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Congruence lattices of modular lattices

By E. T. SCHMIDT (Budapest)

1. Introduction

In 1974 I have proved the following (see [1]):

Theorem. Every finite distributive lattice is the congruence lattice of
some modular lattice.

In this note we give a short, new proof of this result. We will use two
well-known lattice constructions.

2. Preliminaries

Let L be a lattice and let P be a partially ordered set, LP denotes the
lattice of all order preserving maps of P to L, partially ordered by f ≤ g
if and only if f(x) ≤ g(x) for all x ∈ P . Then LP is a special subdirect
power of L. If L is the two element lattice 2 then 2P is a distributive
lattice.

Every finite distributive lattice D can be represented in this form,
where P is the dual of the poset of all nonzero join-irreducible element of
D. Let R be a well-ordered chain, Rd denotes the dual of R. Let R + 1
denote the lattice obtained from R by adjoining a new unit element.

Lemma 1. Let R be a well-ordered chain, then 2Rd ∼= R + 1.

If a ∈ L then ā denotes the corresponding constant mapping: ā(x) = a
for all x ∈ P . The elements ā (a ∈ L) form a sublattice of LP , which is
obviously isomorphic to L; we identify L with this sublattice. Let [a, b]
be a prime-interval of L, then the correspondig interval [ā, b̄] of LP is
isomorphic to 2P .

M3 denotes the five-element modular nondistributive lattice. The
elements of M3 are o < a, b, c < i. In [2] it was proved the following:
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Lemma 2. Every congruence relation of MP
3 is determined by its

restriction to the ideal (ā], and conversely every congruence relation of
this ideal can be extended to MP

3 .

If P is a cain, then MP
3 can be easily visualized. Consider the follow-

ing three sublattices of M3: E = {o, i}, F = {o, c, i} and G = {o, a, b, i}.
Then EP , FP , GP are sublattices of MP

3 and EP = FP ∩ GP holds.
Moreover, it is easy to see that EP ∼= 2P , GP ∼= 2P × 2P , while FP is
isomorphic to the following lattice {(x, y) ∈ 2P × 2P : x ≤ y}. GP is a
“square” and FP is a “half square”. FP is called a flap. If P is three
element chain that MP

3 is illustrated by Figure 1. (The elements of FP

are the black circles.) It is clear, that MP
3 = FP ∪GP .

Figure 1.

Let C1 and C2 be two chains. The direct product C1×C2 we shall call
the “grid”; its elements are the “grid elements”. We augment the grid as
follows: let a, b ∈ C1, a < b, c, d ∈ C2, c < d and assume that the intervals
are isomorphic. Then we add a flap to [a, b]×[c, d] = [(a, c), (b, d)] such that
this flap with the direct product [a, b]× [c, d] is a lattice isomorphic to MP

3
where P denotes the dual of the poset {x : a ≤ x < b}. If [a, b] and [c, d]
are prime-intervals then in the lattice C1 ×C2 the interval [(a, c), (b, d)] is
a prime square. In this case we add to C1 × C2 only one new element m,
and (a, c), (a, d), (b, c), (b, d),m form a sublattice isomorphic to M3 (the
“flap” contains three elements: (a, c), (b, d) and m). If we have a family of
disjunct squares then we can apply this augumentation simultaneously.
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Te second construction is the Hall-Dilworth gluing: if a nonempty
filter F of a lattice L0 is isomorphic to an ideal I of a lattice L1, let L be
the union of L0 and L1 with the elements of F and I identified via the
isomorphism. L can be ordered with the transitive closure of the union of
the orders on L0 and L1. Then under this order L is a lattice; L0 is an
ideal of L and L1 is a filter of L. If L0 and L1 are both modular then L is
a modular lattice. A congruence relation Θ of F = I can be extended to
L if and only if Θ can be extended to L0 and L1.

Te ordinary sum of the lattices K0 and K1 will be denoted by K0⊕K1,
we place K1 on the top of K0 and identify the unit element of K0 with
the zero of K1. (This is obviously a special Hall-Dilworth gluing, where I
is the zero element of K0 and F is the unit element of K1).

It is easy to see that the augmented grid can be defined as repeated
gluing of lattices which are either isomorphic to the direct product of two
chains or they are isomorphic to MR

3 for some chain R.

3. Proof

For every finite poset P we have to construct a modular lattice LP

such that Con LP
∼= 2P . We use induction on the size of P . If |P | = 1,

i.e. 2P ∼= 2, then LP is the two element chain, 2. We construct LP having
the following two properties:
(1) LP has an element aP with a complement a′P , and the filter [aP ) is a

well-ordered chain.
(2) LP contains a subchain aP = b0 < b1 < · · · < bn = 1p, where n = |P |

and the irreducible congruences of LP are exactly the congruences in
the form Θ(bi−1, bi) (i = 1, 2, . . . , n).

It is clear, that for |P | = 1 the lattice L1
∼= 2 satisfies these properti-

es. Let p be a minimal element of P , where |P | = n > 1. Then by our
assumption for the poset Q = P \ {p} there exists a modular lattice LQ

satisfying (1), (2) and Con LQ
∼= 2Q. The element aQ is given in (1).

By condition (2) LQ contains a chain aQ = b0 < b1 < · · · < bn−1 =
1Q, and the join-irreducible congruences of LQ are the principal congru-
ences Θ(bk−1, bk) (k = 1, 2, . . . , n − 1), consequently we have a bijection
ϕ([bk−1, bk]) = pk ∈ Q, the map ϕ is called a coloring, pk is the color of the
interval [bk−1, bk]. Assume that pk1 , pk2 , . . . , pkr , are the covers of p in the
poset P , i.e. p ≺ pkj (j = 1, 2, . . . , r). Let C be the chain [aQ) ⊆ LQ. Then
aQ = b0 < b1 < · · · < bn−1 = 1Q is a subchain of C. For every natural
number i let Ci be a chain isomorphic to [bk1−1, bk1 ]⊕· · ·⊕ [bkr−1, bkr ] and
bi
k denotes the image of bk under this isomorphism. Finally, we consider

the ordinary sum of these chains with a new unit element 1∗ adjointed, i.e.
C = {C0 ⊕ C1 ⊕ C2 ⊕ . . . } ∪ {1∗}.

We extend ϕ to C as follows: ϕ([bi
k−1, b

i
k]) = pk ∈ Q for i = 0, 1, 2 . . . .
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Consider the grid C×C and for every i and k the square [(bi
k−1, bk−1),

(bi
k, bk)] = [bi

k−1, b
i
k] × [bk−1, bk]. By the definition of ϕ, ϕ([bi

k−1, b
i
k]) =

ϕ([bk−1, bk]) = pk, i.e. this is a monochromatic square. By Lemma 1 there
exists a poset Pk such that [bk−1, bk] ∼= 2Pk (indeed Pk is the dual of the
chain {x ∈ [bk−1, bk] : x < bk}). We extend all monochromatic squares to
MPk

3 as described in paragraph 2 for all k ∈ {k1, k2, . . . , kr} (don’t forget
that pk1 , pk2 , . . . , pkr are the covers of p), the resulting lattice is Cw.

In the lattice Cw the interval [(b0
k0

, b0), (b0
k0

, bn−1)] is isomorphic to C.
This interval is an ideal of Cw. On the other hand C is a filter of LQ.
Now, we apply the Hall-Dilworth gluing for the lattices LQ and Cw, we
obtain the lattice T . Then (b0

k0
, bk) is identified with bk. (See Figure 2.)

Figure 2.

Lemma 3. Con T ∼= 2P .

Proof. We determine the irreducible congruence relations of T . By
Lemma 2 every congruence relation of Cw is determined by its projec-
tions to C and C. On the other hand every congruence relation of LQ is
determined by its restriction to filter C = [aQ). Then we have:
(∗) Every congruence relation of T is determined by its restriction to the

subchains C and C.
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Let Θ be an irreducible congruence relation of T . We distinguish two
cases:

Case 1. (1∗, b0) 6≡ (c, b0)(Θ) for all c ∈ C. If bk−1 ≤ x < y ≤ bk for
some k ∈ {k1, k2, . . . , kr} in the chain C and (x, b0) ≡ (y, b0)(Θ) then by
Lemma 2 (b0

k0
, x) ≡ (b0

k0
, y)(Θ) holds, i.e. Θ is determined by its restriction

to C. This proves that Θ is the extension of a congruence relation in the
form Θ(bk−1, bk) of LQ, i.e. Θ = Θ̄(bk−1, bk).

It is easy to see that every Θ = Θ(bk−1, bk) can be extended to T . We
describe the Θ classes.

If k ∈ {k1, k2, . . . , kr} i.e. pk is a cover of p in the poset P then the
nontrivial Θ–classes on Cw are the intervals: [(bi

k−1, x), (bi
k, x)], [(y, bk−1),

(y, bk)] and the monochromatic squares [(bi
k−1, bk−1), (bi

k, bk)], where x ∈
C, y ∈ C.

If k 6∈ {k1, k2, . . . , kr} then the nontrivial Θ–classes on Cw are the
intervals [(y, bk−1), (y, bk)].

It is easy to prove that these relations are indeed congruences.
Case 2. (1∗, b0) ≡ (c, b0)(Θ) for some c ∈ C, c < 1∗. Then by the de-

finition of C there exists a natural number i, with the property: c ∈ Ci−1 ⊆
C. In this case (bi

k, b0) ≡ (bi
k−1, b0)(Θ) for k ∈ {k1, . . . , kr}, i.e. (1∗, b0) ≡

(b0
k0

, b0) = aQ(Θ) and (b0
k0

, bk) ≡ (b0
k0

, bk−1)(Θ). This proves that Θ ≥
Θ̄(bk−1, bk) for all k ∈ {k1, . . . , kr}, and Θp = Θ((b0

k0
, b0), (1∗, b0)). Denote

this congruence relation by Θp then we have

Θ ≥ Θ̄(bk−1, bk) if and only if k ∈ {k1, k2, . . . , kr}.
ϕ can be extended on the following way: ϕ([(b0

k0
, b0), (1∗, b0)]) = p. Now

ϕ is a bijection between J(Con T ) and P d, i.e. Con T ∼= 2P .

The lattice T does not satisfy condition (2), therefore we define LP

as an extension of T .
The chain C can be represented in the form 2Rd

with a well-ordered
chain R. Let 0T be the zero element of T . First we consider the direct
product S0

∼= [0T , aQ]×2Rd

. This lattice has the elements (aQ, 0), (0T , 1),
(aQ, 1), where 0 is the zero of 2Rd

and 1 is the unit element of 2Rd

. M3 has
the canonical embedding intoMRd

3 , i.e. ō < ā, b̄, c̄ < ī is a sublattic ofMRd

3

isomorphic to M3. The ideal [ō, b̄] of MRd

3 is isomorphic to 2Rd

and the
filter [(aq, 0)) of S is isomorphic to 2Rd

. Then we apply the Hall-Dilworth
gluing construction for MRd

3 and S0. The resulting lattice is S. Finally
we apply the Hall-Dilworth gluing construction for the lattice S and T as
follows: the ideal ((1∗, b0)] of T and the filter [(0T , 1)) of S are isomorphic.
Then we identify by the gluing the elements b̄ ∈ S and aQ ∈ T . (see
Figure 3.). This lattice is LP . By Lemma 2. b̄ ≡ 1̄(Θ) iff ā ≡ 1̄(Θ), i.e.
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Θ(ō, 1̄) = Θp. Let ap be the element ā then the chain required in condition
(2) is the following: aP = b′0, b′1 = aP ∨b0, b′2 = aP ∨b1, . . . , b′n = aP ∨bn−1,
i.e. we have a lattice LP such that Con LP

∼= 2P and conditions (1), (2)
are satisfied.

Figure 3.
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