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On the solvability of some special equations
over finite fields

By BALINT FELSZEGHY (Budapest)

Abstract. Let F' be a polynomial over I, with n variables and of degree d.
Suppose that it is impossible to transform F' by invertible homogeneous linear
change of variables to a polynomial, which has less than n variables. Also suppose
that the degree of I in each variable is less than p. Rédei conjectured that if d < n
then F' = 0 has at least one solution in IF,,. This was disproved in [5] by a collection
of counterexamples, but the cases deg F' = 3 and deg F' = 5 remained open. We
give a counterexample with deg F' = 5 over F1;. On the positive side, we prove
the statement for symmetric polynomials of degree 3.

Along a related line, consider polynomials of the form F(z1, ..., z,) = ajz¥+
ctanxE+g(x1,.. ., 1), where ajas . ..a, #0, g € Fplzi1,...,2,) and degg < k.

We will show, that if n > [#W , then the equation F'(z1,...,x,) = 0 is solvable

L 2%

in . This is a generalization of a result of CARLITZ ([2]).

1. Introduction

In 1946 LAszLO REDEI formulated a conjecture (see [4]) about the
solvability of polynomial equations over finite fields. Although it turned
out that there are counterexamples, for some special polynomials the con-
jecture holds. We give first a brief overview of the related results.
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Let p be a prime, F), be a field with p elements and F'(z1,...,2y,) €
Fy[z1,...,2,] be a polynomial, with n variables. We can assume that the
degree of F' in x; is at most p — 1 for 1 < ¢ < n, that is the polynomial is
reduced. We denote the linear subspace (in the space of polynomials with
n variables over F,,) spanned by the partial derivates of ' by V', so we put
V = Lin{g—fi 1< < n} The rank of I is defined to be dimg, V.

We note that the original definition of rank in [4] is different. We
will use that rank F' is precisely the least positive integer r for which there
exists an invertible homogeneous linear change of variables which carries F’
into a polynomial with r variables. The equivalence to the original notion
can be found in [5]. With this notion of the rank, the conjecture is the
following:

Rédei’s Conjecture. Let F' € F,[x1,...,2,] be reduced, not con-
stant and deg F' < rank F'. Then F(z1,...,x,) = 0 is solvable.

In [5] Rényai disproved this by giving counterexamples. Let ¢ € F),
(p > 5) be a quadratic nonresidue, and F(xz1,...,2,) = (Y, xf)2 —c.
It is clear, that I' = 0 cannot be solvable in F,. In the case n > 4, I
serves as a counterexample to the conjecture, as it is not difficult to see
that n = rank F'. A similar polynomial can be constructed for p = 3. (The
conjecture is true if p = 2.) There are counterexamples for every degree
d > 6.

It is pointed out in [5] that the conjecture is valid for degrees 1 (this
case is trivial) and 2. The remaining cases (deg F' = 3 or 5) are still open.
In Section 2 we show a counterexample for deg F' =5 and p = 11, and, as
a positive result, we prove the conjecture for cubic symmetric polynomials.
We note that the counterexample given above for deg F' = 4 is symmetric.

Rédei’s conjecture holds also for some equations of diagonal type, see
[5]. We prove the conjecture in Section 3 for a class of generalized diagonal
polynomials.
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2. The cases of degree 3 and 5

Proposition 1. Let n > 5 be an integer, and let I’ be the polynomial
over Fq1: ,
F(z1,...,zn) =27 + (23 + 25+ +22)" = T.

Then deg F = 5, rank F' = n, but F(x1,...,x,) = 0 has no solutions in
F,7, so Rédei’s conjecture is not true for degree 5 in general.

PROOF. Consider the polynomial f(z,y) = 2° + y? — 7. Since in Fy;
2% € {~1,0,1} and y? € {0,1,3,4,5,9}, 2° + y? never equals 7. So f =0
has no solutions, and hence nor has F' = 0.

It remains to show that rank /' = n, that is the partial derivates of F’
are linearly independent. Indeed, suppose that ay,a9,...,a, € Fi1; and
0=>", aig—ai. For a fixed j, we can regard > ;" ; aig—fi as a polynomial
in x; (over the extension field Fp(z1,...,2j-1,2j41,...,2y)), s0 it can be
0 for all z; only if each coefficient of a:é is zero. Since

Zai— = 5ayz] +4(x% + i —i—xi) Zaixi,
=1 =2
the coefficient of :c‘ll is baq, so a3 = 0. Thus we have
n
0=4(m%+x§+~-+xi)2aixi
i=2

and 0 = > , oyz;. This can happen only if oy = 0 (2 <4 < n), which
means that rank F' = n. O

On the positive side, we prove the conjecture for symmetric cubic
polynomials. We are only interested in reduced polynomials, so for the
remaining part of this section we suppose that p > 5. We denote the rth
elementary symmetric function in variables x1,...,x, by o, for 1 <7 < n.

Proposition 2. If F(xy,...,z,) is a symmetric polynomial of de-
gree 3, then there exists a uniquely determined polynomial f inFy,[y1, ya2, y3]
of the form

F(y1,y2,93) = ays + y2(byr + ¢) + g(y1),

with a, b, ¢ € F, and g(y1) € Fp[y1], degg < 3, such that F(z1,...,x,) =
f(01a02a03)'
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PrRoOOF. The fundamental theorem of symmetric polynomials yields
that there exists a uniquely determined fi(yi,...,yn) € Fplyi,...,¥Unl,
such that F(x1,...,2,) = f1(01,...,0p). The algebraic independence of
o; implies that if ylflyéC2 ...yF is a monomial of f; with nonzero coefficient,
then F has nonzero terms, with degree > i, ik;. It follows from degF = 3
that the only products with nonzero coefficients in f1 can be ys3, youy1, yo,

v, yi, v1, 1, thus f(y1,y2,93) := fi(y1,...,yn) completes the proof. O

The main part of the next statement is a corollary of Hasse’s Theorem
(see [6] or HASSE’s original paper [3]) on elliptic curves over finite fields.

Proposition 3. Let p > 5, and h(x) be a polynomial in Fp[z], and
suppose that 1 < degh < 3. Then the equation y> = h(x) is always
solvable in Fpg.

PROOF. If degh < 2, then y? — h(z) is a polynomial with rank 2, so
it has a root in Fp2.

Suppose that degh = 3. If 29 € F), is a root of h, then (z¢,0) is a
solution of the above equation. If h has no roots in I}, then h is irreducible,
and so h has three distinct roots (in F3), which means that y* = h(z) is an
equation of a (nonsingular) elliptic curve over [F,,. Hasse’s Theorem yields
that for the number F of the projective points of the curve the inequality
|E — (p+1)| < 2,/pholds. Consequently £ > p+1—2,/p, which is greater
than one, if p is greater than 4, and so the curve has at least 2 projective
points. Since an elliptic curve with equation of type y? = h(x) has exactly
one point at infinity, this proves the statement. ]

We apply the two propositions above to prove Rédei’s conjecture for
cubic symmetric polynomials.

Theorem 4. Let p > 5, and F(x1,...,x,) be a symmetric polynomial
over I, of degree 3 with rank F' > 3. Then F(x1,...,xy,) = 0 has a solution
inF "

P

PrOOF. It suffices to show the statement for n = 3. Using Proposi-
tion 2 we obtain that F'(x1,xe,x3) = acs + o2 (boy + ¢) + ¢g (01). Finding
a root for F' is equivalent to find a solution (in z1, z9, =3, y1, Y2, y3) for
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the following system of equations:

ays + y2(byr +¢) + g(y1) = 0 (1)
r1t+T2+T3=U1 (2)
1T + X1X3 + ToT3 = Y2 (3)
T1T2T3 = Y3. (4)
By (2), we eliminate first z; from (3) and (4).
(Y1 — (w2 + x3)) (w2 + 3) + T223 = Y2 (3"
(y1 — (22 + 23))T223 = Y3. (4

From (1), (3') and (4') we infer

a(yr — (w2 + x3)) 273
+ (91 = (22 + 23)) (22 + x3) + 2923) (by1 + ¢) +9(y1) = 0. (5)
It is obvious that (5) is solvable iff the initial system of equations has a

solution. Now let u = xo + x3, v = xox3 and y = y;. With these variables
(5) takes the form

a(y —u)v+ ((y — wu+v)(by +¢) + g(y) = 0.
Thus we have

(y —wu(by +¢) + g(y)
(a+b)y—au+c

= —u. (6)

Since rank F' = 3, at least one of a, b and ¢ is nonzero, so (a+b)y —au+c¢
is not identically 0. If we can solve (6) then x2 and x3 have to be the two
roots of the polynomial 22 — uz + v. So precisely those solutions of (6)

2

are satisfactory for which (%)2 — v = 2° is solvable. Together, we have the

equation

(y —wulby +¢c) +9y) | [u\2 _
(a+b)y —au+c +<§) =z (7)

tosolve. Let d € F, be 1 or 2. If a # 0 then choose u = L ((a + b)y + ¢ — d).

a

If a = 0, but b # 0 then choose y = 3 (d — ¢). In both cases the denom-
inator of (6) becomes d, so the left hand side of (7) is a polynomial A in



20 Balint Felszeghy

one indeterminate (y or u) of degree at most 3. It is clear, that for d = 1
or d = 2 h is not constant. If @ = b = 0, then choose u = 1 or u = 0
according as g is constant or not, respectively.

So finally we have an equation of the form 22 = h(u), and application
of Proposition 3 completes the proof. ]

3. Generalized diagonal equations

In this section we give some more positive examples. We consider
polynomials F'(z1,...,zy,) € Fplz1,...,z,] of form

n
F(zy,...,xy) = Zaixf +g(x1,...,20),
i=1

where p is a prime, F, is the field with p elements, 1 < k < p — 1,
ai,...,an € Fp, a1as...ay # 0 and g(z1,...,2,) € Fplz1,...,z,] is an
arbitrary polynomial with degg < k. Then we call F' a generalized diago-
nal polynomial. Our goal is to prove the following theorem.

Theorem 5. Suppose that n > [%—‘ . Then F(x1,...,x,) =

e

Sy aixt +g(z1,...,x,) = 0 is solvable in F,".

To compare this to Rédei’s conjecture, we observe that if £k = 1 then
rank F' = 1, otherwise we have rank F' = n. Indeed, put

oF

E(x].J ’xn) = 8x(x]_, . ,mn) = kale_l +
(2

Jg
8:@

(T1,...,2Tp).

Suppose that there exist some «; such that > «;Fi(z1,...,2,) = 0
holds for all (z1,...,2,) € F,". Since degg—ai < k — 1, the coefficient
;‘f’_l is ajkaj, hence a; = 0 for each j, which means that the F; are
linearly independent, and rank F' = n.

Rédei’s conjecture predicts that there is a solution (z1,...,x,) € F,
for F(z1,...,z,) =0, in case n > k. We cannot prove this in general, but
if k|p — 1, then this is an immediate consequence of Theorem 5. CARLITZ
proved this special case in [2] in a way different from ours. It could happen

that for a fixed p and k there would be polynomials g,(x1,...,x,), such

of x
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that F,(21,...,2,) = >y an,ixf + gn(z1,...,2,) and none of the F,-s
have solution, however big n we would choose. Theorem 5 shows that it is
impossible by presenting an upper bound < p — 1 for n.

Now recall a consequence of ALON’s Combinatorial Nullstellensatz,
that can be found in [1].

Theorem 6. Let G(z1,...,x,) € Fplz1,...,2,] be a polynomial, as-
sume that deg G = Y7 t; > 1, the coefficient of [[}_, x¥ is not 0, and
0 <t <p—1 for each i. Choose for all i an arbitrary S; C F, with
|Si| =t; + 1. Then G cannot be constant on S1 X S X --+ X Sy,.

Theorem 6 allows a simple proof of Theorem 5.

PROOF OF THEOREM 5. We can assume that n = [%—‘, because
T

Ll%ll j—‘ variables by substi-

tuting zeros in place of some ;. Let G(z1,...,7,) = F(z1,...,2,)P L.

otherwise we can get a similar polynomial in {

We intend to show, using Alon’s Theorem, that G is not constant on F,".
Since the value of G(z1,...,z,) can be either 0 or 1, this will imply that
there exists a root of G. Let

ti:{%Jk‘ for1<i<n-—1 and

= (p— 1)k —(n—1) {I%J k.

It is obvious that 0 < ¢t; <p—1forall1 <i<n-—1and Z?thi =
(p — 1)k = deg G. The following simple calculation

-1 -1
th=(p—1)k— pp_l 1 V’TJk
|2
p— p—1 p—1
z - — <p—
VTI {ka{kapland
te>(p-1k— 21 %szo
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gives that ¢, is also suitable.
In G there is a monomial m= HZ 1 :c ¢ contributed by ( Zl 1 a,xk)p_l,

since 2% = (x )L l ,and zhr = (¢F)P~1- ( DI"F ). The coefficient of m is
(P=D!yp %
=g lla’ 70
Hz:l %'l];Jl:

The conditions of Theorem 6 are satisfied. GG is not constant, hence there
exists an (x1,...,2,) € F)" such that G(x1,...,2,) = 0, and equivalently
F(x1,...,2,) = 0. The theorem is proved. O

If k | p— 1 then the statement is also true in an arbitrary finite field.

Theorem 7. Assume that ¢ = p" is a prime power. If k divides p — 1,
n >k and F(x1,...,2,) = Yoy a¥ + g(z1,...,2,) then the equation
F(x1,...,2,) = 0 is solvable in F .

PRrROOF. In the preceding proof we used only once that p is a prime,
namely when we stated that the corresponding coefficient is not zero. Using
klp — 1 we can easily verify that ((('171',,6 # 0 in F,. The largest power

of p which divides the numerator is

Bl -E4-Eon

%
i=1 p i=1

This is the same for the denominator. Indeed

ki VTIQIJ :kS {pr—i_l —|—pi._1J
i=1 P’ ‘ k Pk

=1
r—1 . _, _1 r—1
—k Z p - — (p'r—z _ 1)
i=1 i=1

The second to the last equality holds since 0 < p;i_kl <land k|p—1

pr—z_l
k

implies that is an integer. O
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