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On generalized h-recurrent Finsler
connection with deflection and torsion

By U. P. SINGH (Gorakhpur), R. K. SRIVASTAVA (Gorakhpur)
and B. N. PRASAD (Gorakhpur)

Summary. In 1934 E. Cartan [1] published his monograph ‘Les espaces de
Finsler’ and fixed his method to determine a notion of connection in the Geometry
of Finsler space. Matsumoto [4] determined uniquely the Cartan connection CΓ by
the following conditions: (1) The connection is metrical; (2) the deflection tensor field
vanishes; (3) the torsion tensor field T vanishes; (4) the torsion tensor field S vanishes.

Hojo [3] introduced the connections, which depend on a real parameter p and

make the v-covariant derivative ϕ
(p)
ij‖k

of ϕ
(p)
ij (= ∂̇i∂̇jLP ) zero just as gij |k = 0 in case

of CΓ. The Cartan connection is really the case when p takes the value two and so the
connection determined by Hojo is a generalization of CΓ.

Recently B.N. Prasad and Lalji Srivastava ([7]) have investigated the gener-
alized h-recurrent Finsler connection which is deflection and torsion free. In this paper
we investigate a generalized h-recurrent Finsler connection with given deflection- and
torsion-tensor fields.

1. Introduction

A Finsler manifold (Fn, L) of dimension n is a manifold Fn associated
with a fundamental function L(x, y), where x = (xi) denotes the positional
variable of Fn and y = (yi) denote the components of a tangent vector with
respect to (xi). Throughout the following, L is assumed to be positively
homogeneous of degree one with respect to (yi). The metric tensor of
(Fn, L) is given by gij = 1

2 ∂̇i∂̇jL
2 where ∂̇i = ∂/∂yi.

A Finsler connection of (Fn, L) is a triad (F i
jk, N i

k, Ci
jk) of an h-

connection F i
jk, a non-linear connection N i

k and a vertical connection Ci
jk

(Matsumoto [5]). If a Finsler connection is given, the h- and v-covariant
derivatives of any tensor field V i

j are defined as

V i
j|k = dkV i

j + V m
j F i

mk − V i
mFm

jk(1.1)
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V i
j |k = ∂̇kV i

j + V m
j Ci

mk − V i
mCm

jk,(1.2)

where dk = ∂k −Nm
k ∂̇m, ∂k = ∂/∂xk.

For any Finsler connection (F i
jk, N i

k, Ci
jk) the hv-curvature tensor P i

hjk

is given by ([6])

(1.3) P i
hjk = ∂̇kF i

hj − Ci
hk|j + Ci

hmPm
jk

2. Generalized h-recurrent Finsler connection

Let p 6= 1 be a real number. We define φ(p)(x, y) as

(2.1) φ(p) =
1
p
Lp (p 6= 0), φ(0) = log L.

We denote ∂̇i φ(p) and ∂̇i∂̇j φ(p) as φ
(p)
i and φ

(p)
ij and so on. Thus

(2.2) φ
(p)
i = L(p−1)`i, φ

(p)
ij = L(p−2) (gij + (p− 2)`i`j).

In the following, we restrict our considerations to a domain, where
the matrix ‖φ(p)

ij ‖ is regular and then its inverse φ(p)ij is given by

(2.3) φ(p)ij = L−(p−2)
[
gij − (p− 2)

(p− 1)
`i`j

]
.

Differentiating (2.2) by yk, we have

(2.4)
φ

(p)
ijk = L(p−2)

[
2Cijk + (p− 2)L−1

{
hij`k + hjk`i

+ hki`j + (p− 1)`i`j`k

}]
.

To avoid confusion, we denote h- and v-covariant derivatives with respect
to Cartan’s connection by |k and |k, while these covariant derivatives with
respect to a generalized h-recurrent Finsler connection will be denoted by
‖k and ‖k respectively. The quantities corresponding to a generalized h-
recurrent Finsler connection will be denoted by putting p on the top of the
quantity while the quantities corresponding to Cartan’s connection will be
denoted as usual.

Recently Prasad and L. Srivastava [7] have introduced a general-
ized h-recurrent Finsler connection {F (p)i

jk , N
(p)i
k , C

(p)i
jk } which is deter-

mined uniquely by the following axioms:

(C1) The connection is h-recurrent with respect to the vector field
ak i.e. gij‖k = akgij
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(C2) the v-covariant derivative of φ
(p)
ij vanishes i.e. φ

(p)
ij ‖k = 0

(C3) the deflection tensor field D
(p)i
k vanishes i.e.

D
(p)i
k = F

(p)i
jk yj −N

(p)i
k = 0

(C4) the torsion tensor field T
(p)i
jk vanishes i.e.

T
(p)i
jk = F

(p)i
jk − F

(p)i
kj = 0

(C5) the torsion tensor field S
(p)i
jk vanishes i.e.

S
(p)i
jk = C

(p)i
jk − C

(p)i
kj = 0

In this paper we omit conditions (C3), (C4) and investigate a gen-
eralized h-recurrent Finsler connection with given deflection- and torsion-
tensor fields.

3. Generalized h-recurrent Finsler connections
with deflection and torsion

1. First we investigate connections where the nonlinear connection
and the (h)h-torsion are prefixed.

Theorem 3.1. Given in a Finsler space, a nonlinear connection N
(p)i
k ,

a skew symmetric (1,2) tensor field T
(p)i
jk and a covariant vector field ak,

there exists a unique Finsler connection (F (p)i
jk , N

(p)i
k , C

(p)i
jk ) satisfying ax-

ioms (C1), (C2), (C5) and the new axioms (C3′): the nonlinear connection

is the given N
(p)i
k ; (C4′): the (h) h-torsion tensor field is the given T

(p)i
jk .

Proof. From (C2) it follows that

φ
(p)
ij ‖k = φ

(p)
ijk − C̃

(p)
ijk − C̃

(p)
jik = 0,

where
C̃

(p)
ijk = φ

(p)
rj C

(p)r
ik .

By cyclic permutation of the indices i, j and k, we get

C̃
(p)
ijk = (1/2)

[
φ

(p)
ijk + φ

(p)
jki − φ

(p)
kij

]
= (1/2)φ(p)

ijk,

which implies

(3.1) C
(p)r
ik = (1/2)φ(p)rj φ

(p)
ijk = Cr

ik + σ
(p)r
ik ,
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where σ
(p)r
ik are given as below by (2.3) and (2.4),

(3.2) σ
(p)r
ik = {(p− 2)/2L}[δr

i `k + δr
k`i + hik`r/(p− 1)− `i`k`r].

From the axioms (C1) and (C3′) we have

∂kgij −N
(p)m
k ∂̇mgij − gmjF

(p)m
ik − gimF

(p)m
jk = akgij .

Applying the Christoffel process to the above equation and using axiom
(C4′), we get

(3.3)
F

(p)i
jk =γi

jk − (Ci
kmN

(p)m
j + Ci

jmN
(p)m
k − ghiCjkmN

(p)m
h )

− 1
2
(ajδ

i
k + akδi

j − aigjk) + A
(p)i
jk , where

γi
jk =

1
2
gih(∂kgjh + ∂jgkh − ∂hgjk),(3.4)

A
(p)i
jk =

1
2
(T (p)

kjhghi + T
(p)
jkhghi + T

(p)i
jk )(3.5)

ai = gijaj and T
(p)
kjh = gjrT

(p)r
kh .

In view of (3.1), (3.3) and axiom (C3′) it is clear that the Finsler connection
(F (p)i

jk , N
(p)i
k , C

(p)i
jk ) is uniquely determined from the metric function L and

from the given vector fields ak, T
(p)i
jk .

2. For the above connection the deflection tensor field D
(p)i
k defined

in (C3) is obtained by contracting (3.3) by yj

(3.6)
D

(p)i
k =Gi

k + 2Ci
kmGm − Ci

kmN (p)m
o −N

(p)i
k

− 1
2
(aoδ

i
k + akyi − aiyk) + A

(p)i
ok , where

Gi
k = ∂̇kGi = γi

ok − 2Ci
kmGm,(3.7)

Gi =
1
2
γi

oo.(3.8)

The Suffix ‘ o ’ denotes contraction with respect to the element of support
yi.

Contracting (3.6) with yk, we get

(3.9) N (p)i
o = 2Gi −D(p)i

o − aoy
i +

1
2
aiL2 + A(p)i

oo .
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Substituting the value of N
(p)i
o in (3.6) and using Ci

jkyj = 0, Cjhkyj = 0,
we get

N
(p)i
k =Gi

k − Ci
km(A(p)m

oo −D(p)m
o +

1
2
amL2)

+ (A(p)i
ok −D

(p)i
k )− 1

2
(aoδ

i
k + akyi − aiyk).

Hence we have the following

Theorem 3.2. Given in a Finsler space a (1,1) tensor field D
(p)i
k , a

covariant vector field ak and a skew-symmetric (1,2) tensor field T
(p)i
jk

there exists a unique Finsler connection (F (p)i
jk , N

(p)i
k , C

(p)i
jk ) satisfying the

axioms (C1), (C2), (C4′), (C5) and the new axiom (C3′′): the deflection

tensor field is the given D
(p)i
k .

3. The v-connection F
(p)i
jk is given by (3.3) in which the nonlinear

connection is given by

N
(p)i
k = Gi

k − Ci
kmB(p)m

o + B
(p)i
k , where(3.10)

B
(p)i
k = A

(p)i
ok −D

(p)i
k − 1

2
(aoδ

i
k + akyi − aiyk).(3.11)

The vertical connection is given by (3.1).
As a special case of the above theorem, if we impose the axiom (C3)

instead of (C3′′), the B
(p)i
k in (3.11) becomes

(3.12) B
(p)i
k = A

(p)i
ok − 1

2
(aoδ

i
k + akyi − aiyk),

and we have the following:
Theorem 3.3. Given in a Finsler space a skew-symmetric (1,2) tensor

field T
(p)i
jk and a covariant vector field ak there exists a unique Finsler

connection (F (p)i
jk , N

(p)i
k , C

(p)i
jk ) satisfying the axioms (C1), (C2), (C3),

(C4′) and (C5).

These coefficients are given by (3.3), (3.1) and

(3.13)
N

(p)i
k = Gi

k − Ci
km(A(p)m

oo − 1
2
amL2) + A

(p)i
ok

− 1
2
(aoδ

i
k + akyi − aiyk).

4. If we assume that B
(p)i
k = 0, equation (3.10) reduces to N

(p)i
k = Gi

k,
and we have the following results which gives the Finsler connection with
deflection and torsion:
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Theorem 3.4. Given in a Finsler space a skew-symmetric (1.2) tensor

field T
(p)i
jk and a covariant vector field ak, there exists a unique Finsler

connection (F (p)i
jk , N

(p)i
k , C

(p)i
jk ) satisfying the axioms (C1), (C2), (C4′),

(C5) and the new axiom (C3′′): the nonlinear connection is the one given
by E. Cartan.

The coefficients F
(p)i
jk are given in this case by

(3.14)
F

(p)i
jk = γi

jk − (Ci
kmGm

j + Ci
jmGm

k − ghiCjkmGm
h )

− 1
2
(ajδ

i
k + akδi

j − aigjk) + A
(p)i
jk

The deflection tensor field D
(p)i
k is expressed as

(3.15) D
(p)i
k = A

(p)i
ok − 1

2
(aoδ

i
k + akyi − aiyk).

5. Now we investigate a connection which bears resemblance to the
Wagner connection.

Theorem 3.5. Given in a Finsler space the covariant vector field sj 6=0
and the recurrence vector aj 6= 0, there exists a unique Finsler connection

(F (p)i
jk , N

(p)i
k , C

(p)i
jk ) satisfying the axioms (C1), (C2), (C3), (C5) and

(C4′′): the (h)h-torsion field is the given T
(p)i
jk = δi

jsk − δi
ksj .

Proof. From the axiom (C2) it follows that the vertical connection
C

(p)i
jk is given by (3.1).

From axiom (C1) we have

∂kgij −N
(p)m
k ∂̇mgij − gmjF

(p)m
ik − gimF

(p)m
jk = akgij .

Applying the Christoffel process to the above equation and using axiom
(C4′′) we get

(3.16)
F

(p)i
jk = γi

jk − (Ci
kmN

(p)m
j + Ci

jmN
(p)m
k − ghiCjkmN

(p)m
h )

− 1
2
(ajδ

i
k + akδi

j − aigjk) + gjksi − δi
ksj .

Contracting (3.16) with yj , using axiom (C3) and the fact that Ci
jk is the

indicatory tensor, we get

(3.17)
N

(p)i
k = γi

ok − Ci
kmN (p)m

o − 1
2
(akyi + aoδ

i
k − aiyk)

+ yksi − δi
kso.
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Again contracting (3.17) with yk, we get

(3.18) N (p)i
o = γi

oo − aoy
i +

1
2
L2ai + L2si − yiso.

Substituting (3.18) in (3.17) and using (3.7), we get

N
(P )i
k = Gi

k + Bir
k (sr +

1
2
ar) + skyi, where(3.19)

Bir
k = (ykgir − δi

kyr − δr
kyi − L2Cir

k ) and(3.20)

Cir
k = Ci

khghr.(3.21)

Substituting (3.19) in (3.16), we get

F
(p)i
jk = Γ∗ijk + U ir

jk(sr +
1
2
ar) + δi

jsk, where(3.22)

Γ∗ijk =
1
2
gih[dkgjh + djgkh − dhgjk] and(3.23)

U ir
jk = gjkgir − δi

jδ
r
k − Cir

j yk − Cir
k yj(3.24)

+ Cr
jkyi + Ci

jkyr − δi
kδr

j

+ L2(Cmr
j Ci

mk + Cim
j Cr

mk − Cir
mCm

jk).

From (3.22), (3.19) and (3.1) it is clear that the connection (F (p)i
jk , N

(p)i
k ,

C
(p)i
jk ) is uniquely determined from the metric function L and from the

given vector fields sj and aj .

The connection defined in the above theorem will be called generalized
h-recurrent Wagner connection with respect to the vector field sj and the
recurrence vector aj .

Theorem 3.6. Given the covariant vector field sj and the recurrence

vector aj in a Finsler space, there exists a unique Finsler connection (F (p)i
jk ,

N
(p)i
k , C

(p)i
jk ) satisfying the axioms (C1), (C2), (C4′′), (C5) and (C3′′): the

nonlinear connection N
(p)i
k is the one given by Cartan.

Proof. Putting N
(p)i
k = Gi

k in (3.16) and using (3.23) we get

(3.25) F
(p)i
jk = Γ∗ijk −

1
2
(ajδ

i
k + akδi

j − aigjk) + gjksi − δi
ksj .

Thus C
(p)i
jk is determined uniquely from axiom (C2), N

(p)i
k is determined

from axiom (C3′′) and F
(p)i
jk is determined from axioms (C1) and (C3′′).
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6. For simplicity we shall use the following terminology. A generalized
h-recurrent Finsler connection (F (p)i

jk , N
(p)i
k , C

(p)i
jk ) means, if nothing else

is said, such a connection with vanishing deflection and (h)h-torsion tensor
fields. — Omitting of the term “h-recurrent” means that gij‖k = 0.

Definition 3.1. A Finsler space is said to be a generalized h-recurrent
Berwald space resp. such a space with torsion if it is possible to introduce
a generalized h-recurrent Finsler connection without torsion (resp. with
torsion) in such a way that the connection coefficient F

(p)i
jk depends on

position only.

Definition 3.2. A Finsler space is called a generalized h-recurrent
Wagner space if it is possible to introduce a generalized h-recurrent Wag-
ner connection in such a way that the connection coefficient F

(p)i
jk depends

on the position alone.

Theorem 3.7. If the generalized h-recurrent Finsler connection (F (p)i
jk ,

N
(p)i
k , C

(p)i
jk ) with torsion satisfies the condition ∂̇`F

(p)i
jk = 0 then ∂̇`ak = 0.

Proof. From (1.3) it follows that the condition ∂̇`F
(p)i
jk = 0 is equiv-

alent to

(3.26) P
(p)i
jk` = −C

(p)i
j`‖k + C

(p)i
jm P

(p)m
k` .

Applying the Ricci identity ([6]) for the metric tensor gij we get

gij‖`‖k − gij‖k‖` = gij‖hC
(p)h
k` + gij‖hP

(p)h
k`

+ ghjP
(p)h
ik` + gihP

(p)h
jk`

which in view of gij‖k = akgij , gij‖` = −gimσ
(p)m
j` − gmjσ

(p)m
i` and (3.26)

gives

(3.27) (∂̇`ak)gij + 2CjimP
(p)m
k` + 2akCij` − 2Cij`‖k = 0.

Contracting this equation with yi, we get

(∂̇`ak)yj + 2Cij`D
(p)i
k = 0.

Again contracting with yj and using Cij`y
j = 0, we get

(∂̇`ak)L2 = 0 which implies that ∂̇`ak = 0.
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4. Conformal transformations of
generalized h-recurrent Wagner spaces

1. Let L be the metric function of a Berwald space and let us consider
whether this Berwald space may become a generalized h-recurrent Wagner
space by a conformal transformation σ:

(4.1) L̄ = eσL

In the Finsler space with metric L̄, a generalized h-recurrent Wagner
connection (F̄ (p)i

jk , N̄
(p)i
k , C̄

(p)i
jk ) is given by

F̄
(p)i
jk = Γ̄∗ijk + Ū ir

jk(sr +
1
2
ar) + δi

jsk(4.2)

N̄
(p)i
k = Ḡi

k + B̄ir
k (sr +

1
2
ar) + yisk(4.3)

C̄
(p)i
jk = C̄i

jk + σ̄
(p)i
jk(4.4)

Since U ir
jk, Bir

k and Ci
jk are conformally invariant we can express these in

terms of L.
We know that

Γ̄∗ijk = Γ∗ijk − U ir
jkσr,(4.5)

Ḡi
k = Gi

k −Bir
k σr,(4.6)

C̄i
jk = Ci

jk(4.7)

where σr = ∂rσ. Also from (3.2) and (4.1), we have

(4.8) σ̄
(p)i
jk = σ

(p)i
jk ,

which shows that σ
(p)i
jk is also conformally invariant.

Using equations (4.5), (4.6), (4.7) and (4.8), equations (4.2), (4.3) and
(4.4) become

F̄
(p)i
jk = Γ∗ijk + U ir

jk(sr +
1
2
ar − σr) + δi

jsk,(4.9)

N̄
(p)i
k = Gi

k + Bir
k (sr +

1
2
ar − σr) + yisk,(4.10)

C̄
(p)i
jk = C

(p)i
jk .(4.11)

If we put sr = σr − 1
2ar then (4.9) and (4.10) become

F̄
(p)i
jk = Γ∗ijk + δi

jsk(4.12)

N̄
(p)i
k = Gi

k + yisk.(4.13)
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From these observations we have the following

Theorem 4.1. By any conformal transformation σ, a Berwald space
becomes a generalized h-recurrent Wagner space with respect to the vector
(σr − 1

2ar) and the recurrence vector aj(x).

2. In the Finsler space with metric L̄ a generalized h-recurrent Finsler
connection (F̄ (p)i

jk , N̄
(p)i
k , C̄

(p)i
jk ) is obtained from (4.2), (4.3) and (4.4) by

putting sj = 0 in them. Thus

F̄
(p)i
jk = Γ∗ijk +

1
2
Ū ir

jkar ,(4.14)

N̄
(p)i
k = Ḡi

k +
1
2
B̄ir

k ar ,(4.15)

C̄
(p)i
jk = C̄i

jk + σ̄
(p)i
jk .(4.16)

Substituting (4.5), (4.6), (4.7) and (4.8) in the above we have for ar = 2σr

F̄
(p)i
jk = Γ∗ijk ,(4.17)

N̄
(p)i
k = Gi

k ,(4.18)

C̄
(p)i
jk = C

(p)i
jk .(4.19)

Hence we have the following

Theorem 4.2. By any conformal transformation σ, a Berwald space
becomes a generalized h-recurrent Berwald space with respect to the re-
currence gradient vector 2σr.

3. The proof of the following theorem can be obtained by checking
the axioms (C2) and (C5).

Theorem 4.3. Let a generalized h-recurrent Finsler connection (F (p)i
jk ,

N
(p)i
k , C

(p)i
jk ) with torsion be given in a Finsler space (Fn, L). If for a

conformal transformation L̄ = eσL we put

F̄
(p)i
jk = F

(p)i
jk + δi

j(σk +
1
2
ak),(4.20)

N̄
(p)i
k = N

(p)i
k + yi(σk +

1
2
ak),(4.21)

C̄
(p)i
jk = C

(p)i
jk ,(4.22)
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then the coefficients (F̄ (p)i
jk , N̄

(p)i
k , C̄

(p)i
jk ) define a generalized Finsler con-

nection with torsion in a Finsler space (Fn, L̄).

From the above theorem and theorem (3.7) it follows that if F
(p)i
jk

depends on the position alone, then F̄
(p)i
jk also depends on the position

alone. Thus we have the following

Theorem 4.4. A generalized h-recurrent Berwald space with torsion
with respect to the recurrence vector aj transforms to a generalized Ber-
wald space with torsion by any conformal transformation.
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