + B| ≥ 2 holds, then we have r[O(2A)(A + B)] > 1. This contradiction
means that the circle arrangements L(Γ, 1) can not be of type L3

2(Γ, 1).

4. k = 3. We consider the circle arrangement L(Γ, 1). The lattice Γ
is reduced by Minkowski. Therefore the lattice triangle O(2A)(B) is not
obtuse angled and the open lattice circle k[O(2A)(A + B)] contains only
two lattice points namely A and A + B. Our circle arrangement L(Γ, 1)
is of type L4

3(Γ, 1). Therefore we have r[O(2A)(B)] = 1, 1 ≤ |2A| and
1 ≤ |B|.

Figure 3
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The circle arrangement L(Γ, 1) is a 3-fold covering with closed unit
circles. We distinguish three cases according to the lattice circles which
contain two lattice points of Γ in their interiors and are circumcircles of
not obtuse angled lattice triangles [8].

4.1. Let G be the midpoint of A(2A). If |A + B − G| ≥ 3
2 |A|, then the

lattice triangle O(3A)(A + B) is not obtuse angled and the open circle
k[O(3A)(A + B)] contains the lattice points A and 2A (Figure 4.a). We
have the inequality r[O(3A)(A + B)] > r[O(2A)(B)] = 1. Thus the neigh-
bourhood of the centre of k[O(3A)(A + B)] is covered at least five times,
that means L(Γ, 1) is not of type L4

3(Γ, 1).

4.2. In case of |A+ B −G| ≤ 3
2 |A| we consider the lattice triangle O(2A−

B)(A + B) (Figure 4.b). This triangle is not obtuse angled and A, 2A ∈
k[O(2A−B)(A+B)]. We assume that A−B does not belong to k[O(2A−
B)(A+B)]. Then k[O(2A−B)(A+B)] = r[O(2A)(B)] = 1 holds (L(Γ, 1)
is of type L4

3(Γ, 1)). Using (3) we have

4a2b2(4a2 + b2 − 4aby)
16a2b2(1 − y2)

=
(a2 + b2 + 2aby)(a2 + 4b2 − 4aby)(4a2 + b2 − 4aby)

36a2b2(1 − y2)
.

(4)

A simple calculation shows that (4) holds only for x = 1 and y = 1
2 . Then

Γ ≡ Γ3 (Figure 3.c).

4.3. If |A + B − G| ≤ 3
2 |A| and A − B ∈ k[O(2A − B)(A + B)], then

we consider the lattice triangle OA(2B) (Figure 4.c). This triangle is not
obtuse angled and B, A+B ∈ k[OA(2B)]. The equality r[OA(2B)] = 1 =
r[O(2A)(B)] holds (L(Γ, 1) is of type L4

3(Γ, 1)). From this equality we get
Γ ≡ Γ3.

5. k = 4. We consider the circle arrangement L(Γ, 1). The lattice Γ is
reduced by Minkowski. The circle arrangement L(Γ, 1) is of type L5

4(Γ, 1).
Therefore we have 1 ≤ ∣∣5

2A
∣∣, ∣∣3

2A
∣∣ ≤ 1,

1 ≤ |2B| and 2 ≤ |2A + B|. (5)

The following closed lattice circles contain six lattice points and are
circumcircles of not obtuse angled lattice triangles [8]:
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Figure 4

k1 = k[O(4A)(2A + B)] for x ≤ 1
2 and 0 ≤ y ≤ x

2 ; k2 = k[O(3A)(2A + B)]

for 1
2 ≤ x ≤

√
1
2 and 0 ≤ y ≤ x

2 ; k3 = k[O(2A + B)(2A − B)] for√
1
2 ≤ x ≤ 1 and 2x2−1

4x ≤ y ≤ 1
4x ; k4 = k[O(2A)(2B)] for

√
1
2 ≤ x ≤ 1

and 1
4x ≤ y ≤ x

2 ; k5 = k[O(2A + B)(A + 2B)] for
√

1
2 ≤ x ≤ 1 and

0 ≤ y ≤ 2x2−1
4x . Let Hi (i = 1, 2, 3, 4, 5) denote the set of the points

in the triangle OPQ corresponding to the lattices where the open circle
(i = 1, 2, 3, 4, 5) contains three lattice points (Figure 5).

Figure 5

The circle arrangement L(Γ, 1) is of type L5
4(Γ, 1). Therefore the ra-

dius ri of ki is the unit. It can be proved that 2 > |2A+B| for i = 1, 2, 3, 5
and 1 > |2B| for i = 4 (Γ is reduced by Minkowski ). This is in contradic-
tion to (5) which means that the circle arrangements L(Γ, 1) cannot be of
type L5

4(Γ, 1).
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6. k = 5. Let the circle arrangement L(Γ, 1) be of type L6
5(Γ, 1). L(Γ, 1) is

a 5-fold covering. Therefore we consider the closed lattice circles which are
circumcircles of not obtuse angled lattice triangles and contain 7 lattice
points. In [12] one can find these lattice circles and the division of the
triangle OPQ in the set Hi, similarly as in 5. The circle arrangement
L(Γ, 1) is a 6-fold packing. In this case we have two types of open lattice
circles. The first type is the open circle k[∆j] which is the circumcircle
of the not obtuse angled lattice triangle ∆j and contains 4 lattice points.
In case of the second type we have the open circle k[OZj ] which with lattice
points O, Zj where 5 lattice points belong to k[OZj ]. In [9] one can find
the necessary lattice circles and the division of the triangle OPQ in the
set H̃j.

By using the results in [12] and [9] we have the following cases:

6.1. The lattice circle k8 = k[O(5A)(2A + B)] for 0 < x ≤
√

2
13 and 0 ≤

y ≤ x
2 or

√
2
13 ≤ x ≤

√
1
6 and 0 ≤ y ≤ 1−6x2

x satisfies the conditions in 6 in

case of 5-fold covering. Clearly, the lattice circle k̃2 = k[O(3A)B] is proper

for 0 ≤ x ≤
√

2
3 and 0 ≤ y ≤ x

2 or
√

2
3 ≤ x ≤ 1 and 0 ≤ y ≤ 1

3x in case
of a 6-fold packing. We have r8 = r̃2 = 1. (Otherwise the neighbourhood
of the centres of k8 and r̃2 would be covered at least 7 times or at most 4
times.) It is clear that r̃2 < r8. This is a contradiction.

6.2. The lattice circle k7 = k[O(4A)(2A + B)] for
√

1
6 ≤ x ≤ 1

2 and

0 ≤ y ≤ 6x2−1
4x or 1

2 ≤ x ≤
√

2
7 and 0 ≤ y ≤ 2−7x2

2x satisfies the conditions

in 6 in case of a 5-fold covering. The lattice circle k̃2 = k[O(3A)B] is proper
for the above x and y in case of a 6-fold packing. We have a contradiction
as in 6.1.

6.3. For a 5-fold covering we have the lattice circle k6 = k[O(2A + B)

(3A−B)] in case
√

2
13 ≤ x ≤

√
1
6 and 1−6x2

x ≤ y ≤ x
2 or

√
1
6 ≤ x ≤ 1

2 and

6x2−1
4x ≤ y ≤ x

2 or 1
2 ≤ x ≤

√
2
7 and 2−7x2

6x ≤ y ≤ 1−x2

6x or
√

2
7 ≤ x ≤

√
2
5

and 7x2−2
8x ≤ y ≤ 1−x2

6x . The lattice circle k̃2 = k[O(3A)B] is proper
for the above x and y in case of a 6-fold packing (see 6.1). It follows
1 = r6 > r[O(3A)(3A − B)] = r̃2 = 1 from 3A ∈ k6. This contradiction
means that L(Γ, 1) cannot be a circle arrangement of type L6

5(Γ, 1).
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6.4. The lattice circle k2 = k[O(2A)(A + 2B)] for
√

2
7 ≤ x ≤

√
2
5 and

0 ≤ y ≤ 7x2−2
8x or

√
2
5 ≤ x ≤

√
1
2 and 0 ≤ y ≤ x

4 satisfies the conditions in

6 in case of a 5-fold covering. The lattice circle k̃2 = k[O(3A)B] is proper

for 0 ≤ x ≤
√

2
3 and 0 ≤ y ≤ x

2 or
√

2
3 ≤ x ≤ 1 and 0 ≤ y ≤ 1

3x in case of
a 6-fold packing. We have r2 = r̃2 = 1. A simple calculation shows that
r̃2 < r2. This is a contradiction.

6.5. We consider the lattice circle k3 = k[O(2A)(2B)] for
√

2
5 ≤ x ≤

√
1
2

and x
4 ≤ y ≤ 3x2−1

2x or
√

1
2 ≤ x ≤

√
6
11 and x

4 ≤ y ≤ 3−5x2

2x . This circle
satisfies the conditions in 6 in case of a 5-fold covering. For a 6-fold packing
the open lattice circle k̃5 = k[(B − A)(A − B)] contains 5 lattice points
for 0 < x ≤ 1 and 0 ≤ y ≤ x

2 . (2A)(2B) can be equal to the diameter

of k3 only for x =
√

1
2 and y = 1

2

√
1
2 . In this case the lattice circle

k̃4 = k[O(2A + B)(2A − B)] satisfies the conditions for a 6-fold packing
and r̃4 < r3 holds. Therefore r̃5 < r3 or r̃4 < r3 which is in contradiction
to r̃5 = r̃4 = r3 = 1.

6.6. We prove that the lattice circle k4 = k[O(A + B)(3A − B)] for 1
2 ≤

x ≤
√

2
5 and 1−x2

6x ≤ y ≤ x
2 or

√
2
5 ≤ x ≤

√
1
2 and 3x2−1

2x ≤ y ≤ x
2

satisfies the conditions in 6 in case of the 5-fold covering
√

1
2 ≤ x ≤ 1

and 1−x2

2x ≤ y ≤ x
2 . For a 6-fold packing we have the open lattice circle

k̃5 = k[(B − A)(A − B)] as in 6.5. The side (A + B)(3A − B) cannot
be equal to the diameter of k4 (the scalar product (A + B).(3A − B) is
positive). Then 1 = r̃5 < r4 = 1 holds. This is a contradiction.

6.7. Let H1 =
{
(x, y)

∣∣
√

1
2 ≤ x ≤ 1, 0 ≤ y ≤ 1−x2

2x

}
. The lattice cir-

cle k1 = k[O(3A)B] satisfies the conditions in 6 for a 5-fold covering

in H1. Now let H̃42 =
{

(x, y)
∣∣
√

1
2 ≤ x ≤ 1, 0 ≤ y ≤ 2x2−1

4x

}
, H̃5 ={

(x, y)
∣∣
√

1
2 ≤x≤

√
7
12 , 3−4x2

4x ≤ y ≤ x
2 and

√
7
12 ≤x≤ 1, 4x2+1

20x ≤ y ≤ x
2

}
,

H̃6 =
{

(x, y)
∣∣
√

1
2 ≤ x ≤

√
7
12 , 2x2−1

x ≤ y ≤ 3−4x2

4x

}
,

H̃7 =
{

(x, y)
∣∣
√

1
2 ≤ x ≤

√
7
12 , 2x2−1

4x ≤ y ≤ 2x2−1
x and

√
7
12 ≤ x ≤ 1,

2x2−1
4x ≤ y ≤ 4x2+1

20x

}
. The following lattice circles are proper for a 6-fold
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packing: k̃4=k[O(2A+B)(2A−BO)] for H̃42 ∩H1, k̃5= k[(B−A)(A−BO)]
for H̃5 ∩ H1, k̃6 = k[O(3A)(2A + BO)] for H̃6 ∩ H1, k̃7 = k[O(2A +
B)(A − BO)] for H̃7 ∩ H1. It holds r1 = r̃i = 1 (i = 4, 5, 6, 7) for H̃i ∩ H1

(i = 42, 5, 6, 7) (L(Γ, 1) is of type L6
5(Γ, 1)). Calculations show that r̃i < r1

(i = 4, 5, 6, 7). (The calculations are somewhat lengthy and thus they will
not be presented here.) This is a contradiction.

The cases 6.1–6.7 show that the circle arrangements L(Γ, 1) cannot be
of type L5

4(Γ, 1). This completes the proof. �

Figure 6

Remark. Using the lattice circle arrangements L(Γ1, 1) and L(Γ2, 1)
we can construct an infinite number of non-lattice circle arrangements, for
example using reflections on a lattice line which are of type L1

0(Γ, 1) and
L2

1(Γ, 1) (Figure 6.a, 6.b). We place the centers of circles at the vertices of
a regular {6, 3} tessellation, the radii of the circles being equal to the side
of the hexagons. This circle arrangement is of type L2

1(Γ, 1) (Figure 6.c).

Theorem 2. Assume that 1 < h < 2 for Γ. Then there are no lattice

arrangements of unit circles L(Γ, 1) of type Lk+1
k (Γ, 1) for k > 3.

Proof. Bolle proved in [3] the equalities δk+1
Γ (B2) = (k+1)δ1

Γ(B2) =
(k + 1) π√

12
and ϑk

Γ(B2) = kϑ1
Γ(B2) = k 2π√

27
for Γ with 1 < h < 2 and for

k ∈ N . We obtain δk+1
Γ (B2) < ϑk

Γ(B2) for k > 3 which proves the state-
ment. �

Theorem 3. There are no lattice arrangements of unit circles L(Γ, 1)
of type Lk+1

k (Γ, 1) for k ≥ 2 · 105 − 1.
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Proof. Using the results in [3] we have the inequalities δk+1
Γ
k+1 < 1 −

0.1

(k+1)
3
4

for k ≥ 2 · 105 − 1 and 1 + 0.179

k
3
4

<
ϑk

Γ
k for k ≥ 12000. A simple

calculation shows that δk+1
Γ (B2) < ϑk

Γ(B2) for k ≥ 2 · 105 − 1. �
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kongruente Kreise, Dissertation, Wien, 1976.
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[9] J. Horváth, N. N. Yakovlev and Á. H. Temesvári, A method for finding
the densest lattice k-fold packing of circles, Mat. Zametki 41/5 (1987), 625–636,
(in Russian): Mat. Notes 41 (1987), 349–355.

[10] R. Kershner, The number of circles covering a set, Amer. J. Math. 61 (1939),
665–671.
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[16] Á. H. Temesvári, Die dichteste gitterförmige 9-fache Kreispackung, Rad Hrvatske
Akad. Znan. Umj. Mat. (467) 11 (1994), 95–110.
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