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Polarization constants for products of linear functionals
over R2 and C2 and Chebyshev constants of the unit sphere

By VASILIOS A. ANAGNOSTOPOULOS (Athens) and

SZILÁRD GY. RÉVÉSZ (Budapest)

Abstract. The topic of this work is the estimation of the linear polariza-
tion constant of normed spaces. In finite dimensional Hilbert spaces we study
the linear polarization constant and the Chebyshev constant. By constructing
certain generalized trigonometric functions, our investigation leads to the connec-
tion of the polarization constant on a 2-dimensional complex Hilbert space and
the Chebyshev constant of S2. This provides estimates for the nth polarization
constants. Our main result is asymptotically best possible.

1. Introduction

In the theory of analytic functions on Banach spaces polynomials of
finite-type play an important role. A polynomial of finite type on a Banach
space E is a finite linear combination of finite products of functionals in E∗,
the dual space of E. It is known that a weakly continuous entire function
on E is uniformly approximable on bounded sets by polynomials of finite
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type, see Gamelin [10, Corollary 3.1.2]. Moreover, any n-homogeneous
polynomial that is weakly continuous is a polynomial of finite type. An
interesting question in this area is the problem of estimating the best
possible lower bounds for the norms of the simplest polynomials of finite
type which are products of linear functionals, see [1], [4], [22]. For example,
if x1, . . . , xn are n unit vectors in a finite dimensional Hilbert space H, we
form the n-homogeneous polynomial

P (x) = 〈x, x1〉〈x, x2〉 . . . 〈x, xn〉 (x ∈ H). (1)

The norm of the polynomial P is

‖P‖ = max
‖x‖=1

|P (x)|. (2)

Then the problem is to find the optimal choice of xi’s, 1 ≤ i ≤ n,
for which the minimum value of the norm is achieved. This is actually a
min-max problem. Obviously, the maximum value of the norm is 1 and
is achieved when all the unit vectors coincide. But what is the minimum
value of the norm? If m = dim(H) ≥ n, a reasonable guess is that the
minimum is achieved when the xi’s form an orthonormal system. Then

‖P‖ =
1

nn/2
. (3)

If H is an m-dimensional complex Hilbert space with m ≥ n, J. Arias-

de-Reyna has proved in [1] that this value is actually the minimum. His
proof is an elegant mixture of probability theory and multilinear algebra.
An even stronger result was obtained recently by K. M. Ball [2] using
linear algebra and geometric arguments combined with complex function
theory. However, the real case for m ≥ n is still open, unless n ≤ 5,
see [19].

In the present paper we investigate the case when H is 2-dimensional.
Trying to tackle this problem we are led to the problem of calculating the
geometric Chebyshev constant for the unit balls of R

2 and R
3.

The real case can be solved explicitly and it is reflected in the fact
that the Chebyshev constant for the unit disk in R

2 is well known from
potential theory and easy to compute. However, the exact value of the
Chebyshev constant for the unit ball of R

3 is not known and because of
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this, the connection of the complex case with this problem is of interest
although we do not explicitly compute the exact minimum.

We discuss first the real case and then the complex case because
the methods are similar and because a generalization of the well-known
trigonometric functions comes into the picture.

The authors would like to express their gratitude to Professor Y. Sa-

rantopoulos for many helpful discussions, comments and suggestions.

2. Basic notation and definitions

Let E be a normed space. Consider n continuous linear forms
f1, . . . , fn in the unit sphere SE∗ of E∗. We define the n-homogeneous
polynomial

P (x) := f1(x)f2(x) . . . fn(x), (4)

or in tensorial notation (see for instance [21])

P := f1 � f2 � · · · � fn. (5)

Following for instance Benitez, Sarantopoulos and Tonge [4], we
define the (linear) polarization constants of E as follows.

Definition 1. The nth polarization constant and the polarization con-
stant of E are defined by

cn(E) := 1
/

inf
f1,...,fn∈SE∗

sup
‖x‖=1

|f1(x)f2(x) . . . fn(x)| (6)

and
c(E) := lim sup cn(E)1/n, (7)

respectively. Actually, lim sup exists as a lim, see [20].

To find these polarization constants is usually a difficult task. Note
that in the special case of a Hilbert space H by the Riesz Representation
Theorem the previous definitions can be formulated as follows:

cn(H) = 1
/

inf
x1,...,xn∈SH

sup
‖x‖=1

|〈x, x1〉〈x, x2〉 . . . 〈x, xn〉| (8)
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and
c(H) = lim sup cn(H)1/n, (9)

respectively. This has an obvious geometrical interpretation since it in-
volves vectors of H only. For a finite dimensional Hilbert space of di-
mension d over the field K (where K is either C or R) we denote the nth

polarization constant by cn(Kd) and the polarization constant by c(Kd).
For more information and related results we refer to the book of S. Di-

neen [7, Chapter 1].
Suppose now that K is a compact set in E.

Definition 2. The nth Chebyshev constant of K is defined by

Mn(K) := inf
y1,...,yn∈K

sup
y∈F

‖y − y1‖‖y − y2‖ . . . ‖y − yn‖. (10)

With this definition we follow Pólya, Szegő and Carleson [6], but
not Zaharjuta [26]. For more on Chebyshev constants see the recent
very general account [9].

3. Real case

Given a 2-dimensional real Hilbert space, we try to find the minimum
value of ‖P‖, where P is defined in (1) for all possible configurations of
the points x1, x2, . . . , xn. We are going to exploit the geometrical nature of
this problem rather than the analytical one. Equation (4) takes the form

P (x) = cos ϑ1 cos ϑ2 . . . cos ϑn, (11)

where ∠(x, xj) = ϑj , 1 ≤ j ≤ n, are the angles between the unit vectors
x and xj . Searching for the maximum of the polynomial, x runs all over
the unit circle. Of course the same happens if we consider a unit vector y,
with ∠(y, x) = π/2. Then ∠(y, xj) = ϕj = ϑj + π/2 and the polynomial
takes the form

P (y) = sinϕ1 sinϕ2 . . . sinϕn. (12)

Consider now the complex numbers z, zj ∈ C, |z| = |zj | = 1, corresponding
to the unit vectors y, xj respectively. Using the well known identity

2| sin(a − b)| = |ei2a − ei2b| , (13)
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where a, b ∈ R, we conclude that

|P (y)| =
1
2n

|z2 − z2
1 | |z2 − z2

2 | . . . |z2 − z2
n|. (14)

We also know that the function w = T (z) = z2 defines a group homomor-
phism of the unit circle onto itself. Thus the original min-max problem
can be re-stated as follows. Let

Q(w) = (w − w1)(w − w2) . . . (w − wn) (15)

be a complex polynomial with the roots on the unit circle. What is the
optimal choice of the wj’s such that the maximum of |Q(w)| on the unit
circle has the minimal value possible? Thus if Mn(S1) is the nth Chebyshev
constant of S1 := {w ∈ C : |w| = 1}, we have found a formula relating this
constant and cn(R2).

Proposition 1. For the nth polarization constant cn(R2) we have

cn(R2) = 2n/Mn(S1).

Using Proposition 1 we are led to the following result.

Theorem 2. The nth polarization constant of R
2 is equal to 2n−1,

that is

cn(R2) = 2n−1.

Proof. It suffices to show that Mn(S1) = 2. The trick is to use the
following DFT (Discrete Fourier Transform) type calculation

1
n

n−1∑
k=0

Q(ei2π k
n w) = wn + (−1)nw1w2 . . . wn = wn − Q(0), (16)

where Q is the polynomial defined by (15). Multiplying the points w1, . . . ,
wn by an appropriate complex unit – that is, rotating the point system –
we can assume that Q(0) = 1. But then

|wn − Q(0)| =

∣∣∣∣∣
1
n

n−1∑
k=0

Q(ei2π k
n w)

∣∣∣∣∣ ≤
1
n

n−1∑
k=0

∣∣∣Q(ei2π k
n w)

∣∣∣ ≤ ‖Q‖.
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Since the maximum of the left hand side can be easily calculated as

sup
|w|=1

|wn − Q(0)| = 2,

we finally get

2 ≤ ‖Q‖.

Moreover, ‖Q‖ = 2 if and only if the wj ’s are the nth roots of unity. �

Corollary 3. The polarization constant of R
2 is equal to 2, that is

c(R2) = 2.

Remarks. A closely related topic is the exact constant in Mahler’s
inequality. Y. Sarantopoulos, based on investigations of the polarization
constants, conjectured that the original estimate 2n of Mahler [15] could
be improved to 2n−1. In 1997 this conjecture was proved by Kroó and
Pritsker [12]. The simple argument in the proof of Theorem 2 is in fact
a special case of this sharp Mahler-type inequality which has already been
presented e.g. in [18].

In line to the above comments, just after finishing our work, a paper
of Bojanov, Haussman and Nikolov [5] appeared, which, in a different
setting, contains a result stronger than the above Theorem 2. In this paper
the authors consider products of linear two-variable polynomials and they
estimate the relation between the norm of the product and the product
of the norms. The interested reader may verify easily that indeed their
Theorem 6 implies Theorem 2.

However, we have decided to present the above detailed proof of Theo-
rem 2 because the two basic steps of the real case translate (in the complex
case) to the extension of the trigonometric relations of the real plane to C

2,
and deduction of equivalence to the corresponding Chebyshev constant. To
the best of our knowledge, these were not investigated in the complex case
before; therefore our presentation of the real case serves as an instructive
model to the complex version.
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4. Complex case

Now we will imitate the proof of Theorem 2 in order to transform the
two-dimensional complex case into a Chebyshev problem. For z ∈ C

2, let

P (z) = 〈z, z1〉〈z, z2〉 . . . 〈z, zn〉.

The original problem is to find the value of

cn(C2) = 1/ min
z1,...,zn∈S

max
z∈S

|P (z)|, (17)

where, as usual, S = ∂BC2 . We will proceed in this situation the same
way as we did for the real case. First of all we define the cosine of a point
z ∈ S. We can define a multitude of these cosines with respect to any
given unit vector w by the following standard way

cosw(z) := 〈z,w〉. (18)

In calculus we learn that the sine function can be defined to satisfy sin2 a+
cos2 a = 1. On the other hand the sine function can be defined as sinx =
cos(x − π

2 ). These two identities motivate the following definition. First
we define the transformation

T

(
z1

z2

)
:=

(
z2

−z1

)
. (19)

If z1 and z2 are reals this corresponds to a rotation by −π/2. Having
defined the rotation, the definition of the sine is straightforward. Namely,
we define

sinw(z) := cosw(T (z)). (20)

With definitions (18), (19) and (20) in hand, a simple calculation yields

| sinw(z)|2 + | cosw(z)|2 = ‖z‖2 · ‖w‖2 = 1, (21)

for any unit vectors z,w ∈ S. Moreover, it can be seen that for any unit
vectors z,w ∈ S the above defined sine and cosine functions inherit some
of the well-known trigonometric identities with minor modifications.
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If we want to generalize identity (13), we need to find a way to “double”
the angles of vectors of S. Note that S does not have a group structure.
However, we can view this process geometrically in the plane and generalize
to S.

For this, consider the unit vector e1 = (1, 0) in R
2. If we are given

a unit vector x = (x1, x2) ∈ R
2 and we want to double its angle from e1,

then the new vector x′ is

x′ = 2〈x, e1〉x − e1 =
(

2x2
1 − 1

2x1x2

)
. (22)

With the double angle vectors defined above, equation (13) reads

2| siny x| = ‖x′ − y′‖. (23)

This is exactly the property we wish to extend to vectors z,w ∈ C
2. The

key idea is to define a proper “doubling function” D : S → S with similar
properties. We cannot blindly substitute in the real definition (22) complex
vectors because an ambiguity comes up as far as the inner product is
concerned. Among 〈e1, z〉 and 〈z, e1〉, which is the right choice? The
resulting “double angle” vector must have norm equal to 1 in order to lie
again on the sphere. Therefore the right choice is

D(z) := 2〈e1, z〉z − e1 =
(

2|z1|2 − 1
2z1z2

)
, (24)

where now for unit z = (z1, z2) also D(z) is a unit vector in C
2.

A generalization of (13), i.e. (23) is formulated in the following result.

Proposition 4. If z = (z1, z2) and w = (w1, w2) are in S, then

2| sinw(z)| = ‖D(z) − D(w)‖. (25)

Proof. We have

‖D(z) − D(w)‖ =
∥∥∥∥
(

2|z1|2 − 1
2z1z2

)
−

(
2|w1|2 − 1

2w1w2

)∥∥∥∥
= 2

∥∥∥∥
(|z1|2 − |w1|2

z1z2 − w1w2

)∥∥∥∥ .
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Hence

1
4
‖D(z) − D(w)‖2 = (|z1|2 − |w1|2)2 + |z1z2 − w1w2|2

= |z1|4 + |w1|4 − 2|z1|2|w1|2 + |z1|2|z2|2 + |w1|2|w2|2 − 2Re(z1z2w1w2)

= |z1|2 + |w1|2 − 2|z1|2|w1|2 − 2Re(z1z2w1w2)

= |z1|2|w2|2 + |w1|2|z2|2 − 2Re(z1z2w1w2)

= |z2w1 − z1w2|2 = |〈T (z), w〉|2
= | sinw(z)|2. �

Let us make some comments regarding the functions T and D.

Remarks. (i) It is easy to observe that T is an isometric homeomor-
phism from S onto S. So T (S) = S and S = T−1(S).

(ii) By standard calculations it is easy to see that the “doubling func-
tion” D is a continuous mapping from S onto Ω = (R × C) ∩ S. Actually,
Ω can be identified with the unit sphere of R

3.

Utilizing all the previous discussion we arrive at the following result.

Proposition 5. For the nth polarization constant cn(C2) we have

cn(C2) = 2n
/

min
z1,...,zn∈Ω

max
z∈Ω

‖z − z1‖ ‖z − z2‖ . . . ‖z − zn‖.

Proof. Since

‖P‖ = max
z∈S

|〈z, z1〉〈z, z2〉 . . . 〈z, zn〉|,

by using Proposition 4 and the previous Remark (i) we have

‖P‖ = max
z∈S

|〈T (z), z1〉〈T (z), z2〉 . . . 〈T (z), zn〉|
= max

z∈S
| sinz1(z) sinz2(z) . . . sinzn(z)|

=
1
2n

max
z∈S

‖D(z) − D(z1)‖ ‖D(z) − D(z2)‖ . . . ‖D(z) − D(zn)‖.

Finally, by Remark (ii)

cn(C2) = 2n/ min
w1,...,wn∈Ω

max
w∈Ω

‖w − w1‖ ‖w − w2‖ . . . ‖w − wn‖. �
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Hence, after identifying Ω with the unit sphere of R
3 we obtain.

Theorem 6. We have

cn(C2) = 2n/Mn(S2),

where S2 = {x ∈ R
3 : ‖x‖ = 1}.

5. On the Chebyshev constant of S2

In spite of the elementary definition of the Chebyshev constants given
in Section 2, surprisingly enough little is known about them for dimension

= 2 (or complex dimension 
= 1). Let us note that one approach could be to
follow the basic methods of the general theory of potentials and capacities,
which would give that M

1/n
n (S2) → cap0(S2). Here for any fixed x0 ∈ S2

and the surface Lebesgue measure dσ(x)

log(cap0(S
2)) =

1
4π

∫
S2

log |x − x0| dσ(x) =
1
2

log
(

4
e

)
. (26)

However, to estimate the nth Chebyshev constant and its deviation
from this logarithmic capacity is of a kind of a nontrivial geometrical dis-
crepancy problem. Fortunately there are some estimates that help us in
estimating the polarization constant of C

2. The best known estimates for
the nth Chebychev constants are due to G. Wagner [24], namely

0 < C1 ≤ log Mn(S2) − n

2
log

(
4
e

)
≤ C2 < ∞. (27)

In view of this result, Theorem 6 yields

Theorem 7. There exist absolute constants c and C, with 0 < c <

C < ∞, such that for all n ∈ N we have

c(
√

e )n ≤ cn(C2) ≤ C(
√

e )n.

Corollary 8. The polarization constant of C2 is equal to
√

e, that is

c(C2) =
√

e.
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6. Concluding remarks

The exact value of cn(R2) could be obtained only due to the existence
of regular n-gons on S1. However, for R

d, d > 2 or C
d, d > 1, no obvious

n-symmetric point set exists to minimize the Chebyshev constant, i.e. to
maximize the polarization constants.

We have natural candidates for the extremal point set only in some
exceptional cases. Say in case n = d any orthonormal set of vectors
x1, . . . , xn ∈ R

d (or C
d) for the polarization constant, or in case n = 2d and

with the above orthonormal system the set ±x1, . . . ,±xn for the Cheby-
shev constant can be expected to be extremal. However, even for these
exceptionally symmetric cases to prove extremality is a highly nontrivial
problem. In particular, cn(Cn) = nn/2 was obtained only recently, see
Arias-de-Reyna [1] and also Ball [2], while cn(Rn) is still unknown.

Our work, originally aimed at the natural guess of cn(Cd) = dn/2,
has shown that there is a connection between Chebyshev constants and
polarization constants, at least for d = 2. In view of the equivalence to
Chebyshev constants Mn(S2) for d = 2, to make out the exact value of
cn(Cd) seems rather unlikely, at least in the foreseeable future. Moreover,
the exact value of cn(R2), and the relatively precise estimate on cn(C2)
suggests that there is no easy formula to guess for the values of the general
polarization constants cn(Rd) and c(Rd) or cn(Cd) and c(Cd).

However, if we relax the demand for the exact or at least relatively
precise values of cn(Rd) and cn(Cd), and settle with determination of the
limit quantities c(Rd) and c(Cd) (with d < ∞ fixed), then there are nice
results available. J. Garćıa-Vázquez and R. Villa [11] determined
the values of the real polarization constants c(Rd) using a general method
relying on existence of the so-called “rendezvous numbers” in compact
metric spaces, while A. Pappas, Sz. Révész and Y. Sarantopoulos

[19], [20] applied basically potential-theory flavored techniques to compute
both c(Rd) and c(Cd). For some further estimates on the most intriguing
problem of the diagonal case see also [16], [17] and the references therein.

It seems that if we depart from the Hilbert space case, the polarization
constants on more general Banach spaces are even harder to compute. In
this field only a few results are known, see [1], [2], [3], [4], [20], [22].
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SZILÁRD GY. RÉVÉSZ
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