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Nonlinear periodic problems with nonsmooth potential
restricted in one direction

By MICHAEL FILIPPAKIS (Athens), LESZEK GASIŃSKI (Cracow)
and NIKOLAOS S. PAPAGEORGIOU (Athens)

Abstract. We study a nonlinear periodic problem driven by the ordinary
scalar p-Laplacian and with a nonsmooth locally Lipschitz potential. Imposing on
the potential a growth restriction only in one direction, we establish the existence
of a solution. Our approach is variational based on the nonsmooth critical point
theory for locally Lipschitz functions.

1. Introduction

In this paper we study the following nonlinear periodic problem:{
−(|x′(t)|p−2x′(t)

)′ ∈ ∂j
(
t, x(t)

)
for a.a. t ∈ T

x(0) = x(b), x′(0) = x′(t),
(1.1)

where T = [0, b] is an interval, p ∈ (1,+∞). Here the potential function
j(t, ·) is not in general C1, it is only locally Lipschitz and ∂j(t, ·) is the
subdifferential in the sense of Clarke (see Section 2). Recently there has
been increasing interest for periodic problems involving the ordinary p-
Laplacian. We refer to the works of Del Pino–Manasevich–Murua [3],
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Fabry–Fayyad [6], Guo [11], Fan–Zhao–Huang [7], Gasiński–Papa-

georgiou [9], [10] (scalar problems) and Kyritsi–Matzakos–Papage-

orgiou [13], Manasevich–Mawhin [14], Mawhin [15], [16] (vector prob-
lems). In all these works the approach is degree theoretical and only
Gasiński–Papageorgiou [9, 10] use a variational approach. Moreover,
in these works the potential function is nonsmooth (locally Lipschitz), as
is the case in the present paper. However, in all the aforementioned works
the growth of the potential function is restricted in both directions as
ζ → ±∞. In contrast here we impose a growth restriction only in one di-
rection and using a variational approach based on the nonsmooth critical
point theory (see Chang [1] and Kourogenis–Papageorgiou [12]), we
prove the existence of a solution for problem (1.1).

Semilinear (i.e. p = 2) Neumann problems with restriction in one direc-
tion, were studied by de Figueiredo–Ruf [8] and Villegas [18], under
the assumptions that the right hand side nonlinearity f(t, ζ) = ∂j(t, ζ) is
jointly continuous (smooth potential) and asymptotically there is no in-
teraction with γ (see section 3; in fact in de Figueiredo–Ruf [8] they
assumed hypothesis H(j)′′(iv)). Finally, we should point out that prob-
lems like (1.1) are known in the literature as “hemivariational inequalities”
and arise in mechanics and engineering. For concrete applications we refer
to the book of Naniewicz–Panagiotopoulos [17].

2. Mathematical background

As we already mentioned our approach is variational based on the
nonsmooth critical point theory for locally Lipschitz functions, as this was
formulated initially by Chang [1] and extended recently by Kourogenis–

Papageorgiou [12]. The basic tool of this theory is the notion of gen-
eralized (or Clarke) subdifferential of a locally Lipschitz function. For
the convenience of the reader, in this section we recall some basic defini-
tions and facts from the subdifferential theory of locally Lipschitz functions
and from the corresponding nonsmooth critical point theory. For more de-
tails about locally Lipschitz functions the interested reader can consult the
books of Clarke [2] and Denkowski–Migórski–Papageorgiou [4].
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Let X be a Banach space and X∗ its topological dual. By ‖ · ‖X

we denote the norm of X and by
〈·, ·〉

X
the duality brackets for the pair

(X,X∗). A function ϕ : X �−→ R is said to be locally Lipschitz, if for
every x ∈ X, we can find an open set U ⊆ X with x ∈ U and a constant
kU > 0 depending on U , such that |ϕ(z) − ϕ(y)| ≤ kU‖z − y‖X for all
z, y ∈ U . From convex analysis we know that a proper, convex and lower
semicontinuous function ψ : X �−→ R

df
= R ∪ {+∞} is locally Lipschitz in

the interior of its effective domain domψ
df
= {x ∈ X : ψ(x) < +∞} (see

Denkowski–Migórski–Papageorgiou [4, Proposition 5.2.10, p. 532]).
In particular, an R-valued, convex and lower semicontinuous function is
locally Lipschitz. Moreover, if X is finite dimensional, then every convex
and R-valued function defined on X is locally Lipschitz.

In analogy with the directional derivative of a convex function, we
define the generalized directional derivative of a locally Lipschitz function
ϕ : X −→ R at x ∈ X in the direction h ∈ X, by

ϕ0(x;h)
df
= lim sup

x′→x
t↘0

ϕ(x′ + th) − ϕ(x′)
t

.

The function X 	 h �−→ ϕ0(x;h) ∈ R is sublinear, continuous and by the
Hahn–Banach theorem it is the support function of a nonempty, convex
and w∗-compact subset of X∗, defined by

∂ϕ(x)
df
=
{
x∗ ∈ X∗ :

〈
x∗, h

〉
X

≤ ϕ0(x;h) for all h ∈ X
}
.

The multifunction X 	 x �−→ ∂ϕ(x) ∈ 2X∗ \ {∅} is known as the Clarke
(or generalized) subdifferential of ϕ at x. This multifunction is upper
semicontinuous from X with the norm topology into X∗ with the w∗-
topology (i.e. for all w∗-open sets V ⊆ X∗, we have that ∂ϕ+(V ) is strongly
open in X, where ∂ϕ+(V ) = {x ∈ X : ∂ϕ(x) ⊆ V }; see Denkowski–

Migórski–Papageorgiou [4, p. 407]).
If ϕ,ψ : X �−→ R are two locally Lipschitz functions, then ∂(ϕ +

ψ)(x) ⊆ ∂ϕ(x)+∂ψ(x) and ∂(tϕ)(x) = t∂ϕ(x) for all t ∈ R and all x ∈ X.
If ϕ : X �−→ R is continuous, convex (thus locally Lipschitz as well),

then for all x ∈ X, the generalized subdifferential introduced above coin-
cides with the subdifferential of ϕ in the sense of convex analysis, given
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by

∂ϕ(x)
df
=
{
x∗ ∈ X∗ :

〈
x∗, y − x

〉
X

≤ ϕ(y) − ϕ(x) for all y ∈ X
}
.

If ϕ is strictly differentiable at x (in particular if ϕ is continuously Gâteaux
differentiable at x), then ∂ϕ(x) = {ϕ′(x)}.

A point x ∈ X is a critical point of the locally Lipschitz function ϕ,
if 0 ∈ ∂ϕ(x). If x ∈ X is a critical point, the value c = ϕ(x) is a critical
value of ϕ. It is easy to check that, if x ∈ X is a local extremum of ϕ (i.e.
a local minimum or a local maximum), then 0 ∈ ∂ϕ(x) (i.e. x ∈ X is a
critical point).

In the classical (smooth) theory, a compactness-type condition, known
as the Palais–Smale condition plays a central role. In the present non-
smooth setting this condition takes the following form:

A locally Lipschitz function ϕ : X → R satisfies the nonsmooth
Palais-Smale condition, if every sequence {xn}n≥1 ⊆ X, such that
{ϕ(xn)}n≥1 is bounded and

mϕ(xn) −→ 0 as n→ +∞,

where
mϕ(xn)

df
= min

{‖x∗‖X∗ : x∗ ∈ ∂ϕ(xn)
}

has a strongly convergent subsequence.

We recall the following geometric notion of linking, which plays a
crucial role in critical point theory (classical and nonsmooth alike).

Definition 2.1. Suppose that X is a Hausdorff topological space and
E1 and D are nonempty subsets of X. We say that the sets E1 and D link
(homotopically) in X if and only if

(a) E1 ∩D = ∅, and

(b) there exists a set E ⊆ X, such that E1 ⊆ E and for any continuous
function η : E −→ X, such that η|E1 = idE1 , we have η(E) ∩D �= ∅.
Using this notion, Kourogenis–Papageorgiou [12] proved the fol-

lowing abstract minimax principle. In fact the result of Kourogenis–

Papageorgiou [12] is more general. However, the formulation that fol-
lows suffices for our purposes here.
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Theorem 2.2. If X is a reflexive Banach space, E1 and D are non-

empty subsets of X with D closed, E1 and D link in X, ϕ : X → R is lo-

cally Lipschitz, satisfies the nonsmooth Palais–Smale condition, supE1
ϕ <

infD ϕ and

c
df
= inf

η∈Γ
sup
v∈E

ϕ(η(v)),

where

Γ
df
= {η ∈ C(E;X) : η|E1 = idE1}

and E ⊇ E1 is as in the definition of linking sets, then c ≥ infD ϕ and c is

a critical value of ϕ, i.e. there exists a critical point x0 ∈ X of ϕ such that

ϕ(x0) = c. Moreover, if c = infD ϕ, then x0 ∈ D.

3. Existence Theorem

In this section we prove an existence theorem for problem (1.1) by
imposing only a unilateral growth restriction on the nonsmooth potential
functional j(t, ζ). To do this we introduce the following quantity. Let

W 1,p
per(T )

df
=
{
x ∈W 1,p(T ) : x(0) = x(b)

}
(recall that the embeddingW 1,p(T ) ⊆ C(T ) is continuous [in fact compact]
and so the pointwise evaluations at t = 0 and t = b make sense) and let

C
df
=
{
x ∈W 1,p

per(T ) : min
T
x = 0

}
.

We define

γ
df
= inf

x∈C
x �=0

‖x′‖p
p

‖x‖p
p
.

Concerning this quantity, we have the following result.

Proposition 3.1. There exists x ∈ C, x �= 0, such that

γ =
‖x′‖p

p

‖x‖p
p
> 0.

Moreover, if any x ∈ C satisfies the above equality, then

x(t) > 0 for a.a. t ∈ T.
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Proof. Let {xn}n≥1 ⊆ C be a sequence such that

‖xn‖p = 1 and ‖x′n‖2
p ↘ γ as n→ +∞.

Evidently the sequence {xn}n≥1 ⊆W 1,p
per(T ) is bounded and so by passing

to a subsequence if necessary, we may assume that

xn −→ x weakly in W 1,p
per(T ),

for some x ∈ W 1,p
per(T ). Exploiting the compactness of the embedding

W 1,p
per(T ) ⊆ Cper(T ), we have that

xn −→ x in Cper(T )

and so ‖x‖p = 1, i.e. x �= 0.
Let tn ∈ T be such that

0 = xn(tn) = min
T
xn ∀n ≥ 1

(recall that xn ∈ C for n ≥ 1). We may assume that tn −→ t for some
t ∈ T . We have

xn(tn) −→ x(t)

and so x(t) = 0. Hence minT x ≤ 0. If the inequality is strict, we can find
s ∈ T , such that x(s) < 0 and then xn(s) < 0 for all n ≥ 1 large enough,
a contradiction to the fact that xn ∈ C for n ≥ 1. Therefore

0 = x(t) = min
T
x

and so x ∈ C, x �= 0. This proves the first part of the proposition.
Now we will prove that x(t) > 0 for almost all t ∈ T . To this end, for

any interval [a, c] ⊆ T , we set

Ĉ[a, c]
df
=
{
y ∈W 1,p

per([a, c]) : min
[a,c]

y = 0
}

and

γ̂[a, c]
df
= inf

x∈Ĉ[a,c]
x �=0

‖x′‖p
Lp(a,c)

‖x‖p
Lp(a,c)

.
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Note that the map
C 	 y �−→ ŷ ∈ Ĉ[a, c],

where

ŷ(t)
df
= y

(
t− a

c− a
b

)
∀ t ∈ [a, c],

is bijection and so it follows that

γ̂[a, c] =
(

b

c− a

)p

γ.

Using this fact, we shall show that
∣∣{t ∈ T : x(t) = 0}∣∣

1
= 0 (here by

| · |1 we denote the Lebesgue measure on R). Suppose that this is not true
and let

U
df
= {t ∈ T : x(t) > 0}.

Then we have that U is open and

U =
⋃
n≥1

Jn with {Jn = (an, cn)}n≥1 disjoint and |U |1 < b.

So we have ∑
n≥1

cn − an

b
< 1,

hence ∑
n≥1

(
cn − an

b

)p

< 1.

We have

γ =

∫ b
0 |x′(t)|pdt

‖x‖p
p

≥
∫ cn

an
|x′(t)|pdt
‖x‖p

p

≥ γ̂n[an, cn]
∫ cn

an
|x(t)|pdt

‖x‖p
p

=

(
b

cn−an

)p
γ
∫ cn

an
|x(t)|pdt

‖x‖p
p



44 M. Filippakis, L. Gasiński and N. S. Papageorgiou

and so (
cn − an

b

)p

≥
∫ cn

an
|x(t)|pdt
‖x‖p

p
∀n ≥ 1,

so

1 >
∑
n≥1

(
cn − an

b

)p

≥ 1
‖x‖p

p

∑
n≥1

∫ cn

an

|x(t)|pdt = 1,

a contradiction.
This proves that |U |1 = b and so x(t) > 0 for almost all t ∈ T . �

In fact we can produce a more precise description of the quantity γ.

Proposition 3.2. γ =
p− 1
bp

(
2
∫ 1

0

dt

(1 − tp)
1
p

)p

.

Proof. Extend by periodicity the functions of C on [0, 2b] and denote

the set of these extended functions by C̃. If τ ∈ T , we set Cτ
df
= C̃|[τ,τ+b].

Also, we introduce the space

Eτ
df
=
{
W 1,p

0 [τ, τ + b]}

and we consider the following nonlinear eigenvalue problem−(|x′(t)|p−2x′(t)
)′ = λ|x(t)|p−2x(t) for a.a. t ∈ [τ, τ + b]

x(τ) = 0 = x(τ + b),
(3.1)

where p ∈ (1,+∞).
Let x ∈ C be the minimizer obtained in Proposition 3.1 and fix τ ∈ T

to be a zero of x. As described above, we extend x on [0, 2b]. We have

γ = min
y∈Cτ \{0}

∫ τ+b
τ |y′(t)|pdt∫ τ+b
τ |y(t)|pdt

= min
y∈(Cτ∩Eτ )\{0}

∫ τ+b
τ |y′(t)|pdt∫ τ+b
τ |y(t)|pdt

= min
y∈Eτ\{0}

∫ τ+b
τ |y′(t)|pdt∫ τ+b
τ |y(t)|pdt

=
p− 1
bp

(
2
∫ 1

0

dt

(1 − t)
1
p

)p

,

where the last quantity is the first eigenvalue of problem (3.1)
(see Mawhin [15]). �
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Now we can introduce our hypotheses on the nonsmooth potential
j(t, ζ).

H(j) j : T × R −→ R is a function, such that

(i) for every ζ ∈ R, j(·, ζ) is measurable and j(·, 0) ∈ L1(T );

(ii) for almost all t ∈ T , j(t, ·) is locally Lipschitz with L1-Lipschitz
constant;

(iii) for every r > 0, there exists ar ∈ Lp′(T )+, with 1
p + 1

p′ = 1,
such that for almost all t ∈ T , all |ζ| ≤ r and all u ∈ ∂j(t, ζ),
we have |u| ≤ ar(t);

(iv) lim supζ→+∞
u

ζp−1 ≤ h(t) uniformly for almost all t ∈ T and all
u ∈ ∂j(t, ζ), where h ∈ L1(T ), h(t) ≤ γ for almost all t ∈ T

with strict inequality on a set of positive measure;

(v) lim supζ→−∞
[
max∂j(t,ζ) u

]
< 0 < lim infζ→+∞

[
min∂j(t,ζ) u

]
uniformly for almost all t ∈ T .

We introduce the energy functional ϕ : W 1,p
per(T ) −→ R, defined by

ϕ(x)
df
=

1
p
‖x′‖p

p −
∫ b

0
j
(
t, x(t)

)
dt ∀x ∈W 1,p

per(T ).

We know that ϕ is locally Lipschitz (see Clarke [2, p. 80] and Denkow-

ski–Migórski–Papageorgiou [4, p. 615]).

Proposition 3.3. If hypotheses H(j) hold, then ϕ satisfies the non-

smooth Palais–Smale condition.

Proof. Let {xn}n≥1 ⊆W 1,p
per(T ) be a sequence, such that

|ϕ(xn)| ≤M for n ≥ 1 and mϕ(xn) −→ 0,

with some M > 0. Let x∗n ∈ ∂ϕ(xn) be such that mϕ = ‖x∗n‖∗, n ≥ 1.
This is possible because ∂ϕ(xn) ⊆ (W 1,p

per(T )
)∗ is weakly compact, the norm

functional is weakly lower semicontinuous and the embedding W 1,p
per(T ) ⊆

Cper(T ) is compact. We have

x∗n = A(xn) − un ∀n ≥ 1.
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Here A : W 1,p
per(T ) −→ (

W 1,p
per(T )

)∗ is the nonlinear operator, defined by

〈A(x), y〉W 1,p
per (T )

df
=
∫ b

0
|x′(t)|p−2x′(t)y′(t)dt ∀x, y ∈W 1,p

per(T )

and un ∈ Lp′(T ) with un(t) ∈ ∂j
(
t, xn(t)

)
for almost all t ∈ T (see

Clarke [2, p. 80]).
Note that A is monotone, demicontinuous, therefore it is maximal

monotone (see Denkowski–Migórski–Papageorgiou [5, p. 37]).
We claim that the sequence {xn}n≥1 ⊆W 1,p

per(T ) is bounded. Suppose
that this is not the case. Then by passing to a subsequence if necessary,
we may assume that ‖xn‖W 1,p(T ) −→ +∞. Let us set

yn
df
=

xn

‖xn‖W 1,p(T )
∀n ≥ 1.

Exploiting the reflexivity of W 1,p
per(T ) and the compactness of the embed-

ding W 1,p
per(T ) ⊆ Cper(T ), we may say that

yn −→ y weakly in W 1,p
per(T ),

yn −→ y in Cper(T ).

Claim 1. yn −→ y in W 1,p
per(T ) and y �= 0.

From the choice of the sequence {xn}n≥1 ⊆W 1,p
per(T ), we have∣∣〈x∗n, z〉W 1,p

per (T )

∣∣ ≤ εn‖z‖W 1,p(T ) ∀ z ∈W 1,p
per(T ), (3.2)

with εn ↘ 0. Take z ≡ 1 ∈W 1,p
per(T ). We obtain∣∣∣∣∫ b

0
un(t)dt

∣∣∣∣ ≤ ε′n, (3.3)

with ε′n ↘ 0. Dividing the last inequality by ‖xn‖p−1
W 1,p(T )

, we have∣∣∣∣∣
∫ b

0

un(t)

‖xn‖p−1
W 1,p(T )

dt

∣∣∣∣∣ ≤ ε′n
‖xn‖p−1

W 1,p(T )
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and so ∫ b

0

un(t)

‖xn‖p−1
W 1,p(T )

dt −→ 0 as n→ +∞. (3.4)

By virtue of hypothesis H(j)(iv), for a given ε > 0, we can find M1 =
M1(ε) > 0, such that

u ≤ (h(t) + ε
)
ζp−1 for a.a. t ∈ T, all ζ ≥M1 and all u ∈ ∂j(t, ζ).

Moreover, from hypothesis H(j)(v), we see that we can find M2 > 0, such
that

u ≥ 0 for a.a. t ∈ T, all ζ ≥M2 and all u ∈ ∂j(t, ζ).

Thus finally, we have

|u| = u ≤ (h(t) + ε
)
ζp−1 for a.a. t ∈ T, all ζ ≥M3, u ∈ ∂j(t, ζ), (3.5)

with M3 = max{M1,M2}.
On the other hand, again from hypothesis H(j)(v) as well as hypoth-

esis H(j)(iii), we see that we can find M4 ≥M3, such that

|u| ≤ â(t) − u, for a.a. t ∈ T, all ζ ≤M4, u ∈ ∂j(t, ζ), (3.6)

with â ∈ Lp′(T )+.

For a function z ∈W 1,p
per(T ), we define z+ df

= max{z, 0}. We know that
z+ ∈W 1,p

per(T ) (see Denkowski–Migórski–Papageorgiou [4, p. 348]).
Now we have∫ b

0

|un(t)|
‖xn‖p−1

W 1,p(T )

dt =
∫
{xn≥M4}

|un(t)|
‖xn‖p−1

W 1,p(T )

dt

+
∫
{xn<M4}

|un(t)|
‖xn‖p−1

W 1,p(T )

dt.

(3.7)

Using (3.5), we have∫
{xn≥M4}

|un(t)|
‖xn‖p−1

W 1,p(T )

dt ≤
∫
{xn≥M4}

(
h(t) + ε

)|yn(t)|p−1dt

≤
∫ b

0

(
h(t) + ε

)|y+
n (t)|p−1dt.

(3.8)
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Also because of (3.6) and (3.8), we have∫
{xn<M4}

|un(t)|
‖xn‖p−1

W 1,p(T )

dt

≤ ‖â‖1

‖xn‖p−1
W 1,p(T )

−
∫
{xn<M4}

un(t)
‖xn‖p−1

W 1,p(T )

dt

≤ ‖â‖1

‖xn‖p−1
W 1,p(T )

−
∫ b

0

un(t)
‖xn‖p−1

W 1,p(T )

dt +
∫
{xn≥M4}

|un(t)|
‖xn‖p−1

W 1,p(T )

dt

≤ ‖â‖1

‖xn‖p−1
W 1,p(T )

−
∫ b

0

un(t)

‖xn‖p−1
W 1,p(T )

dt +
∫ b

0

(
h(t) + ε

)|y+
n (t)|p−1dt. (3.9)

Using (3.8) and (3.9) in (3.7), we get∫ b

0

|un(t)|
‖xn‖p−1

W 1,p(T )

dt ≤ ‖â‖1

‖xn‖p−1
W 1,p(T )

−
∫ b

0

un(t)

‖xn‖p−1
W 1,p(T )

dt

+ 2
∫ b

0

(
h(t) + ε

)∣∣y+
n (t)

∣∣p−1
dt.

(3.10)

Thus from (3.4), we infer that the sequence
{

un

‖xn‖p−1

W1,p(T )

}
n≥1

⊆ L1(T ) is
bounded.

Now we have∣∣〈x∗n, yn − y〉W 1,p
per(T )

∣∣ ≤ εn‖yn − y‖W 1,p(T ),

with εn ↘ 0, so∣∣∣∣∣∣
〈

x∗n
‖xn‖p−1

W 1,p(T )

, yn − y

〉
W 1,p

per(T )

∣∣∣∣∣∣ ≤ εn

‖xn‖p−1
W 1,p(T )

‖yn − y‖W 1,p(T )

and ∣∣∣∣∣〈A(yn), yn − y
〉
W 1,p

per(T )
−
∫ b

0

un(t)

‖xn‖p−1
W 1,p(T )

(yn − y)(t)dt

∣∣∣∣∣
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≤ εn

‖xn‖p−1
W 1,p(T )

‖yn − y‖W 1,p(T ).

Since the sequence
{

un

‖xn‖p−1

W1,p(T )

}
n≥1

⊆ L1(T ) is bounded and yn −→ y in

Cper(T ), we see that∫ b

0

un(t)

‖xn‖p−1
W 1,p(T )

(yn − y)(t)dt −→ 0

and so
lim

n→+∞

∣∣∣〈A(yn), yn − y
〉
W 1,p

per(T )

∣∣∣ = 0.

But A being maximal monotone, it is also generalized pseudomonotone
(see Denkowski–Migórski–Papageorgiou [5, p. 58]) and so we have

‖y′n‖p
p = 〈A(yn), yn〉W 1,p

per(T )
−→ 〈A(y), y〉

W 1,p
per (T )

= ‖y′‖p
p.

Because y′n −→ y′ weakly in Lp(T ) and the space Lp(T ) is uniformly
convex, from the Kadec–Klee property, we have that

y′n −→ y′ in Lp(T )

(see Denkowski–Migórski–Papageorgiou [4, p. 309]). Hence

yn −→ y in W 1,p
per(T )

and ‖y‖W 1,p(T ) = 1, i.e. y �= 0. This proves Claim 1.

Claim 2. y has a root in T , i.e. there exists τ ∈ T , such that y(τ) = 0.

From (3.3), we have∫ b

0
un(t)dt −→ 0 as n→ +∞. (3.11)

Suppose that the claim is not true. Then we have that either y(t) > 0 or
y(t) < 0 for all t ∈ T . Suppose that

y(t) > 0 ∀ t ∈ T
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(the analysis is similar if we suppose that y(t) < 0 for all t ∈ T ). This
means that

xn(t) −→ +∞ ∀ t ∈ T as n→ +∞.

We claim that this convergence is uniform in t ∈ T . To this end, let δ > 0
be such that δ < minT y (recall that we have assumed that y(t) > 0 for all
t ∈ T ). Since yn −→ y in Cper(T ), we can find n0 = n0(δ) ≥ 1, such that∣∣yn(t) − y(t)

∣∣ ≤ δ ∀n ≥ n0, t ∈ T,

so ∣∣yn(t)
∣∣ ≥ ∣∣y(t)∣∣− δ ≥ δ1 > 0 ∀ t ∈ T,

with some δ1 > 0.
Since ‖xn‖W 1,p(T ) −→ +∞, for a given β1 > 0, we can find n1 =

n1(β1) ≥ 1, such that

‖xn‖W 1,p(T ) ≥ β1 > 0 ∀n ≥ n1.

Let us set n2
df
= max{n0, n1}. Then, we have

|xn(t)|
β1

≥ |xn(t)|
‖xn‖W 1,p(T )

=
∣∣yn(t)

∣∣ ≥ δ1 > 0 ∀n ≥ n2, t ∈ T,

so ∣∣xn(t)
∣∣ ≥ β1δ1 > 0 ∀n ≥ n2, t ∈ T.

Since β1 > 0 was arbitrary, it follows that∣∣xn(t)
∣∣ = xn(t) −→ +∞ uniformly in t ∈ T as n→ +∞.

Because of this and hypothesis H(j)(v), we have that

lim inf
n→+∞

∫ b

0
un(t)dt > 0,

which contradicts (3.11). So we conclude that y has a zero in T . This
proves Claim 2.



Periodic problems with nonsmooth potential 51

Now consider y+ = max{y, 0} ∈W 1,p
per(T ). Let us consider two disjoint

cases. In both of them we will get a contradiction, which will finish the
proof of the boundedness of the sequence {xn}n≥1 ⊆W 1,p

per(T ).

Case I. If y+ ≡ 0, this means that maxT y = 0. Passing to the limit
in (3.10) as n → +∞ and using (3.4) and the fact that y+

n −→ y+ ≡ 0 in
C(T ), we infer that

un

‖xn‖p−1
W 1,p(T )

−→ 0 in L1(T ). (3.12)

From the choice of the sequence {xn}n≥1 ⊆W 1,p
per(T ), we have∣∣∣∣〈A(xn), y

〉
W 1,p

per(T )
−
∫ b

0
un(t)y(t)dt

∣∣∣∣ ≤ εn‖y‖W 1,p(T ),

so ∣∣∣∣∣〈A(yn), y
〉
W 1,p

per(T )
−
∫ b

0

un(t)
‖xn‖p−1

W 1,p(T )

y(t)dt

∣∣∣∣∣ ≤ εn

‖xn‖p−1
W 1,p(T )

‖y‖W 1,p(T ).

Since A(yn) −→ A(y) weakly in W 1,p
per(T )∗ and using also (3.12), in the

limit we have 〈
A(y), y

〉
W 1,p

per(T )
= ‖y′‖p

p = 0,

so y ≡ ξ ∈ R, hence ξ = 0 (because maxT y = 0), a contradiction since
‖y‖W 1,p(T ) = 1).

Case II. Therefore y+ �= 0 and clearly y+ ∈ C. Using as a test function
z = y+

n ∈ W 1,p
per(T ), from the choice of the sequence {xn}n≥1 ⊆ W 1,p

per(T )
(see (3.2)), we have∣∣∣∣∥∥(y+

n )′
∥∥p

p
−
∫ b

0

un(t)
‖xn‖p−1

y+
n (t)dt

∣∣∣∣ ≤ ε′′n‖y+
n ‖W 1,p(T ),

with ε′′n
df
= εn

‖xn‖p−1

W1,p(T )

↘ 0, so

∥∥(y+
n )′
∥∥p

p
≤ ε′′n‖y+

n ‖W 1,p(T ) +
∫ b

0

un(t)

‖xn‖p−1
W 1,p(T )

χ{yn>0}(t)yn(t)dt. (3.13)
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By virtue of hypotheses H(j)(iii) and H(j)(iv), for almost all t ∈ T , all
ζ ≥ 0 and all u ∈ ∂j(t, ζ), we have that

|u| ≤ a1(t) + c1(t)|ζ|p−1,

with a1, c1 ∈ L1(T )+, so

|un(t)|
‖xn‖p−1

W 1,p(T )

χ{yn>0}(t) ≤
a1(t)

‖xn‖p−1
W 1,p(T )

+ c1(t)
∣∣yn(t)

∣∣p−1 for a.a. t ∈ T.

Therefore by the Dunford–Pettis Theorem (see Denkowski–Migórski–

Papageorgiou [4, p. 333]), we see that

un

‖xn‖p−1
W 1,p(T )

−→ g weakly in L1(T ).

For a given ε > 0, let us define

Cn
df
=
{
t ∈ T : xn(t) > 0,

un(t)
xn(t)p−1

≤ h(t) + ε
}

χn(t)
df
= χ

Cn
(t).

Note that

χn(t) −→ 1 for a.a. t ∈ {y > 0} as n→ +∞.

We have
un(t)

‖xn‖p−1
W 1,p(T )

χn(t) =
un(t)

xn(t)p−1
yn(t)p−1χn(t)

≤ (h(t) + ε
)
yn(t)p−1χn(t).

Passing to the weak limit in L1({y > 0}), we obtain

g(t) ≤ (h(t) + ε
)
y+(t)p−1 for a.a. t ∈ {y > 0}.

Since ε > 0 was arbitrary, it follows that

g(t) ≤ h(t)y+(t)p−1 for a.a. t ∈ {y > 0}.
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Therefore from (3.13) and hypothesis H(j)(iv), it follows that

∥∥(y+)′
∥∥p

p
≤
∫ b

0
h(t)y+(t)pdt ≤ γ‖y+‖p

p. (3.14)

Since y+ ∈ C, from Proposition 3.1, we have that∥∥(y+)′
∥∥p

p
= γ‖y+‖p

p and y+(t) > 0 for a.a. t ∈ T.

But then from (3.14) and our hypothesis about h (see hypothesisH(j)(iv)),
we have that ∥∥(y+)′

∥∥p

p
< γ‖y+‖p

p,

a contradiction to the fact that y+ ∈ C \ {0}.
In both cases we have obtained a contradiction. This proves the

boundedness of the sequence {xn}n≥1 ⊆ W 1,p
per(T ). So, passing to a subse-

quence if necessary, we may assume that

xn −→ x weakly in W 1,p
per(T ),

xn −→ x in Cper(T ).

Again from the choice of the sequence {xn}n≥1 ⊆ W 1,p
per(T ), for all n ≥ 1,

we have∣∣∣∣〈A(xn), xn − x
〉
W 1,p

per(T )
−
∫ b

0
un(t)(xn − x)(t)dt

∣∣∣∣ ≤ εn‖xn − x‖W 1,p(T )

and note that from hypothesis H(j)(iii), we have that∫ b

0
un(t)(xn − x)(t)dt −→ 0.

So we obtain
lim

n→+∞
〈
A(xn), xn − x

〉
W 1,p

per(T )
= 0

and as earlier in the proof, by virtue of the maximal monotonicity of A
and using the Kadec–Klee property of Lp(T ), we conclude that

xn −→ x in W 1,p
per(T ). �
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Next we shall show that ϕ|C is bounded. To this end we need some
preparations.

Proposition 3.4. There exists a constant c > 0, such that

‖x‖p ≤ c‖x′‖p ∀x ∈ C.

Proof. Suppose that the result of the Proposition is not true. Then
for every n ≥ 1, we can find xn ∈ C, such that

‖xn‖p > n‖x′n‖p.

Let us set
yn

df
=

xn

‖xn‖p
∀n ≥ 1.

Evidently

yn ∈ C, ‖yn‖p = 1, ‖y′n‖p <
1
n

∀n ≥ 1.

Hence
y′n −→ 0 in Lp(T ).

Therefore the sequence {yn}n≥1 ⊆ C is bounded in W 1,p
per(T ) and so we

may assume that

yn −→ y weakly in W 1,p
per(T ),

yn −→ y in Cper(T ).

It follows that ‖y‖p = 1, hence y �= 0 and y′ = 0, so that y ≡ ξ ∈ R \ {0},
a contradiction to the fact that y ∈ C. �

Proposition 3.5. If hypotheses H(j) hold, then there exists a con-

stant β > 0, such that

‖x′‖p
p −

∫ b

0
h(t)x(t)pdt ≥ β‖x′‖p

p ∀x ∈ C.

Proof. Let ψ : C −→ R be the functional defined by

ψ(x)
df
= ‖x′‖p

p −
∫ b

0
h(t)x(t)pdt ∀x ∈ C.
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From our hypothesis on h (see hypothesis H(j)(iv)) and Proposition 3.1,
we have that ψ ≥ 0. If the result of the Proposition is not true, we can
find a sequence {xn}n≥1 ⊆ C with ‖x′n‖p = 1, such that ψ(xn) ↘ 0. From
Proposition 3.4, we know that

‖xn‖p ≤ c‖x′n‖p ∀n ≥ 1.

From this it follows that the sequence {xn}n≥1 ⊆W 1,p
per(T ) is bounded and

so, after passing to a subsequence if necessary, we may assume that

xn −→ x weakly in W 1,p
per(T ),

xn −→ x in Cper(T ).

We have

‖x′‖p
p −

∫ b

0
h(t)x(t)pdt ≤ lim

n→+∞ψ(xn) = 0,

so from hypothesis H(j)(iv), we get

‖x′‖p
p ≤

∫ b

0
h(t)x(t)pdt ≤ γ‖x‖p

p. (3.15)

If x = 0, then ‖x′n‖p −→ 0 and so

xn −→ 0 in W 1,p
per(T ),

a contradiction to the fact that ‖x′n‖p = 1 for n ≥ 1. So x ∈ C \ {0} and
by virtue of Proposition 3.1, we have

‖x′‖p
p = γ‖x‖p

p and x(t) > 0 for a.a. t ∈ T.

Using the second fact in (3.15), we obtain that ‖x′‖p
p < γ‖x‖p

p, a contra-
diction. �

Now we are ready to show that ϕ|C is bounded below.

Proposition 3.6. If hypotheses H(j) hold, then ϕ|C is bounded

below.
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Proof. By hypothesis H(j)(ii) for all t ∈ T \ N , with |N |1 = 0,
the function ζ �−→ j(t, ζ) is locally Lipschitz. So it is differentiable at all
ζ ∈ R \D(t), with |D(t)|1 = 0 and for all ζ ≥ 0, we have

j(t, ζ) − j(t, 0) =
∫ ζ

0
j′r(t, r)dr.

For all t ∈ T \N and all r ∈ R \D(t), we have

j′r(t, r) ∈ ∂j(t, r)

(see Clarke [2, p. 32] or Denkowski–Migórski–Papageorgiou [4,
p. 606]). So by virtue of hypotheses H(j)(iii) and (iv), for a given ε > 0,
we can find âε ∈ Lp′(T )+, such that

j(t, ζ) − j(t, 0) ≤
∫ ζ

0

(
h(t) + ε

)
rp−1dr + âε(t)ζ

=
1
p

(
h(t) + ε

)
ζp + âε(t)ζ

≤ 1
p
h(t)ζp +

2ε
p
ζp + β̂ε(t), (3.16)

with β̂ε ∈ L1(T )+ (the last inequality follows from the Young inequality).
So, using also Propositions 3.5 and 3.4, for x ∈ C, we have

ϕ(x) =
1
p
‖x′‖p

p −
∫ b

0
j(t, x(t))dt

≥ 1
p
‖x′‖p

p −
1
p

∫ b

0
h(t)x(t)pdt− 2ε

p
‖x‖p

p −M5

≥ β

p
‖x′‖p

p −
2ε
p
‖x‖p

p −M5

≥ 1
p

(
β − 2εc

)‖x′‖p
p −M5,



Periodic problems with nonsmooth potential 57

where M5
df
= ‖β̂ε‖1 + ‖j(·, 0)‖1 > 0. If we choose ε < β

2c , it follows that
ϕ|C is coercive, thus bounded from below. �

Proposition 3.7. If hypotheses H(j) hold, then ϕ(ξ) −→ −∞ as

|ξ| → +∞, ξ ∈ R.

Proof. From the mean value theorem for locally Lipschitz functions
(see Clarke [2, p. 41] and Denkowski–Migórski–Papageorgiou [4,
p. 609]), for almost all t ∈ T and for all ζ < ζ ′, we have

j(t, ζ) − j(t, ζ ′) = u(ζ − ζ ′),

with u ∈ ∂j
(
t, λζ + (1 − λ)ζ ′

)
, λ ∈ (0, 1) (both u and λ depending on t).

First let ζ < ζ ′ < 0. By virtue of hypothesis H(j)(v), we can find
ϑ1 > 0 and M6 > 0, such that if ζ ′ < M6, we have u ≤ −ϑ1 < 0. Hence

j(t, ζ) − j(t, ζ ′) = u(ζ − ζ ′) ≥ ϑ1|ζ − ζ ′|,
so ∫ b

0
j(t, ζ)dt ≥ ϑ1|ζ − ζ ′|b+

∫ b

0
j(t, ζ ′)dt

and thus

lim
ξ→−∞

∫ b

0
j(t, ξ)dt = +∞. (3.17)

Next if 0 < ζ < ζ ′, then by virtue of hypothesis H(j)(v), we can find
ϑ2 > 0 and M7 > 0, such that if ζ > M7, we have u ≥ ϑ2 > 0. Hence

j(t, ζ) − j(t, ζ ′) = u(ζ − ζ ′) ≤ −ϑ2|ζ − ζ ′|,
so ∫ b

0
j(t, ζ)dt + ϑ2|ζ − ζ ′|b ≤

∫ b

0
j(t, ζ ′)dt

and thus

lim
ξ→+∞

∫ b

0
j(t, ξ)dt = +∞. (3.18)

Because for ξ ∈ R, we have that

ϕ(ξ) = −
∫ b

0
j(t, ξ)dt,
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from (3.17) and (3.18), we conclude that ϕ(ξ) −→ −∞ as |ξ| → +∞,
ξ ∈ R. �

No we are ready for an existence theorem concerning problem (1.1).

Theorem 3.8. If hypothesis H(j) hold, then problem (1.1) has a

solution

x0 ∈ C1
per(T ), such that |x′0(·)|p−2x′0(·) ∈W 1,p′

per (T ).

Proof. By virtue of Propositions 3.6 and 3.7, we can find ξ ∈ R,
ξ > 0, such that

ϕ(±ξ) < inf
C
ϕ.

Let E1
df
= {±ξ} and

E
df
=
{
y ∈W 1,p

per(T ) : −ξ ≤ y(t) ≤ ξ for all t ∈ T}.
We claim that E1 and C link in W 1,p

per(T ). Indeed let

Γ
df
=
{
η ∈ C

(
E;W 1,p

per(T )
)

: η|
E1

= id
E1

}
and take η ∈ Γ. We have that η(−ξ) = −ξ and η(ξ) = ξ. Because
the function E 	 y �−→ infT η(y) ∈ R is continuous (see Denkowski–

Migórski–Papageorgiou [5, p. 464]), from the intermediate value the-
orem, we conclude that

η(E) ∩ C �= ∅ ∀ η ∈ Γ

and so the sets E1 and C link in W 1,p
per(T ). This fact combined with

Proposition 3.3 permits the application of Theorem 2.2. So we can find
x0 ∈W 1,p

per(T ), such that

ϕ(x0) ≥ inf
C
ϕ and 0 ∈ ∂ϕ(x0).

From the last inclusion, we have that

A(x0) = u∗0,
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with u∗0 ∈ Lp′(T ), u∗0(t) ∈ ∂j
(
t, x0(t)

)
for almost all t ∈ T and so

〈
A(x0), ϑ

〉
W 1,p

per(T )
=
∫ b

0
u∗0(t)ϑ(t)dt ∀ϑ ∈ C1

0 (0, b). (3.19)

By integration by parts and since(|x′0(·)|p−2x′0(·)
)′ ∈W−1,p′(T )

(see Denkowski–Migórski–Papageorgiou [4, p. 362]), we have

〈− (|x′0(·)|p−2x′0(·)
)′
, ϑ〉

W 1,p
0 (T )

=
∫ b

0
u∗0(t)ϑ(t)dt. (3.20)

Because the embedding C1
0 (0, b) ⊆W 1,p

0 (T ) is dense, from (3.20), it follows
that

−(|x′0(t)|p−2x′0(t)
)′ = u∗0(t) ∈ ∂j

(
t, x0(t)

)
for a.a. t ∈ T. (3.21)

Also from the Green identity, for all v ∈W 1,p
per(T ), we have〈

A(x0), v
〉
W 1,p

per(T )
=
∣∣x′0(b)∣∣p−2

x′0(b)v(b) −
∣∣x′0(0)∣∣p−2

x′0(0)v(0)

−
∫ b

0

(|x′0(t)|p−2x′0(t)
)′
v(t)dt,

so from (3.19), we have∫ b

0
u∗0(t)v(t)dt =

∣∣x′0(b)∣∣p−2
x′0(b)v(b) −

∣∣x′0(0)∣∣p−2
x′0(0)v(0)

−
∫ b

0

(|x′0(t)|p−2x′0(t)
)′
v(t)dt.

From (3.21), we have∣∣x′0(0)∣∣p−2
x′0(0)v(0) =

∣∣x′0(b)∣∣p−2
x′0(b)v(b) ∀ v ∈W 1,p

per(T )

and so ∣∣x′0(0)∣∣p−2
x′0(0) =

∣∣x′0(b)∣∣p−2
x′0(b).
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Because the function κ(r)
df
= |r|p−2r is a homeomorphism on R, we infer

that x′0(0) = x′0(b). From (3.21), we have that |x′0(·)|p−2x′0(·) ∈ W 1,p′
per (T )

and so |x′0(·)|p−2x′0(·) ∈ Cper(T ), which implies that x′0 ∈ Cper(T ). There-
fore

x′0 ∈ C1
per(T ), with |x′0(·)|p−2x′0(·) ∈W 1,p′

per (T ),

x0(0) = x0(b), x′0(0) = x′0(b)

and it solves (1.1). �

A careful reading of the proof, reveals that we can have a correspond-
ing existence result if the restriction on j(t, ·) is imposed in the −∞ direc-
tion. More precisely, we impose the following conditions on the nonsmooth
potential j.

H(j)′ j : T × R −→ R is a function satisfying hypothesis H(j)(i), (ii),
(iii), (v) and

(iv) lim supζ→−∞ u
|ζ|p−1ζ ≤ h(t) uniformly for almost all t ∈ T and

all u ∈ ∂j(t, ζ), where h ∈ L1(T )+, h(t) ≤ γ for almost all
t ∈ T with strict inequality on a set of positive measure.

Theorem 3.9. If hypothesis H(j)′ hold, then problem (1.1) has a

solution

x0 ∈ C1
per(T ), such that |x′0(·)|p−2x′0(·) ∈W 1,p′

per (T ).

Now impose the following hypotheses on j.

H(j)′′ j : T × R −→ R is a function satisfying hypothesis H(j)(i), (ii),
(iii) and

(iv) lim supζ→+∞
u

ζp−1 ≤ 0 or lim supζ→−∞
u

|ζ|p−2ζ
≤ 0 uniformly

for almost all t ∈ T and all u ∈ ∂j(t, ζ);

(v) lim supζ→−∞
[
max∂j(t,ζ) u

]
= −∞ and

lim inf
ζ→+∞

[
min∂j(t,ζ) u

]
= +∞ uniformly for almost all t ∈ T .
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As a consequence of Theorems 3.8 and 3.9, we obtain the following
corollary.

Corollary 3.10. If hypothesis H(j)′′ hold, then problem (1.1) has a

solution

x0 ∈ C1
per(T ), such that |x′0(·)|p−2x′0(·) ∈W 1,p′

per (T ).
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