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Some remarks on solutions of the
functional equation f(x + f(x)ny) = tf(x)f(y)

By JANUSZ BRZDȨK (Rzeszów)

1. Introduction

Let X be a linear space over a commutative field K and t ∈ K \ {0}.
Let k and n be non-negative integers. The functional equation

(1) f(f(y)kx + f(x)ny) = tf(x)f(y) ,

where the unknown function f maps X into K, has been studied by many
authors in various cases (see e.g. [1]–[16]).

We consider the particular case of (1) where k = 0, n > 0, and t 6= 0,
i.e. the functional equation

(2) f(x + f(x)ny) = tf(x)f(y) .

This case has been investigated for t 6= 1 only in [5] and [6] in the class of
continuous functions mapping a real linear topological space into the set
of all reals.

Equation (2) is a generalization of the well known GoÃla̧b-Schinzel
functional equation

f(x + f(x)y) = f(x)f(y) .

We give a description of the general solution of (2) in the class of
functions f : X → K. Moreover, we solve (2) under some additional
assumptions on f, K, and X. In particular, we determine the continuous
solutions f : X → K of (2) in the case where K is the set of all complex
numbers and X is a complex linear topological space.

Throughout the paper N,Z,Q,R and C denote the sets of all positive
integers, integers, rationals, reals, and complex numbers respectively.
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2. General solution

First, we present a description of the general solution of (2). Let us
start with the following simple observation.

Proposition 1. A function f : X → K satisfies equation (2) iff there
exists a solution g : X → K of the equation

(3) g(x + g(x)ny) = g(x)g(y)
such that

(4) g(tnx) = g(x) and f(x) = t−1g(x) for x ∈ X .

Proof. Suppose that f : X → K is a solution of equation (2). The
case f = 0 (i.e. f(X) = {0}) is trivial. So, assume that there is x0 ∈ X
with f(x0) 6= 0. Putting x = y = 0 in (2) we get f(0) ∈ {0, t−1}. Suppose
that f(0) = 0. Then f(x0) = f(x0 + f(x0)n0) = tf(x0)f(0) = 0. This is
a contradiction. Consequently f(0) = t−1. Thus, setting x = 0 in (2) we
obtain
(5) f(t−ny) = f(y) for y ∈ X .

Define a function g : X → K by the formula: g(x) = tf(x) for x ∈ X.
Then, by (5), for every x, y ∈ X, g(tnx) = g(x) and

g(x + g(x)ny) = tf(x + f(x)ntny) =

= t2f(x)f(tny) = g(x)g(tny) = g(x)g(y) .

Now, assume that g : X → K is a solution of equation (3) such that
(4) holds. Then, for every x, y ∈ X,

f(x + f(x)ny) = t−1g(x + g(x)nt−ny) =

= t−1g(x)g(t−ny) = t−1g(x)g(y) = tf(x)f(y) .

This completes the proof.
We also need the following
Proposition 2. A function g : X → K, g 6= 0 (i.e. g(X) 6= {0}), is

a solution of equation (3) iff there exist a multiplicative subgroup W of
K \ {0}, an additive subgroup T of X, and a function w : W → X such
that

anT = T for a ∈ W ;(6)

w(ab)− anw(b)− w(a) ∈ T for a, b ∈ W ;(7)

w(a) ∈ T iff a = 1 ;(8)

g(x) =

{
a if x ∈ w(a) + T and a ∈ W ;
0 otherwise ,

for x ∈ X .(9)
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Moreover W = g(X) \ {0} and T = g−1({1}).
A simple modification of the proof of Proposition 2 for n = 1 given

by P. Javor in [11] (cf. also [1], pp. 316–318, and [16]) supplies a proof
of Proposition 2 for every positive integer n. However, we present a new,
simpler proof. The next lemma is necessary for this.

Lemma 1. If a function g : X → K, g 6= 0, is a solution of equation
(3), T = g−1({1}), and W = g(X) \ {0}, then

(i) g(g(x)−n(z − x)) = g(z)g(x)−1 for x, z ∈ X, g(x) 6= 0;

(ii) T is an additive subgroup of X;

(iii) W is a multiplicative subgroup of K \ {0};
(iv) g(g(x)−nx) = g(x)−1 for x ∈ X, g(x) 6= 0;

(v) anT = T for a ∈ W ;

(vi) T \ {0} is the set of periods of g;

(vii) y − x ∈ T for every x, y ∈ X with f(x) = f(y) 6= 0.

Proof. (i) It suffices to put z = x + g(x)ny in (3).
(ii), (iii) Fix x0 ∈ X with g(x0) 6= 0 and set x = z = x0 in (i). Then

we get 0 ∈ T and 1 ∈ W . Further, it results from (i) that z − x ∈ T for
x, z ∈ T and ab−1 ∈ W for a, b ∈ W . This yields the statements (ii) and
(iii).

(iv) Since, by (ii), g(0) = 1, setting z = 0 in (i) we obtain the assertion
(iv).

(v) Fix x ∈ X with g(x) 6= 0 and z ∈ T . Then, by (3), g(x+g(x)nz) =
g(x). Thus, according to (iv),

g(g(x)nz) = g(x + g(x)nz + g(x)n(−g(x)−nx)) =

= g(x + g(x)nz)g(−g(x)−nx) = g(x)g(x)−1 = 1 .

This completes the proof of (v), in virtue of (iii).
(vi) Let P denote the set of periods of g. Then, by (ii), for every

w ∈ P ,

1 = g(0) = g(0 + w) = g(0 + g(0)nw) = g(0)g(w) = g(w) .

Moreover, for every z ∈ T, x ∈ X,

g(z + x) = g(z + g(z)nx) = g(z)g(x) = g(x) .

Consequently P = T \ {0}.
(vii) Fix x, y ∈ X with g(x) = g(y) 6= 0. Then, in virtue of (i),

g(g(x)−n(y − x)) = 1. Hence, by (iii) and (v), y − x ∈ T . This ends the
proof of (vii).
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Proof of Proposition 2. Assume that g is a solution of (3) and
put W = g(X) \ {0} and T = g−1({1}). By Lemma 1, W is a multiplica-
tive subgroup of K \ {0}, T is an additive subgroup of X, and (6) holds.
Let w : W → X be a function such that w(a) ∈ g−1({a}) for a ∈ W .
Then condition (8) is valid and, on account of Lemma 1 (ii), (vi), (vii),
g−1({a}) = w(a) + T for a ∈ W . Thus g and w satisfy (9). It remains to
show (7).

Fix a, b ∈ W . Then, according to the definition of w,

g(w(a) + anw(b)) = g(w(a) + g(w(a))nw(b)) =

= g(w(a))g(w(b)) = ab = g(w(ab)) ,

which, in view of Lemma 1 (vii), implies (7).
Now, assume that g is given by (9). First, we show that g is well

defined.
Fix a, b ∈ W and suppose that there are x, y ∈ T with w(a) + x =

w(b) + y. Put c = ab−1. Then a = bc and, by (7),

y − x− bnw(c) = w(b) + y − x− bnw(c)− w(b) =

= w(a)− bnw(c)− w(b) = w(bc)− bnw(c)− w(b) ∈ T .

Thus bnw(c) ∈ T , because T is an additive group. Consequently, according
to (6), w(c) ∈ T . Hence (8) yields c = 1, which means that a = b.

In order to complete the proof we must yet show that g satisfies equa-
tion (3). Therefore fix x, y ∈ X.

If g(x) = 0, then g(x + g(x)ny) = g(x) = 0 = g(x)g(y).
Next, if g(x)g(y) 6= 0, there are a, b ∈ W with x ∈ w(a) + T and

y ∈ w(b) + T . Since, by (6) and (7), x + g(x)ny = x + any ∈ w(ab) + T ,
we get g(x + g(x)ny) = ab = g(x)g(y).

Finally, suppose that g(x) 6= 0, g(y) = 0, and g(x + g(x)ny) 6=
g(x)g(y) = 0. On account of (9) there are a, c ∈ W with x ∈ w(a)+T and
x + g(x)ny ∈ w(c) + T . Put b = ca−1. Then c = ab and any = g(x)ny ∈
(T +w(c)−x). Further, in virtue of (7), T +w(c)−x = T +w(ab)−w(a) =
T + anw(b). Thus, by (6), y ∈ T + w(b), which means that g(y) = b. This
is a contradiction.

In this way we have proved that g is a solution of (3). The equalities
W = g(X) \ {0} and T = g−1({1}) result from (8) and (9). This ends the
proof.

Now, we have all tools to prove the following
Theorem 1. A function f : X → K, f 6= 0, is a solution of equation

(2) iff there exist a multiplicative subgroup W of K \ {0}, an additive
subgroup T of X, and a function w : W → K such that

(10) anT = T for a ∈ W
⋃{t} ;
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w(ab)− anw(b)− w(a), (tn − 1)w(a) ∈ T for a, b ∈ W ;(11)

w(a) ∈ T iff a = 1 ;(12)

f(x) =

{
t−1a if x ∈ w(a) + T and a ∈ W ;
0 otherwise,

for x ∈ X .(13)

Proof. Assume that f is a solution of equation (2). According to
Proposition 1 there exists a function g : X → K satisfying equation (3)
and condition (4). Thus, by Proposition 2, there exist a multiplicative
subgroup W of K \ {0}, an additive subgroup T of X, and a function
w : W → X such that conditions (6)–(9) are valid. It is easily seen that
(12) and (13) follow from (8), (9), and (4). Condition (10) results from
(4) and (6), because T = g−1({1}). Further, by (4), for every a ∈ W
we have g(w(a)) = g(tnw(a)). This, in virtue of Lemma 1 (vii), yields
(tn − 1)w(a) ∈ T . Consequently (11) holds, too.

For the converse define a function g : X → K by the formula: g(x) =
tf(x) for x ∈ X. It is easy to notice that conditions (6)–(9) are valid. Thus,
on account of Proposition 2, g is a solution of equation (3). Moreover, by
(10) and (11), for every a ∈ W, z ∈ T

tn(w(a) + z)− w(a)− z = (tn − 1)w(a) + tnz − z ∈ T,

t−n(w(a) + z)− w(a)− z = t−n(z − tnz − (tn − 1)w(a)) ∈ t−nT = T .

Thus, in virtue of (13), g(w(a) + z) = g(tn(w(a) + z)) = g(t−n(w(a) + z))
for a ∈ W, z ∈ T . This means that condition (4) holds. Consequently
Proposition 1 implies that f satisfies equation (2). This ends the proof.

Using Theorem 1 we can determine all solutions of (2) for many t.
Namely, we have the following

Proposition 3. Suppose that t fulfils the condition

(∗)
there are k ∈ N⋃{0} and a−k, . . . , ak ∈ L such that

(tn − 1)

(
k∑

i=−k

ait
in

)
− 1 = 0 ,

where L is the simple subfield of K if char K 6= 0 and L = Z if char K = 0.
Then a function f : X → K, f 6= 0, is a solution of equation (2) iff there
exists an additive subgroup T of X such that tnT = T and

f(x) =

{
t−1 if x ∈ T ;
0 if x ∈ X \ T .
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Proof. Assume that f is a solution of (2). Then, in view of Theorem
1, there exist a multiplicative subgroup W of K\{0}, an additive subgroup
T of X, and a function w : W → X such that conditions (10)–(13) are
valid. Let S be the ring generated by the set {t−n, tn}. Notice that

(14) bT ⊂ T for every b ∈ S .

In fact, let b ∈ S. Then there are k ∈ N \ {0}, a−k, . . . , ak ∈ L such
that b = a−kt−kn + · · · + aktkn. Since T is an additive group and, on
account of (10), tnjT = T for j ∈ Z, we get bT ⊂ T .

Fix a ∈ W . According to (11), (tn − 1)w(a) ∈ T . Since, by the
hypothesis on t, (tn − 1) = (a−kt−kn + · · · + aktkn)−1, in virtue of (14),
we get w(a) ∈ T . Consequently, (12) yields a = 1.

So, we have proved that W = {1}. Whence Theorem 1 implies that
f has the desired form.

The converse also results from Theorem 1.

The next three examples show that assumption (∗) of Proposition 3
is essential.

Example 1. Let K = R, x0 ∈ X \ {0}, and W = {q ∈ Q : q > 0}.
Suppose that t is transcendental (over Q). Denote by S the ring generated
by the set W

⋃{t, t−1}. Put T = {a(tn − 1)x0 : a ∈ S} and w(a) =
(an − 1)x0 for a ∈ W . Then (10) holds. Further, w(ab) = anw(b) + w(a)
for a, b ∈ W and (tn − 1)w(a) = (an − 1)(tn − 1)x0 ∈ T for a ∈ W . Thus
w fulfils (11).

Next, fix a ∈ W and suppose that w(a) ∈ T . Then there is b ∈ S with
(an − 1) = (tn − 1)b. Since t is a transcendental number and a > 0, it is
possible only in the case a = 1 and b = 0. Consequently condition (12) is
satisfied, too. Hence, in view of Theorem 1, the function f : X → K given
by (13) is a solution of equation (2).

Example 2. Suppose that tn = 1. Let W be a multiplicative subgroup
of K \ {0} such that an 6= 1 for a ∈ W \ {1}. Fix x0 ∈ X \ {0} and put
w(a) = (an− 1)x0 for a ∈ W . It is easy to check that conditions (10)–(12)
are valid with T = {0}. Thus, in virtue of Theorem 1, formula (13) (with
T = {0}) gives us a solution of (2).

Example 3. Assume that n = 1, char K 6= 0, and t does not satisfy
(∗), where L is the simple subfiled of K. Denote by S the ring generated
by the set L

⋃{t, t−1} and fix x0 ∈ X \ {0}. Put W = L \ {0}, T =
{a(t−1)x0 : a ∈ S}, and w(a) = (a−1)x0 for a ∈ W . In the same way like
in Example 1 one can prove that conditions (10) and (11) hold. Further,
fix a ∈ W \ {1} and suppose that w(a) ∈ T . Then there are k ∈ N⋃{0}
and a−k, . . . , ak ∈ L with (a−kt−k + · · · + aktk)(t − 1)x0 = (a − 1)x0.
Hence (t − 1)((a − 1)−1a−kt−k + · · · + (a − 1)−1aktk) − 1 = 0. This
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brings a contradiction, because t does not satisfy (∗). Hence (12) holds.
Consequently, by Theorem 1, (13) supplies a solution of (2).

Remark. It results from Example 3 and Proposition 3 that in the case
where n = 1 and char K 6= 0, 2 every solution f : X → K of (2) is of the
form described in Proposition 3 iff t satisfies condition (∗).

In a similar way, like in Examples 1–3, one can find other numerous
examples of functions satisfying equation (2) for many t. We have as well
the following

Proposition 4. Let K be either R or C. Then there are 2K solutions
f : K → K of equation (2).

Proof. Let T0 be an additive subgroup of K. Put

T =

{
k∑

i=−k

ait
in : k ∈ N, ai ∈ T0 for i = −k, . . . , k

}
,

W = {1}, and w(1) = 0. Then it is easy to observe that conditions (10)–
(12) are valid. Thus, in virtue of Theorem 1, the function f : K → K
given by (13), with X = K, satisfies equation (2).

Since there are 2K linear subspaces of the linear space K over the
simple extension of the field Q by the element tn, we obtain in this way
2K solutions of (2). This ends the proof.

In general, it seems to be difficult to determine all solutions f : X → K
of (2) explicitly. However, like in the case n = 1 and t = 1 (see [1]–[3],
[7], [8], [10], [12], [14], and [16]), this can be done under some additional
assumptions and we shall make it in the sequel.

3. Algebraic assumptions

In this part we determine solutions of equation (2) satisfying some
algebraic assumptions. Let us begin with the following

Lemma 2. Let W be a cyclic multiplicative subgroup of K \ {0} and
let T be an additive subgroup of X such that (10) holds. Suppose that a
function w : W → X satisfies conditions (11) and (12) and there is a0 ∈ W
with an

0 6= 1. Then

an 6= 1 for every a ∈ W \ {1}
and there exists x0 ∈ X \ ⋃{(an − 1)−1T : a ∈ W \ {1}} such that
(tn − 1)x0 ∈

⋂{(an − 1)−1T : a ∈ W \ {1}} and

(15) w(a)− (an − 1)x0 ∈ T for a ∈ W .
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Proof. First of all notice that (12) and (15) yield an 6= 1 and
x0 6∈ (an − 1)−1T for a ∈ W \ {1}. Further, by (10) and (15), we get
(tn − 1)(w(a)− (an − 1)x0) ∈ T for a ∈ W , which, in view of (11), implies
(tn−1)(an−1)x0 ∈ T for a ∈ W . Thus it remains only to show that there
is x0 ∈ X satisfying (15).

On account of the hypothesis on W , there is c ∈ W such that W =
{ck : k ∈ Z}. Since an

0 6= 1, we have cn 6= 1. Put x0 = (cn − 1)−1w(c). We
want to prove that

(16) w(cm)− (cmn − 1)x0 ∈ T

for every m ∈ Z. First, we shall do this for m ≥ 0 by induction.
It results from (12) that (16) holds for m = 0. Fix m ∈ N. Then

w(cm+1)− (c(m+1)n − 1)x0 = w(cm+1)− cnw(cm)− w(c)

+cnw(cm) + (cn − 1)(cn − 1)−1w(c)− (c(m+1)n − 1)x0

= w(cm+1)− cnw(cm)− w(c) + cn(w(cm)− (cmn − 1)x0) .

Hence, in view of (10), (11), and the induction hypothesis, w(cm+1) −
(c(m+1)n − 1)x0 ∈ T . So, we have proved that (16) is valid for every
m ∈ N⋃{0}.

Next, fix m ∈ N and put a = c−m and b = cm in (11). Then we obtain
w(1)− c−mnw(cm)− w(c−m) ∈ T . Hence (12) implies

(17) w(c−m) + c−mnw(cm) ∈ T .

On the other hand

w(c−m)− (c−mn − 1)x0 =

= w(c−m) + c−mnw(cm)− c−mn(w(cm)− (cmn − 1)x0) .

Consequently, by (10), (16), and (17), w(c−m)− (c−mn − 1)x0 ∈ T . This
completes the proof.

Proposition 5. A function f : X → K is a solution of equation (2),
the set {tf(x) : x ∈ X, f(x) 6= 0} is a cyclic multiplicative subgroup of
K \ {0}, and

(18) there is a0 ∈ f(X) \ {0} with an
0 6= t−n

iff there exist a cyclic multiplicative subgroup W 6= {1} of K \ {0} with

(19) an 6= 1 for a ∈ W \ {1} ,

an additive subgroup T of X satisfying (10), and x0 ∈ X such that

(20) x0 6∈
⋃{(an − 1)−1T : a ∈ W \ {1}} ;
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(21) (tn − 1)x0 ∈
⋂{(an − 1)−1T : a ∈ W \ {1}} ;

(22) f(x) =

{
t−1a if x ∈ (an − 1)x0 + T and a ∈ W ;
0 otherwise,

for x ∈ X .

Proof. Assume that f is a solution of equation (2). Then, in virtue
of Theorem 1, there exist a multiplicative subgroup W of K \ {0}, an
additive subgroup T of X, and a function w : W → X such that conditions
(10)–(13) are valid. It is easily seen that W = t(f(X) \ {0}). Thus
W is a multiplicative cyclic group and, by (18), there is a0 ∈ W with
an
0 6= 1. Hence Lemma 2 and (13) imply that there exists x0 ∈ X fulfilling

conditions (20)–(22) and (19) holds.
For the converse it is enough to notice that the function w : W → X,

given by: w(a) = (an − 1)x0 for a ∈ W , satisfies (11) and (12) and use
Theorem 1. This ends the proof.

The next proposition describes the solutions of (2), which do not
satisfy condition (18).

Proposition 6. A function f : X → K, f 6= 0, satisfies equation (2)
and the condition

(23) f(x)n = t−n for every x ∈ X with f(x) 6= 0

iff there exist k ∈ N, a0 ∈ K \ {0}, x0 ∈ X, and an additive subgroup T
of X such that ak

0 = an
0 = 1, kx0 ∈ T, (tn − 1)x0 ∈ T, tnT = T ,

(24) ai
0 6= 1 and ix0 6∈ T for every i ∈ N, i < k ,

and

(25) f(x) =

{
t−1ai

0 if x ∈ ix0 + T and i ∈ N, i ≤ k ;
0 otherwise ,

for x ∈ X .

Proof. Assume that f satisfies equation (2) and condition (23). Ac-
cording to Theorem 1 there are a multiplicative subgroup W of K \{0}, an
additive subgroup T of X, and a function w : W → X such that conditions
(10)–(13) are valid. In view of (23) we have an = 1 for every a ∈ W , which
means that W is a finite cyclic group. Thus there is a0 ∈ K\{0} and k ∈ N
such that W = {ai

0 : i ∈ N, i ≤ k}, ak
0 = 1, and ai

0 6= 1 for i ∈ N, i < k. It
is easily seen that we also must have an

0 = 1. Put x0 = w(a0). Then, by
induction, we get from (11) w(ai

0) − ix0 = w(ai
0) − iw(a0) ∈ T for i ∈ N.

Consequently, in virtue of (10)–(13), kx0 ∈ T, (tn − 1)x0 ∈ T , and (24),
(25) hold. The fact tnT = T result from (10).
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For the converse, according to Theorem 1, it suffices to observe that
if f is of form (25), then conditions (10)–(13) are valid with W = {ai

0 :
i ∈ N, i ≤ k} and w(ai

0) = ix0 for i ∈ N, i ≤ k. This ends the proof.
From Proposition 6 we obtain, in particular, the following
Corollary 1. Suppose that charK 6= 0. Then a function f : X →

K, f 6= 0, satisfies (23) and equation (2) iff there exists an additive sub-
group T of X such that tnT = T and

(26) f(x) =

{
t−1 for x ∈ T ;
0 for x ∈ X \ T .

Proof. Assume that f satisfies equation (2) and condition (23).
Then, on account of Proposition 6, f is of form (25). Notice that T is a
linear subspace of X over the simple subfield of K. Thus from the fact
that kx0 ∈ T and (24) we deduce x0 ∈ T or charK = k.

Suppose that k = charK. Then (a + b)k = ak + bk for every a, b ∈ K
and consequently ak 6= 1 for a ∈ K \ {1}, because k is a prime number.
Hence a0 = 1, which, in view of (24), means that k = 1. This brings a
contradiction, since charK > 1.

So, we have proved that x0 ∈ T . Thus k = 1 and a0 = 1. Hence (25)
yields (26).

For the converse it suffices to put k = 1, a0 = 1 and x0 = 0 and use
Proposition 6 again. This ends the proof.

Now, we are in a position to give a description of solutions f : X → K
of (2) in the case where K is a finite field.

Theorem 2. Suppose that K is a finite field. Then a function f : X →
K, f 6= 0, is a solution of equation (2) iff there are b ∈ K \ {0}, x0 ∈ X,
and an additive subgroup T of X such that

(27)
the numbers n and r(b) := min{j ∈ N : bj = 1}
are relatively prime ;

(28) bnT = T and tnT = T ;

(29) if b 6= 1, then (tn − 1)x0 ∈
⋂{(bnj − 1)−1T : j ∈ N, j < r(b)} ;

(30) x0 6∈
⋃{(bjn − 1)−1T : j ∈ N, j < r(b)} ;

f(x) =

{
t−1bj if x ∈ (bjn − 1)x0 + T and j ∈ N, j ≤ r(b) ;
0 otherwise,

(31)

for x ∈ X .
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Proof. Assume that f is a solution of (2). In the case where (23)
holds, by Corollary 1, it is enough to put b = 1 and x0 = 0. Therefore
suppose that there is x ∈ X with f(x)n 6∈ {0, t−n}. Then, according to
Proposition 1 and lemma 1 (iii), the set t(f(X) \ {0}) is a finite multi-
plicative group. Thus it is a cyclic group and consequently, on account
of Proposition 5, f is of form (22). Hence there is b ∈ K \ {0} with
W = {bj : j ∈ N}. It is easily seen that (28)–(31) result from (10) and
(20)–(22). It remains to show (27).

For the proof by contradiction suppose that (27) is not valid. Then
there are k, m, j ∈ N with k > 1, n = kj, and r(b) = km. Thus bm 6= 1
and (bm)n = (br(b))j = 1. This brings a contradiction with (19).

For the converse, note that the case where b = 1 is trivial (we may
use Corollary 1). Thus, in view of Proposition 5, it suffices to show that
(19)–(22) and (10) hold with b 6= 1 and W = {bj : j ∈ N, j ≤ r(b)}. It is
easy to see that (28)–(31) imply (20)–(22) and (10). Next, suppose that
a ∈ W and an = 1. Then there exists j ∈ N with j ≤ r(b) and a = bj .
Thus bjn = 1, which means that r(b) is a divisor of jn. Since r(b) and n
are relatively prime and j ≤ r(b), this yields j = r(b).

In this way we have proved that (19) holds, which completes the proof.

Corollary 2. Suppose that K is a simple finite field. Then a function
f : X → K, f 6= 0, t−1, is a solution of equation (2) iff,

1◦ in the case tn 6= 1, there is an additive subgroup T of X such that
T 6= X and (26) holds;

2◦ in the case tn = 1, there are an additive subgroup T of X,
b ∈ K \ {0}, and x0 ∈ X \ T such that conditions (27) and (31) are
valid.

Proof. Since every additive subgroup T of X is a linear subspace
of X, in the case tn 6= 1 conditions (29) and (30) can be fulfilled only for
b = 1. Further, if tn = 1, then (29) is valid for every b ∈ K \ {0}, x0 ∈ X,
and every additive subgroup T of X. Moreover, in the case b 6= 1, (30)
holds iff x0 6∈ T . Hence Theorem 2 yields the assertion.

Using Theorem 2 and some results from [8] and [12] we obtain as well
the next two corollaries.

Corollary 3. Suppose that K is a finite field and g 6= 0 is a function
mapping X into K. Then the binary operation ◦ : X ×X → X given by
the formula

(32) x ◦ y = x + g(x)y for x, y ∈ X

is associtative if and only if there exist an additive subgroup T of X,
b ∈ K \ {0}, and x0 ∈ X \⋃{(bj − 1)−1T : j ∈ N, j < r(b)} such that
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bT = T and

g(x) =

{
bj if x ∈ (bj − 1)x0 + T and j ∈ N, j ≤ r(b) ;
0 otherwise ,

for x ∈ X .

Proof. It is easy to check that the operation is associative iff g sat-
isfies functional equation (3) with n = 1 (cf. [12], Lemma 1). Thus
Theorem 2 implies the statement.

The problem of characterization of binary operations of form (32) has
been already studied in [12] and solved there in the case where K = R, X
is a real linear topological space, and f is continuous.

Next, let us introduce in the set A = (K \{0})×X a binary operation
◦ : A×A → A as follows:

(a, x) ◦ (b, y) = (ab, x + any) for (a, x), (b, y) ∈ A .

It is easy to verify that (A, ◦) is a group (cf. [8]).

Corollary 4. Suppose that K is a finite field and f 6= 0 is a function
mapping X into K. Then the set D = {(f(x), x) : x ∈ X, f(x) 6= 0} is
a subgroup of the group (A, ◦) if and only if f is of the form described in
Theorem 2 with t = 1.

Proof. According to Theorem 1 from [8], D is a subgroup of (A, ◦)
iff f satisfies equation (2) with t = 1, i.e. equation (3). Thus Theorem 2
yields the statement.

For further details concerning the group (A, ◦) and that way of finding
subgroups refer to [2], [7], [8], [13], and [16].

4. Continuous solutions

Finally, we shall give the continuous solutions f : X → K of equation
(2) in the case where K is either R or C (with the usual topology) and X
is a linear topological space over K.

The continuous solutions of (2), with t = 1 and n = 1, have been
already determined, in the case K = R, in [7] and [12] and, in the case
K = C, in [3] (see also [14]). N. Brillouët–Belluot [5] has found the
continuous solutions f : X → K of (2) in the case K = R for every n ∈ N
and t ∈ R. The case where t = 1, K is either R or C, and n is any positive
integer is solved in [8].

In the sequel we will need a result from [8]. Let us recall it.
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Lemma 3. (see [8], Corollary 4). Suppose that K is either R or C and
X is a topological linear space over K. Then a function g : X → K, g 6= 0,
is continuous and satisfies equation (3) iff

(33) g(X) ⊂ R or n = 1
and the following two conditions hold:

(i) if g(X) ⊂ R, then there exists a continuous R–linear functional
h : X → R such that,

1◦ in the case where n is odd,

(34) g(x) = n
√

h(x) + 1 for x ∈ X

or

(35) g(x) = n
√

sup(h(x) + 1, 0) for x ∈ X ;

2◦ in the case where n is even, g is of form (35);
(ii) if g(X) 6⊂ R and n = 1, then there exists a continuous C–linear

functional h : X → C such that g(x) = h(x) + 1 for x ∈ X.

Now we are in a position to prove the following
Theorem 3. Suppose that K is either R or C and X is a linear topo-

logical space over K. Then a function f : X → K, f 6= 0, is continuous
and satisfies equation (2) iff,

(i) in the case tn 6= 1, f = t−1;
(ii) in the case tn = 1, there exists a function g : X → K fulfilling (33)

and conditions (i), (ii) of Lemma 3 such that f(x) = t−1g(x) for x ∈ X.

Proof. Assume that f is continuous and satisfies equation (2). Then,
according to Proposition 1 and Lemma 3, there exists a function g : X →
K fulfilling (4), (33), and conditions (i), (ii) of Lemma 3. The case tn = 1
does not demand any comment. Further, h(ax) = ah(x) for a ∈ R, x ∈ X.
Whence, in the case tn ∈ R \ {1}, (4) implies h = 0. So does it in the case
where g(X) 6⊂ R and tn ∈ C\R. Consequently, it remains to consider only
the case where g(X) ⊂ R and tn ∈ C \ R.

It is easily seen that in this case K = C. On account of (4) and

Lemma 1 (vii), (tn − 1)x ∈ T := g−1({1}) for every x ∈ X with g(x) 6= 0.

Notice that g−1({1}) = h−1({0}) and h−1((−1, +∞)) ⊂ g−1((0, +∞)).

Thus (tn − 1)h−1((−1, +∞)) ⊂ h−1({0}). Since h−1((−∞, 1)) =

−h−1((−1, +∞)) and X = h−1((−∞, 1))
⋃

h−1((−1,+∞)), we obtain

X = (tn − 1)X ⊂ h−1({0}), which means that h = 0 an consequently

f = t−1. This completes the proof.

Some other results from [8] can be generalized for equation (2) in a
similar way.
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