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Counting the number of economical numbers

By JEAN-MARIE DE KONINCK (Québec) and FLORIAN LUCA (Morelia)

Abstract. Given an integer B ≥ 2, we say that an integer n ≥ 2 is a base
B economical number if its prime factorization requires no more digits than its
regular representation in base B, and we say that it is base B strongly economical
if it requires less digits. We obtain lower and upper bounds for the number of base
B strongly economical numbers not exceeding a given positive real number x.

1. Introduction

In 1995, Bernardo Recamán Santos [6] defined a number n to
be equidigital if the prime factorization of n requires the same number
of decimal digits as n, and economical if its prime factorization requires
no more digits. For instance 289 = 11 · 17 is not economical because it
has three digits, while its prime factorization has four; on the other hand,
125 = 53 is economical, and so is every prime number.

Santos asked whether there exist arbitrarily long sequences of consecu-
tive economical numbers. In 1998, Richard Pinch [3] gave an affirmative
answer to this question assuming the prime k-tuples conjecture stated by
L. E. Dickson [2] in 1904.
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Recently, we proved [1] that Santos’ conjecture holds unconditionally,
and, in fact, that it holds in any base B ≥ 2. To be more precise, defining
a base B economical number (resp. a base B strongly economical number)
to be a positive integer whose prime factorization requires no more (resp.
less) digits than its representation in base B, we proved that there exist
arbitrarily long intervals containing exclusively base B strongly economical
numbers.

Here, we obtain lower and upper bounds for the number of base B

strongly economical numbers not exceeding a given positive real number x.

2. Main result

Throughout this paper, we let x be a large positive real number and
B ≥ 2 an integer. We let NB(x) stand for the number of base B strongly
economical numbers not exceeding x. For a positive integer n, we use
ω(n), P (n) and r(n) for the number of distinct prime factors of n, the
largest prime factor of n, and the product of the distinct primes dividing
n, respectively. Moreover, ℘ stands for the set of all primes. We also use
the Vinogradov symbols �, �, and the Landau symbols O and o with
their usual meaning. Sometimes, the constants implied by these symbols
may depend on some other parameters, like B, ε, etc., in which cases we
shall specify such a dependence by writing �B , or Oε, etc.

Our main result consists in upper and lower bounds for the function NB(x).

Theorem. There exists an increasing sequence of positive real num-

bers {αB}B≥2 in the interval (0, 1) such that, for all large x, the estimates

x

log x
�B NB(x) �B

x

(log x)αB+o(1)
(1)

hold as x tends to infinity. Moreover, αB ≥ α2 > 1/20, and the estimate

αB ≥ 1 − (1 + o(1)) ·
√

2 log log B

log B
(2)

holds as B tends to infinity.
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3. Notations and preliminary results

Let B ≥ 2 be an integer. As in [1], for a positive integer n whose
factorization is n =

∏
pap‖n pap , we set

SB(n) =
⌊

log n

log B

⌋
+ 1,

TB(n) =
∑

pap‖n

(⌊
log p

log B

⌋
+ 1
)

+
∑

pap‖n
ap>1

(⌊
log ap

log B

⌋
+ 1
)

.

We start by mentioning a well known result of Hardy and Ramanu-

jan [4].

Theorem A. There exist two absolute constants C1 > 0 and C2 > 0
such that, given any positive integer k, the inequality

∑
n≤x

ω(n)=k

1 ≤ C1
x

log x

(log log x + C2)k−1

(k − 1)!
(3)

holds.

Secondly, we extend the above result as follows. The result below
probably holds in wider ranges than the ones indicated (and even with a
sharper upper bound than the one indicated), but its present formulation
is sufficient for our purposes.

Assume that ℘ = ℘1∪℘2 and ℘1∩℘2 = ∅ is a fixed partition of the set
of all prime numbers. For a positive integer n, we write ωi(n) = #{p|n |
p ∈ ℘i} for i = 1, 2. Clearly, ω(n) = ω1(n) + ω2(n). Given nonnegative
integers k1 and k2 and a positive real number x, we write

Ak1,k2(x) = #{n ≤ x : ω1(n) = k1, ω2(n) = k2}. (4)

With the above notations, we have the following result.

Theorem B. Let ℘ be the set of all primes and assume that ℘ =
℘1 ∪ ℘2 with ℘1 ∩ ℘2 = ∅ is a fixed partition of it. There exists a positive
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absolute constant C3 such that the inequality

#Ak1,k2(x) � x

log x
× 1

k1!

( ∑
p≤x
p∈℘1

1
p

+ C3

)k1

× 1
k2!

(∑
p≤x
p∈℘2

1
p

+ C3

)k2

(log log x)2
(5)

holds whenever max{k1, k2} ≤ 2 log log x.

Proof of Theorem B. We write

Si(x) =
∑
p≤x
p∈℘i

1
p
, (6)

for i = 1, 2.
Note that if we choose C3 > 1, then, by Stirling’s formula together

with the fact that the inequalities ki ≤ 2 log log x hold for both i = 1 and 2,
we get that the right hand side of the above inequality (5) is

=
x

log x
· 1
k1!

(S1(x) + C3)k1 · 1
k2!

(S2(x) + C3)k2 (log log x)2

� x(log log x)2

log x
· 1
k1!k2!

� x log log x

log x

(
e

2 log log x

)4 log log x

= x exp (−4(1 + o(1)) log log x · log log log x) .

(7)

If we now set
B(x) = {n ≤ x | P (n) ≤ x1/5 log log x},

then, by using the well known estimate

Ψ(x, y) = #{n ≤ x | P (n) ≤ y} ≤ x exp(−(1 + o(1))u log u),

where u = log x/ log y (see, for instance, Tenenbaum [8]), and by taking
y = x1/5 log log x, we get that the inequality

#B(x) = Ψ(x, y) ≤ x exp (−5(1 + o(1)) log log x · log log log x) (8)
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holds. Comparing inequalities (7) and (8), we infer that the inequality

#B(x) = o

(
x

log x
· 1
k1!

(S1(x) + C3)
k1 · 1

k2!
(S2(x) + C3)

k2 (log log x)2
)

holds. Thus, in order to prove that inequality (5) holds, it suffices to prove
that the stated inequality holds for the cardinality of the set Ak1,k2(x)\B(x)
instead of the cardinality of the set Ak1,k2(x), and therefore we only need
to consider those positive integers n ≤ x satisfying P (n) > x1/5 log log x.

So, let us write n = pm, where p = P (n) > x1/5 log log x. Certainly,
we may assume that p � m. Indeed this follows easily from the fact that
the cardinality of the set C(x) of positive integers n ≤ x not in B(x) and
having P (n)2 | n is bounded above by∑

n≤x
P (n)2|n

P (n)>x1/5 log log x

1 �
∑

p>x1/5 log log x

x

p2
� x

x1/5 log log x

= x exp
(
−(1 + o(1))

log x

5 log log x

)

= o

(
x

log x
· 1
k1!

(S1(x) + C3)
k1 · 1

k2!
(S2(x) + C3)

k2 (log log x)2
)

.

Hence, writing each such positive integer

n ∈ Dk1,k2(x) = Ak1,k2(x)\(B(x) ∪ C(x))

as n = pm, with (p,m) = 1 and p = P (n) > x1/5 log log x, and using the
Tchebychev inequality π(z) =

∑
p≤z 1 � z/ log z valid for all real numbers

z > 1, we have that

#Dk1,k2(x) �
∑

m∈Ωk1,k2

π(x/m) �
∑

m∈Ωk1,k2

x

m log(x/m)
, (9)

where Ωk1,k2 is the set of all those positive integers m such that there
exists a positive integer n ∈ Dk1,k2(x), i.e., n ∈ Ak1,k2(x) with n = pm,
p = P (n) > max{P (m), y}. Now using the fact that, for m ∈ Ωk1,k2, the
inequality

x

m
≥ p > x1/5 log log x
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holds, we get that

log(x/m) � log x

log log x
,

so that inequality (9) becomes

#Dk1,k2(x) �
∑

m∈Ωk1,k2

x

m log(x/m)
� log log x

log x

∑
m∈Ωk1,k2

1
m

. (10)

Now, by the definition of m, we either have

ω1(m) = k1 − 1 and ω2(m) = k2, or ω1(m) = k1 and ω2(m) = k2 − 1.

Assume that we are in the first case. Then, using the multinomial formula
and the unique factorization, the corresponding contribution arising from
this case to the right hand side of inequality (10) is bounded above by

log log x

log x

∑
m∈Ωk1,k2

ω1(m)=k1−1
ω2(m)=k2

1
m

� x log log x

log x
· 1
(k1 − 1)!

(S1(x) + C3)
k1−1 · 1

k2!
(S2(x) + C3)

k2 ,

(11)

where C3 is some absolute constant which can be chosen to be larger than
the maximum of 1 and

∑
a≥2

∑
p≥2 1/pa.

We may certainly replace (k1−1)! appearing in (11) by k1! at the cost
of adding another factor log log x on the right hand side of this inequality.
The second case can be dealt with in a similar manner. Gathering the
above arguments, we are easily lead to the conclusion of Theorem B. �

We also record the following lemma.

Lemma 1. Given any squarefree positive integer k and any small

positive real number ε, the inequality∑
n≤x

r(n)=k

1 � xε (12)

holds for all sufficiently large positive real numbers x.
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Proof of Lemma 1. The proof of this lemma is basically included
in the proof of Theorem 3 in [7]. However, since the actual statement is
not explicitly proved there, and for the sake of completeness, we include
a short proof here. Let k = p1p2 . . . p�. We may assume that k ≤ x;
otherwise there is nothing to prove. Since k ≥ �!, we get, by Stirling’s
formula, that � log � � log x, and therefore that � ≤ C4 log x/ log log x

holds for some absolute constant C4. It is easy to see that the sum on the
left hand side of inequality (12) equals the number of �-tuples (a1, . . . , a�)
consisting of positive integers ai, for i = 1, . . . , �, such that

∏�
i=1 pai

i ≤ x.
Since pi ≥ 2 holds for all i = 1, . . . , �, the above inequality implies that∑�

i=1 ai ≤ C5 log x holds with C5 = 1/ log 2. It is clear that the number of
such �-tuples is

≤
(	C5 log x


�

)

�
(

eC5 log x

�

)�

≤ exp
(

C4 · log x

log log x
· log

(
eC5

C4
log log x

))

= exp
(

O

(
log x · log log log x

log log x

))
= xo(1),

which clearly implies inequality (12). �

We are now ready to prove our Theorem.

4. Proof of the lower bound

Choose a positive integer a satisfying 2a−1 > B4·2+2 = B10, and con-
sider those positive integers n ≤ x of the form n = 2ap, where p is an odd
prime number. If follows, from Lemma 2 of [1], that all such numbers n

are base B strongly economical. Thus, the inequality

NB(x) >
∑

2ap≤x

1 = π
( x

2a

)
�B

x

log x

holds, which proves the lower bound of the Theorem.
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5. Proof of the upper bound

Let x be a large positive real number, and let n ≤ x be a base B

strongly economical number, that is a positive integer n such that the
inequality

TB(n) < SB(n) (13)

holds. Letting {y} stand for the fractional part of the real number y,
inequality (13) can be rewritten as
∑
p|n

log p

log B
+
∑
p|n

(
1 −

{
log p

log B

})
+
∑

pap‖n
ap>1

log ap

log B
+
∑

pap‖n
ap>1

(
1 −

{
log ap

log B

})

<
log n

log B
+ 1 −

{
log n

log B

}
,

so that ∑
p|n

(
1 −

{
log p

log B

})
+
∑

pap‖n
ap>1

(
1 −

{
log ap

log B

})

<
1

log B
log

( ∏
pap‖n
ap>1

pap−1

ap

)
+ 1 −

{
log n

log B

}
.

Using in the left hand side of the above inequality the obvious fact that
1 − { log ap

log B

} ≥ 0, and in the right hand side of it the obvious fact that

1 − { log n
log B

} ≤ 1, we get that

∑
p|n

(
1 −

{
log p

log B

})
<

1
log B

log

( ∏
pap‖n
ap>1

pap−1

ap

)
+ 1. (14)

We now let α = αB ∈ (0, 1) be a fixed constant to be determined later,
and split the set of positive integers n ≤ x satisfying inequality (14) into
two sets, namely

A1(x) =
{
n ≤ x

∣∣ ∏
pap‖n
ap>1

pap−1

ap
> logα x

}
,
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A2(x) =
{
n ≤ x

∣∣ ∏
pap‖n
ap>1

pap−1

ap
≤ logα x

}
.

We first show that, given any ε > 0, the estimate

#A1(x) � x

logα−ε x
(15)

holds for all sufficiently large values of x. Clearly, each positive integer
n ∈ A1(x) can be written uniquely in the form n = m�, where m is the
squarefull part of n, that is

n = m�, with m =
∏

pap‖n
ap>1

pap , � =
∏

pap‖n
ap=1

pap =
∏
p‖n

p.

We may thus write

#A1(x) =
∑

n∈A1(x)

1

=
∑

m�≤x
m∈A1(x)

µ2(�) =
∑

m≤√
x

m∈A1(x)

∑
�≤x/m

µ2(�) ≤ x
∑

m≤√
x

m∈A1(x)

1
m

.
(16)

Here, µ(m) is the usual Möbius function which equals (−1)ω(m) when m

is squarefree and zero otherwise. We thus have∑
m≤√

x
m∈A1(x)

1
m

≤
∑

m=
∏

pap‖m pap≤(log x)2α

ap≥2∏
pap−1>logα x

1
m

+
∑

m squarefull
m>(log x)2α

1
m

= S1 + S2, (17)

say. Since for a positive real number y, the counting function SF (y) of
all the squarefull positive integers m ≤ y is O(

√
y), it follows easily, by

partial integration, that

S2 =
∫ ∞

(log x)2α

dSF (y)
y

� SF (y)
y

∣∣∣∞
(log x)2α

+
∫ ∞

(log x)2α

SF (y)
y3/2

dy

� 1√
y

∣∣∣∞
(log x)2α

+
∫ ∞

(log x)2α

dy

y3/2
� 1

(log x)α
.

(18)
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To estimate S1, we observe that, since m ∈ A1(x), the inequality

logα x <
∏

pap‖m
pap−1 =

m

r(m)

holds, in which case, given an arbitrarily small β > 0, it follows from
Lemma 1 that

S1 ≤ 1
logα x

∑
m≤(log x)2α

1
r(m)

≤ 1
logα x

∑
2≤k≤(log x)2α

µ2(k)
k

∑
m≤(log x)2α

r(m)=k

1

� 1
logα x

(log x)2αβ
∑

2≤k≤(log x)2α

1
k
� log log x

(log x)α−ε/2
� 1

(log x)α−ε
,

(19)

once x is large, where we have chosen β = ε/4α.
The proof of inequality (15) then clearly follows by substituting (18)

and (19) in (17).

Now, given n ∈ A2(x), we have

log

( ∏
pap‖n
ap>1

pap−1

ap

)
≤ α log log x. (20)

Combining the above inequality (20) with inequality (14), we get that n

satisfies the inequality

∑
p|n

(
1 −

{
log p

log B

})
<

α

log B
log log x + 1. (21)

The first condition we shall impose on α will be

α < log B. (22)

Note that since α ∈ (0, 1), the above condition (22) is relevant only when
B = 2. Now let β be some other constant depending on B and satisfying

α

log B
< β < 1. (23)
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We then write ℘ = ℘1 ∪ ℘2, where

℘1 =
{

p ∈ ℘ | 1 −
{

log p

log B

}
> β

}
,

℘2 =
{

p ∈ ℘ | 1 −
{

log p

log B

}
≤ β

}
.

In view of inequality (21), we have that∑
p|n

p∈℘1

1 <
α

β log B
log log x + O(1). (24)

We shall now choose a positive constant γ ∈ (0, 1), depending on α (hence,
on B), in such a way that if we write

B(x) = {n ≤ x | ω(n) ≤ γ log log x},
then

#B(x) ≤ x

logα x
(log log x)1/2.

It follows from Theorem A that if we write K = 	γ log log x
, then the
inequality

#B(x) ≤
K∑

k=1

∑
n≤x

ω(n)=k

1 ≤ x

log x

∑
k≤K

1
(k − 1)!

(log log x + C2)k−1

holds. Since γ < 1, it follows easily that the sequence (log log x+C2)k−1

(k−1)! is an
increasing function of k in the interval [1,K] once x is sufficiently large.
Hence, by Stirling’s formula,

#B(x) ≤ K · x

log x
· 1
K!

· (log log x)K

� x

log x

(
e(log log x + C2)

K

)K

· (log log x)1/2,

an inequality which easily leads to the conclusion that

#B(x) � x

log x
·
(

e

γ

)γ log log x

(log log x)1/2

=
x

(log x)1−γ log(e/γ)
(log log x)1/2.

(25)
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Comparing the above inequality (25) with (15) suggests choosing γ in such
a way that the inequality

1 − γ log(e/γ) ≥ α (26)

holds.
We now let C(x)={n≤x | ω(n)> 2 log log x}. Writing L= 	2 log log x
,

it follows, once again by Theorem A, that

#C(x) =
∑
k≥L

∑
n≤x

ω(n)=k+1

1 ≤ x

log x
·
∑
k≥L

1
k!

(log log x + C2)k. (27)

It is easy to see that the ratio of any two consecutive terms ak/ak+1 of the
sequence of general term given by ak = (log log x+C2)k/k! is 1/2+o(1), as
a function of x as x tends to infinity, uniformly for k ≥ L. Therefore, when
x is large, this ratio is < 2/3 uniformly for k ≥ L. As such, inequality (27)
implies, again using Stirling’s formula, that

#C(x) � x

log x
· 1
L!

(log log x + C2)L � x

log x
·
(

e(log log x + C2)
L

)L

� x

log x

(e

2

)2 log log x
,

and hence that
#C(x) � x

(log x)2 log 2−1
. (28)

Let us now consider those positive integers n ∈ A2(x) which satisfy
inequality (14), but which are not in B(x)∪C(x). Now, in view of inequality
(24), the number of prime factors of n which belong to ℘1 is at most
k1 = 	α/(β log B) log log x + C6
, where C6 is some positive constant,
which means that n has at least

k2 = max
{

0,
⌊(

γ − α

β log B

)
log log x − C6

⌋}

prime factors belonging to ℘2. In this case, recalling definition (4), we
have that n ∈ Aj,�(x) holds with some j ≤ k1 and � ∈ [k2, L]. Now, using
Theorem B, we have, recalling the notation (6),

#Aj,�(x) � x

log x
· 1
j!

(S1(x) + C3)
j · 1

�!
(S2(x) + C3)

� (log log x)2. (29)
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Note that the inequality

1
j!

(S1(x) + C3)
j ≤ 1

j!

(∑
p≤x

1
p

+ C3

)j

≤ 1
j!

(log log x + C7)j

holds with some positive constant C7, and since j ≤ k1, it follows, by
arguments similar to ones used above, that

1
j!

(S1(x) + C3)
j ≤ 1

k1!
(log log x + C7)

k1

�B

(
e

α/(β log B)

) α
β log B

log log x

� (log x)
α

β log B
log
(

eβ log B
α

)
.

(30)

We now deal with the contribution in (29) coming from ℘2. Given p ∈ ℘2,
we have that the containment p ∈ (B1−βBy, B·By) holds with some integer
y �= 0. Hence, using the Mertens formula with an explicit error term given
by Rosser and Schoenfeld [5]

∑
p≤z

1
p

= log log z + C8 + O

(
1

log2 z

)
,

where C8 > 0 is some absolute constant, we get that

S2(x) ≤
∑

y≤ log x
log B

(
log log(B1+y) − log log(By+1−γ1) + O

(
1
y2

))

=
∑

y≤ log x
log B

log
(

y + 1
y + 1 − β

)
+ O(1)

=
∑

y≤ log x
log B

log
(

1 +
β

y + 1 − β

)
+ O(1)

=
∑

y≤ log x
log B

(
β

y + 1 − β
+ O

(
1
y2

))
+ O(1)

=
∑

y≤ log x
log B

(
β

y
+ O

(
1
y2

))
+ O(1) = β log log x + O(1).
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It follows from the above calculation, using arguments similar to ones
used above, that there exists a constant C9 such that if we write k3 =
	β log log x + C9
, then

1
�!

(S2(x) + C3)
� � 1

k3!
(S2(x) + C3)

k3 � 1
k3!

(β log log x + O(1))k3

�
(

e(β log log x + O(1))
β log log x

)β log log x

� logβ x.

(31)

Using (30) and (31) in (29), we get that the inequality∑
j≤k1

�∈[k2,L]

#Aj,�(x) � x

(log x)1−
α

β log B
log(eβ log B/α)−β

(log log x)4 (32)

holds. Since each positive integer n ≤ x satisfying inequality (14) (in
particular, the base B strongly economical ones) belongs to one of the sets
A1, B, C, Aj,� for some j ≤ k1 and � ∈ [k2, L], it follows, by estimates (15),
(25), (28) and (32), that the inequality

NB(x) � max
{ x

logα−ε x
,

x

(log x)1−
α

β log B
log(eβ log B/α)−β

(log log x)4
}

(33)

holds, once α/ log B < β < 1, and γ ∈ (0, 1) satisfies 1 − γ log(e/γ) ≥ α.
It is easy to see that the parameter γ is obsolete. That is, given α ∈
(0,min{1, log B}) and β ∈ (α/ log B, 1), one can always find γ ∈ (0, 1)
such that 1 − γ log(e/γ) > α, because 1 − γ log(e/γ) tends to 1 when γ

tends to 0.
Since ε is arbitrary, the above relation (33) suggests choosing α and β

such that
1 − α

β log B
log(eβ log B/α) − β = α,

and such that α is also maximal, in which case inequality (33) implies that
the estimate

NB(x) � x

(log x)α+o(1)

holds as x → ∞. With the substitution δ = β log B/α > 1, we get
β = αδ/ log B, so that the above relation leads to

1 − log(eδ)
δ

=
αδ

log B
+ α,
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or, equivalently,

α = α(B, δ) =
log B(δ − 1 − log δ)

δ(log B + δ)
. (34)

Relation (34) shows that α(B, δ), as a function of δ, tends to zero
when δ tends to 1 or to ∞. Thus, this function has a maximum. This
maximum is achieved by computing the derivative of α(B, δ) as a function
of δ, and setting it to equal zero. The relation

d

dδ

(
δ − 1 − log δ

δ(log B + δ)

)
= 0

leads to the equation

δ2 − 2δ log δ − δ − log B log δ = 0. (35)

It is now easy to complete the proof of the Theorem. Indeed, solving
equation (35) when B = 2, we get δ = δ2 = 4.025 . . . , and computing α

for this value we get α2 = α(2, δ2) > 0.059 > 1/20.
To see that the asymptotic result (2) holds, note that for large B

relation (35) implies that

δ2

log δ
= (1 + o(1)) log B,

so that
δ2

log(δ2)
= (1 + o(1)) · 1

2
· log B.

Hence,

δ2 =
1
2
· (1 + o(1)) · log B log log B,

leading to

δ =
1√
2
· (1 + o(1)) ·

√
log B log log B.

Using (34), this gives

αB =
log B(δ − 1 − log δ)

δ(log B + δ)
=
(

1 − (1 + o(1)) · log δ

δ

)
·
(

1 +
δ

log B

)−1
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=
(

1 − (1 + o(1)) · log δ

δ

)
·
(

1 − (1 + o(1)) · δ

log B

)

= 1 − (1 + o(1)) ·
(

log δ

δ
+

δ

log B

)

= 1 − (1 + o(1)) ·
√

2 log log B

log B
,

which proves estimate (2).
Finally, it is an easy matter, using the Chain Rule, to show that if

δ = δ(B) is the function implicitly defined by equation (35), then the
function αB = α(B, δ(B)) is increasing as a function of B. Indeed, relation
(35) implies that

δ2 − 2δ log δ − δ

log δ
= log B. (36)

The derivative of the function

f(δ) =
δ2 − 2δ log δ − δ

log δ

is
df

dδ
=

(2δ − 1 − 2 log δ) log δ + 1
log2 δ

,

which is positive as a function of δ when δ > 1 since in this case, log δ > 0
and 2δ−1−2 log δ > 0. This observation together with relation (36) shows
that the function δ(B) is increasing. Thus, differentiating the relation

α(B, δ(B)) = (δ(B) − 1 − log δ(B)) ·
(

1 − 1
log B + δ(B)

)
with respect to B, we get

dα

dB
=

dδ

dB
·
(

1 − 1
δ

)
·
(

1 − 1
log B + δ

)

+ (δ − 1 − log δ) · 1
(log B + δ)2

·
(

1
B

+
dδ

dB

)
,

and we immediately see that the above expression is always positive be-
cause dδ/dB > 0, δ > 1 and B ≥ 2. This shows that αB = α(B, δ(B)) ≥
α2 > 1/20 for each integer B ≥ 2, as claimed.

The proof of the Theorem is therefore complete.
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