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C-loops: An introduction

By J. D. PHILLIPS (Crawfordsville) and PETR VOJTĚCHOVSKÝ (Denver)

Abstract. C-loops are loops satisfying x(y(yz)) = ((xy)y)z. They often
behave analogously to Moufang loops and they are closely related to Steiner
triple systems and combinatorics. We initiate the study of C-loops by proving:
(i) Steiner loops are C-loops, (ii) C-loops are alternative, inverse property loops
with squares in the nucleus, (iii) the nucleus of a C-loop is a normal subgroup, (iv)
C-loops modulo their nucleus are Steiner loops, (v) C-loops are power associative,
power alternative but not necessarily diassociative, (vi) torsion commutative C-
loops are products of torsion abelian groups and torsion commutative 2-C-loops;
and several other results. We also give examples of the smallest nonassociative
C-loops, and explore the analogy between commutative C-loops and commutative
Moufang loops.

1. Introduction

C-loops are loops satisfying the identity

x(y(yz)) = ((xy)y)z. (1)

As we shall see, they are in a sense dual to Moufang loops – the most in-
tensively studied variety of loops – and they are closely related to Steiner
triple systems. They are thus important both algebraically and combina-
torially, and they are amenable to analysis by techniques from both fields.
But in spite of this, little is known about them. It is the intention of this
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Figure 1. Varieties of loops of Bol–Moufang type.
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paper to remedy this situation by laying a foundation for the systematic
study of C-loops.

We assume that the reader is familiar with the reasoning and nota-
tional conventions of loop theory, however, we do not hesitate to include
loop-theoretical folklore and to point out some of the pitfalls of nonasso-
ciativity – mostly because we fell into many of them ourselves.

C-loops were named by Ferenc Fenyves [8], who investigated the
inclusions between varieties of loops of Bol–Moufang type. These are va-
rieties of loops defined by a single identity that: (i) involves three distinct
variables on both sides, (ii) contains variables in the same order on both
sides, (iii) exactly one of the variables appears twice on both sides.

Fenyves’s program was completed by the authors in [17]. There are
60 identities of Bol–Moufang type, and they happen to define 14 distinct
varieties of loops. Figure 1 gives the Hasse diagram of these varieties, with
the largest varieties (with respect to inclusion) at the bottom.

A superficial glance at the diagram suggests that C-loops could behave
analogously to Moufang loops. This impression is further strengthened by
the fact that C-loops are exactly those loops that are both LC-loops and
RC-loops [8, Theorem 4], just as Moufang loops are exactly those loops
that are both left Bol and right Bol [2]. There are additional analogies,
especially between commutative Moufang loops and commutative C-loops,
as we shall see.

2. C-loops and Steiner loops

In combinatorics, Moufang loops have connections to projective ge-
ometry (Moufang planes, Moufang polygons, etc., cf. [16]), while C-loops
have connections to Steiner triple systems:

Consider the complete graph Kn on n vertices. A Steiner triple system
is a decomposition of the edges of Kn into disjoint triangles. It is well known
(cf. [5]) that such a decomposition exists if and only if n ≡ 1 (mod 6) or
n ≡ 3 (mod 6); the case n = 1 being degenerate.

There is a canonical way of constructing a quasigroup from a Steiner
triple system. Namely, if S = Kn is a Steiner triple system, we define
multiplication on {1, . . . , n} by xx = x, and (for x �= y) by xy = z if and
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only if {x, y, z} is a triangle of S. The resulting quasigroup clearly satisfies

xx = x, (yx)x = y, xy = yx. (2)

Conversely, any quasigroup satisfying (2) gives rise to a Steiner triple sys-
tem in a canonical way (cf. [5], [13]). Quasigroups satisfying (2) are there-
fore called Steiner quasigroups.

Any Steiner quasigroup can be made into a loop by introducing a new
element e and by letting xx = e, xe = ex = x. Such loops satisfy

xx = e, (yx)x = y, xy = yx, (3)

and are called Steiner loops. It is now clear that the Steiner quasigroup
that gave rise to a Steiner loop L can be reconstructed from L. Steiner
loops are therefore in one-to-one correspondence with Steiner triple sys-
tems, too.

Intuitively, the reason why C-loops are related to Steiner loops is the
presence of the term (xy)y in the defining equation (1). More formally:

Lemma 2.1. Every Steiner loop is a C-loop.

Proof. Note that (xy)y = x is a part of the definition (3), and
that y(yz) = z follows from (3) immediately by commutativity. Thus
x(y(yz)) = xz = ((xy)y)z. �

Not every C-loop is a Steiner loop, as is witnessed by any nonabelian
group.

Another connection between C-loops and Steiner loops becomes ap-
parent upon investigating the nucleus of C-loops.

Recall that for a loop L, the set Nλ = {x ∈ L; x(yz) = (xy)z for
every y, z ∈ L} is called the left nucleus. Similarly, the middle nucleus
Nµ consists of all elements x ∈ L satisfying y(xz) = (yx)z for every y,
z ∈ L; and the right nucleus Nρ consists of all elements x ∈ L satisfying
y(zx) = (yz)x for every y, z ∈ L. The nucleus N = Nλ ∩ Nµ ∩ Nρ of L is
a subgroup of L.

There are several equivalent ways in which normality can be defined
for loops. The following definition works best with elementary calculations.
A subloop K of a loop L is said to be normal in L if xK = Kx, x(yK) =
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(xy)K, and x(Ky) = (xK)y for every x, y ∈ L. The factor loop L/K is
then defined in the usual way.

A loop L with neutral element e is a left inverse property loop if
x′(xy) = y for every x, y ∈ L, where x′ is the unique element satisfy-
ing x′x = e. Dually, L is a right inverse property loop if (yx)x′′ = y for
every x, y ∈ L, where x′′ is the unique element satisfying xx′′ = e. A loop
that has both the left and right inverse property is an inverse property
loop.

If x ∈ L is such that x′(xy) = (yx)x′′ = y for every y, we have
x′ = x′e = x′(xx′′) = x′′. Therefore, inverse property loops possess two-
sided inverses (i.e., x′ = x′′ = x−1), and it is easy to check that they
satisfy the antiautomorphic inverse property (i.e., (xy)−1 = y−1x−1).

Pflugfelder shows [15, p. 123] that Steiner loops are exactly com-
mutative inverse property loops of exponent 2. In fact, Steiner loops are
exactly inverse property loops of exponent 2. This fact belongs to loop-
theoretical folklore and is sometimes used as a definition of Steiner loops
(cf. [12]). Since we did not manage to find a reference for the proof, here
it is:

Lemma 2.2. Steiner loops are exactly inverse property loops of ex-

ponent two.

Proof. Let L be a Steiner loop. Since xx = e, every element is its
own two-sided inverse. From (yx)x = y we see that L has the left inverse
property. By commutativity, it has the right inverse property, too.

Conversely, let L be an inverse property loop of exponent 2. Let
z = xy. Then xz = x(xy) = x−1(xy) = y, and similarly, x = yz, yx = z.
Thus L is commutative. As (yx)x = y by the right inverse property, L is
a Steiner loop. �

Also notice that xx = e is not necessary in the definition (3) of Steiner
loop, since xx = (ex)x = e. Hence Steiner loops are exactly loops satisfy-
ing

(yx)x = y, xy = yx. (4)

Quasigroups satisfying (4) are called totally symmetric, and thus Steiner
loops can also be found under the name totally symmetric loops in the
literature.
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Let us now mention some basic properties of LC-loops and C-loops
that we will use without reference throughout the paper. The first three
properties are due to Fenyves [8, Theorem 2]. The fourth property first
appeared in [17].

Proposition 2.3. Let L be an LC-loop. Then:

(i) L is left alternative,

(ii) L has the left inverse property,

(iii) L is a left nuclear square loop,

(iv) L is a middle nuclear square loop.

We will often derive theorems from their one-sided versions.

Corollary 2.4. Let L be a C-loop. Then:

(i) L is both left alternative and right alternative,

(ii) L has the inverse property,

(iii) L is a nuclear square loop, i.e., x2 belongs to the nucleus of L for every

x ∈ L.

Corollary 2.5. The three nuclei of a C-loop coincide.

Proof. The three nuclei coincide for any inverse property loop, by
[3, Theorem VII.2.1]. �

The nucleus N of a loop L is always a subgroup of L, but it is not
necessarily a normal subgroup of L. Even when L is an inverse property
loop, its nucleus does not have to be normal in L. (See Example 2.6).

Throughout the paper, if we claim without explanation that a loop
with given properties is as small as possible, or that there are m such
nonisomorphic loops of given order, we rely on the finite model builder
Mace4 [14].
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Example 2.6. The smallest inverse property loop with nucleus that is
not normal.

0 1 2 3 4 5 6 7 8 9 10 11
1 0 4 5 2 3 7 6 10 11 8 9
2 5 0 4 3 1 8 11 6 10 9 7
3 4 5 0 1 2 9 10 11 6 7 8
4 3 1 2 5 0 10 9 7 8 11 6
5 2 3 1 0 4 11 8 9 7 6 10
6 8 7 11 9 10 0 2 1 4 5 3
7 10 6 9 11 8 1 4 0 2 3 5
8 6 9 10 7 11 2 0 5 3 1 4
9 11 8 7 10 6 3 5 4 1 2 0
10 7 11 8 6 9 4 1 3 5 0 2
11 9 10 6 8 7 5 3 2 0 4 1

Check that 1 is in the nucleus and 3−1 · (1 · 3) = 2. But 2 is not in the
nucleus, since 4 · (6 · 2) �= (4 · 6) · 2.

Fortunately, all is well for C-loops. We will use the following notation
in the proof of Proposition 2.7. Any element x ∈ L determines two permu-
tations of L: the left translation Lx defined by Lx(y) = xy, and the right
translation Rx defined by Rx(y) = yx.

Proposition 2.7. The nucleus of a C-loop is a normal subgroup.

Proof. Let N be the nucleus of a C-loop L. Our task is to show that
xN = Nx for every x ∈ L, or, equivalently, that x−1nx ∈ N for every
x ∈ L, n ∈ N . Since the nuclei of a C-loop coincide, it suffices to show
x−1nx ∈ Nλ, which in the language of translations becomes Lx−1nxLy =
L(x−1nx)y for every y ∈ L.

Because squares of elements in a C-loop are in the nucleus and because
x2x−1 = x, the last identity is equivalent to LxnxLy = L(xnx)y, which is
what we prove below.

The following permutations coincide: Lxnx, Ln−1(nx)2 (by the left
inverse property and the right alternative property), Ln−1L(nx)2 (since
(nx)2 ∈ N), Ln−1LnLxLnLx (since n ∈ N), LxLnLx (by the left inverse
property).
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Using similar arguments, we see that Lx(n(xy)) = L(xn)2(n−1y) =
LxnLxnLn−1y = LxLnLxLnLn−1y = LxLnLxLy.

Therefore LxnxLy = LxLnLxLy = Lx(n(xy)). The last translation
Lx(n(xy)) is equal to L(xnx)y, because Lxnx = LxLnLx, and we are done. �

Proposition 2.8. Let L be a C-loop with nucleus N . Then L/N is a

Steiner loop.

Proof. We have x2 ∈ N for every x ∈ L. Thus L/N is an inverse
property loop of exponent 2. By Lemma 2.2, L/N is a Steiner loop. �

The following Lemma will be useful in the next section.

Lemma 2.9. There is no C-loop with nucleus of index 2.

Proof. Assume, for a contradiction, that L is a C-loop with nucleus
N of index 2. Let N , xN be the two cosets of L/N . We show that x ∈ N .

Since the three nuclei of L coincide, it suffices to show that (ax)b =
a(xb) for every a, b ∈ L. In fact, it suffices to prove this for all elements a,
b ∈ xN = Nx, since all other elements are nuclear. Let us write a = cx,
b = xd, for some c, d ∈ N . Since c, d, x2 and x2d are all nuclear, and
since x2x = xx2, we have (cx · x)(xd) = (cx2)(xd) = c(x2xd) = c(xx2d) =
(cx)(x2d) = (cx)(x · xd). �

3. Admissible orders and the four smallest
nonassociative C-loops

We now construct the 4 smallest nonassociative C-loops (1 of order
10, 1 of order 12, and 2 of order 14). Three of these loops are well-known
Steiner loops. The remaining C-loop of order 12 belongs to an infinite
family of nonassociative noncommutative C-loops constructed here for the
first time. Although the four loops are constructed by hand, we do not have
sufficiently strong theoretical tools to show that no other nonassociative
C-loops of order less than 15 exist. This is easily verified by Mace4, though.

3.1. Admissible orders. Recall that Steiner loops of order 2, 4 and 8
are elementary abelian 2-groups [5].
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Proposition 3.1. Let L be a nonassociative C-loop of order n with

nucleus N of order m. Then

(i) n/m ≡ 2 (mod 6) or n/m ≡ 4 (mod 6),

(ii) n is even,

(iii) if n = pk for some prime p and positive integer k, then p = 2 and

k > 3.

Moreover, there is a nonassociative non-Steiner C-loop of order 2k for every

k > 3.

Proof. Part (i) follows from Proposition 2.8 and from the already
mentioned fact that Steiner quasigroups of order r exist if and only if r ≡ 1
(mod 6) or r ≡ 3 (mod 6). Part (ii) follows immediately from part (i).

Assume that n = pk, p a prime. By (ii), p = 2. When k < 3, L must
be a group, since there is no nonassociative loop of order less than 5.

Assume that k = 3. If m = 1, Proposition 2.8 implies that L is a
Steiner loop of order 8, thus the elementary abelian 2-group of order 8. If
m = 4, we reach a contradiction by Lemma 2.9. We were not able to find
a one-line argument that shows that there is no nonassociative C-loop of
order 8 with nucleus of size 2. It can be checked tediously by hand.

Example 3.10 gives a nonassociative non-Steiner C-loop of order 16.
Direct products of this loop with 2-groups provide all needed examples. �

Let L, n, m be as assumed in Proposition 3.1. The only admissible
values of (n,m) with n ≤ 14 are then (6, 3), (10, 1), (10, 5), (12, 3), (12, 6),
(14, 1) and (14, 7). Lemma 2.9 further reduces the possibilities to (10, 1),
(12, 3) and (14, 1). As we shall see, there is at least one nonassociative
C-loop for each of these parameters.

3.2. The smallest C-loop. The smallest nonassociative commutative
inverse property loop is of order 10, and it is unique. Its multiplication
table is in Example 3.2. We can see immediately that this loop has expo-
nent 2. It is therefore a Steiner loop. By Lemma 2.1, it is a nonassociative
C-loop, hence the smallest nonassociative C-loop.
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Example 3.2. The smallest nonassociative C-loop.

0 1 2 3 4 5 6 7 8 9
1 0 3 2 5 4 9 8 7 6
2 3 0 1 6 8 4 9 5 7
3 2 1 0 7 9 8 4 6 5
4 5 6 7 0 1 2 3 9 8
5 4 8 9 1 0 7 6 2 3
6 9 4 8 2 7 0 5 3 1
7 8 9 4 3 6 5 0 1 2
8 7 5 6 9 2 3 1 0 4
9 6 7 5 8 3 1 2 4 0

3.3. The smallest noncommutative C-loop. We now construct an
infinite family of nonassociative noncommutative C-loops whose smallest
member is the smallest nonassociative noncommutative C-loop. The con-
struction is best approached via extensions of loops. Our notation is based
on [7].

Let G be a multiplicative group with neutral element 1, and A an
abelian group written additively with neutral element 0. Any map µ :
G × G → A satisfying µ(1, g) = µ(g, 1) = 0 for every g ∈ G is called a
factor set. When µ : G×G → A is a factor set, we can define multiplication
on G × A by

(g, a)(h, b) = (gh, a + b + µ(g, h)). (5)

The resulting groupoid is clearly a loop with neutral element (1, 0). It will
be denoted by (G,A, µ). Additional properties of (G,A, µ) can be enforced
by additional requirements on µ.

Lemma 3.3. Let µ : G × G → A be a factor set. Then (G,A, µ) is a

C-loop if and only if

µ(h, k) + µ(h, hk) + µ(g, h · hk) = µ(g, h) + µ(gh, h) + µ(gh · h, k) (6)

for every g, h, k ∈ G.

Proof. The loop (G,A, µ) is a C-loop if and only if

(g, a)((h, b) · (h, b)(k, c)) = ((g, a)(h, b) · (h, b))(k, c)
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holds for every g, h, k ∈ G and every a, b, c ∈ A. Straightforward
calculation with (5) shows that this happens if and only if (6) is satisfied.

�

We call a factor set µ satisfying (6) a C-factor set.
When G is an elementary abelian 2-group, the equation (6) reduces to

µ(h, k) + µ(h, hk) = µ(g, h) + µ(gh, h). (7)

We now use a particular C-factor set to construct the above-mentioned
family of C-loops.

Proposition 3.4. Let n > 2 be an integer. Let A be an abelian

group of order n, and α ∈ A an element of order bigger than 2. Let

G = {1, u, v, w} be the Klein group with neutral element 1. Define µ :
G × G → A by

µ(x, y) =




α, if (x, y) = (v,w), (w, u), (w,w),

−α, if (x, y) = (v, u),

0, otherwise.

Then (G,A, µ) is a non-flexible (hence nonassociative) noncommutative

C-loop with nucleus N = {(1, a); a ∈ A}.
Proof. The map µ is clearly a factor set. It can be depicted as

follows:
µ 1 u v w

1 0 0 0 0
u 0 0 0 0
v 0 −α 0 α

w 0 α 0 α

To show that C = (G,A, µ) is a C-loop, we verify (7).
Since µ is a factor set, there is nothing to prove when h = 1. Assume

that h = u. Then (7) becomes µ(u, k) + µ(u, uk) = µ(g, u) + µ(gu, u),
and both sides of this equation are equal to 0, no matter what k, g ∈ G

are. Assume that h = v. Then (7) becomes µ(v, k) + µ(v, vk) = µ(g, v) +
µ(gv, v), and both sides of this equation are again equal to 0. Assume that
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h = w. Then (7) becomes µ(w, k) + µ(w,wk) = µ(g,w) + µ(gw,w), and
both sides of this equation are equal to α.

Since α �= 0, the C-loop C is not commutative. By Corollary 2.5, the
three nuclei of C coincide and will be denoted by N . Let a ∈ A. Since
α �= −α, we have (u, a)(v, a) · (u, a) = (v, 3a + α) �= (v, 3a − α) = (u, a) ·
(v, a)(u, a). This shows that: (i) C is not flexible, (ii) (u, a), (v, a) �∈ N .
Similarly, (u, a)(w, a) · (u, a) �= (u, a) · (w, a)(u, a) shows that (w, a) �∈ N .
Finally, for g, h ∈ G and b, c ∈ A we have (1, a)(g, b) · (h, c) = (gh, a + b +
c + µ(g, h)) = (1, a) · (g, b)(h, c), and (1, a) ∈ N follows. �

Corollary 3.5. For any integer n > 1 there is a nonassociative non-

commutative C-loop with nucleus of size n.

Proof. It remains to show that there is a nonassociative noncom-
mutative C-loop with nucleus of size 2. Consider the octonion loop O

of order 16. This loop is Moufang. Recall that extra loops are precisely
Moufang loops with squares in the nucleus. Since the squares in O are
equal to 1 or −1, O is an extra loop, hence a C-loop. It is well-known that
N(O) = {1,−1}. �

Remark 3.6. The bound n > 1 of Corollary 3.5 cannot be improved,
since a C-loop with nucleus of size 1 is Steiner, hence commutative, by
Proposition 2.8.

Example 3.7. The smallest group A satisfying the assumptions of
Proposition 3.4 is the 3-element cyclic group {0, 1, 2}. The construction of
Proposition 3.4 with α = 2 then gives rise to the smallest noncommutative
nonassociative C-loop:

0 1 2 3 4 5 6 7 8 9 10 11
1 2 0 4 5 3 7 8 6 10 11 9
2 0 1 5 3 4 8 6 7 11 9 10
3 4 5 0 1 2 9 10 11 6 7 8
4 5 3 1 2 0 10 11 9 7 8 6
5 3 4 2 0 1 11 9 10 8 6 7
6 7 8 10 11 9 0 1 2 5 3 4
7 8 6 11 9 10 1 2 0 3 4 5
8 6 7 9 10 11 2 0 1 4 5 3
9 10 11 8 6 7 3 4 5 2 0 1
10 11 9 6 7 8 4 5 3 0 1 2
11 9 10 7 8 6 5 3 4 1 2 0
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The following properties of this loop will be revoked later: The associator
2 = [11, 8, 9] has order 3. Note that 3 · 3 = 0, 6 · 6 = 0, 3 · 6 = 9, but
9 · 9 = 2 �= 0.

3.4. C-loops of order 14. There are two nonisomorphic nonassociative
C-loops of order 14, both of them Steiner loops. These loops are well
known. We include their multiplication tables for the sake of completeness,
and also because we will refer to some of their properties later.

Their multiplication tables are given in Examples 3.8 and 3.9.

Example 3.8. One of the two nonassociative C-loops of order 14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 3 2 5 4 12 13 9 8 11 10 6 7
2 3 0 1 6 7 4 5 11 12 13 8 9 10
3 2 1 0 7 8 9 4 5 6 12 13 10 11
4 5 6 7 0 1 2 3 10 13 8 12 11 9
5 4 7 8 1 0 10 2 3 11 6 9 13 12
6 12 4 9 2 10 0 11 13 3 5 7 1 8
7 13 5 4 3 2 11 0 12 10 9 6 8 1
8 9 11 5 10 3 13 12 0 1 4 2 7 6
9 8 12 6 13 11 3 10 1 0 7 5 2 4
10 11 13 12 8 6 5 9 4 7 0 1 3 2
11 10 8 13 12 9 7 6 2 5 1 0 4 3
12 6 9 10 11 13 1 8 7 2 3 4 0 5
13 7 10 11 9 12 8 1 6 4 2 3 5 0

As we know from Proposition 3.1, this loop has a trivial nucleus. Thus the
associator 10 = [13, 12, 1] is not in the nucleus.
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Example 3.9. One of the two nonassociative C-loops of order 14.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
1 0 3 2 5 4 11 12 13 10 9 6 7 8
2 3 0 1 6 7 4 5 11 12 13 8 9 10
3 2 1 0 7 8 9 4 5 6 12 13 10 11
4 5 6 7 0 1 2 3 10 13 8 12 11 9
5 4 7 8 1 0 10 2 3 11 6 9 13 12
6 11 4 9 2 10 0 13 12 3 5 1 8 7
7 12 5 4 3 2 13 0 9 8 11 10 1 6
8 13 11 5 10 3 12 9 0 7 4 2 6 1
9 10 12 6 13 11 3 8 7 0 1 5 2 4
10 9 13 12 8 6 5 11 4 1 0 7 3 2
11 6 8 13 12 9 1 10 2 5 7 0 4 3
12 7 9 10 11 13 8 1 6 2 3 4 0 5
13 8 10 11 9 12 7 6 1 4 2 3 5 0

3.5. The smallest nonassociative non-Steiner commutative C-
loop. We must go beyond n = 14 to find a nonassociative non-Steiner
commutative C-loop. There is one of order 16, and its multiplication table
is in Example 3.10. We were unable to determine the number of nonasso-
ciative C-loops of order 16.

Example 3.10. A nonassociative non-Steiner commutative C-loop of
the smallest possible order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 5 6 8 0 4 10 2 11 3 7 9 13 15 12 14
2 6 0 12 7 10 1 4 14 13 5 15 3 9 8 11
3 8 12 0 9 11 14 13 1 4 15 5 2 7 6 10
4 0 7 9 5 1 2 10 3 11 6 8 14 12 15 13
5 4 10 11 1 0 7 6 9 8 2 3 15 14 13 12
6 10 1 14 2 7 5 0 12 15 4 13 9 3 11 8
7 2 4 13 10 6 0 5 15 12 1 14 8 11 3 9
8 11 14 1 3 9 12 15 5 0 13 4 7 2 10 6
9 3 13 4 11 8 15 12 0 5 14 1 6 10 2 7
10 7 5 15 6 2 4 1 13 14 0 12 11 8 9 3
11 9 15 5 8 3 13 14 4 1 12 0 10 6 7 2
12 13 3 2 14 15 9 8 7 6 11 10 0 1 4 5
13 15 9 7 12 14 3 11 2 10 8 6 1 5 0 4
14 12 8 6 15 13 11 3 10 2 9 7 4 0 5 1
15 14 11 10 13 12 8 9 6 7 3 2 5 4 1 0
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4. Power associativity, diassociativity,
and Lagrange-like properties

Many properties that we take for granted in groups do not hold in
C-loops. This section is concerned with subloops generated by one or two
elements; with the relations between the order of a loop, the order of a
subloop, and the order of an element; and with like properties.

4.1. Power associativity. A loop L is power associative if for every
x ∈ L and every n ≥ 0 the power xn is well-defined.

Clearly, the powers x0, x, and x2 are always well-defined. Note that,
up to this point, we have carefully avoided all higher powers in our calcu-
lations. But we did not have to:

Proposition 4.1 (Fenyves). LC-loops are power associative.

Proof. The power xn is clearly well-defined for n = 0, 1, 2, and since,
by the left alternative law, xx2 = x2x, it is also well-defined for n = 3.

Assume that n > 3 and that xk is well-defined for every k < n. Let r,
s > 0 be such that r + s = n. We now show that xrxs can be rewritten
canonically as xr+s−1x. Since xxs = x(xxs−1) = x2xs−1, we can assume
that r > 1. Then xrxs = x(xxr−2) · xs, which is by the LC-identity and
by the induction hypothesis equal to (xx)(xr−2xs) = (xx)(xr+s−3x) =
x(xxr+s−3) · x = xr+s−1x. �

Corollary 4.2. C-loops are power associative.

4.2. Diassociativity. A loop L is diassociative if any subloop of L gen-
erated by two elements is a subgroup.

C-loops are not necessarily diassociative. To see this, consider the C-
loop L of order 12 with multiplication table given in Example 3.7. Note
that 〈5〉 = {0, 1, 2, 3, 4, 5}. It is then obvious from the multiplication ta-
ble that 〈5, 6〉 = L. Thus L is generated by two elements, yet it is not
associative.

In [12], ARIF loops are defined to be flexible loops satisfying (zx)(yxy)
= (z(xyx))y.

Lemma 4.3. Flexible C-loops are ARIF loops.
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Proof. Since C-loops are alternative and have all squares in the nu-
cleus, we have z(xy)2 = (zx · x−1)(xy)2 = (zx)(x−1(xy)2) = (zx)((x−1 ·
xy)(xy)) = (zx)(yxy). We use this identity twice to obtain (zx)(yxy) =
z(xy)2 = z((xyx)x−1)2 = (z(xyx))(x−1(xyx)x−1) = (z(xyx))y. �

Lemma 4.4. Flexible C-loops are diassociative. In particular, com-

mutative C-loops are diassociative.

Proof. By Lemma 4.3, flexible C-loops are ARIF loops. By [12],
ARIF loops are diassociative.

C-loops are alternative. In the presence of commutativity, the two
alternative laws are not only equivalent to each other, but also to the
flexible law. �

4.3. Power alternativity. Power alternativity is best expressed in terms
of translations. A power associative loop L is left power alternative if
Lxn = Ln

x for every n > 0 and x ∈ L. Similarly, L is right power alternative
if Rxn = Rn

x for every n > 0 and x ∈ L. Power associative loops that are
both left and right power alternative are called power alternative.

Lemma 4.5. LC-loops are left power alternative.

Proof. We have Lx2 = L2
x by left alternativity. Let n > 2, and as-

sume that Lxm = Lm
x for every m < n. We have Lxn(y) = xny = (xn−2x2)y

by power associativity. Since LC-loops are middle nuclear square, we have
Lxn(y) = xn−2(x2y), which, by induction, is equal to Ln

x(y). �

Corollary 4.6. C-loops are power alternative.

4.4. Lagrange-like properties. A finite loop L is said to have the weak
Lagrange property if the order of any subloop of L divides the order of L.
A finite loop L has the weak monogenic Lagrange property if the order of
any monogenic subloop of L divides the order of L.

To any weak property, there is its strong version: A loop has the
strong property P if every subloop of L has the weak property P . The
weak property does not always imply its strong version. For instance,
there are loops with the weak but not the strong Lagrange property.

Steiner loops (and hence C-loops) do not have the weak Lagrange
property. This is illustrated by the loop in Example 3.8 that is of order 14
and possesses a subloop {0, 1, 2, 3} of order 4.
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However, C-loops have the strong monogenic Lagrange property. We
can establish this by imitating the proof of the Lagrange theorem for
groups.

Lemma 4.7. Let L be a finite loop that is left power alternative and

has the left inverse property. Then L has the strong monogenic Lagrange

property.

Proof. It suffices to prove that L has the weak monogenic Lagrange
property.

Let x ∈ L, H = 〈x〉. We claim that any two right cosets of H are
either disjoint or coincide.

Let Hy, Hz be two such cosets. Assume that u ∈ Hy ∩ Hz. Then
u = xny = xmz for some n, m ≥ 0. By the left inverse property, z =
x−m(xny). By the left power alternative law, z = xn−my. Then Hz =
H(xn−my) = {xr(xn−my); r ≥ 0} = {xr+n−my; r ≥ 0} = Hy, by the left
power alternative law again. �

Corollary 4.8. Let x be an element of a finite LC-loop L. Then the

order of x divides the order of L.

Proof. LC-loops are left power alternative, by Lemma 4.5, and have
the left inverse property, by Proposition 2.3(ii). We are done by Lemma 4.7.

�

4.5. Cauchy-like properties. A finite power associative loop is said to
have the weak Cauchy property if for any prime p dividing the order of the
loop there is an element of order p.

Since there are Steiner loops of order different from 2k, yet all Steiner
loops have exponent 2, it is clear that Steiner loops (and thus C-loops) do
not have the weak Cauchy property. Example 3.2 illustrates this nicely
(and minimally) for p = 5.

4.6. 2-loops. Since our main structural result for commutative C-loops
(Corollary 7.4) requires the notion of a 2-C-loop, let us talk about 2-loops.

A group G of order n is said to be a 2-group if n = 2r for some r, or,
equivalently, if G is of exponent 2s for some s.

The trouble with power associative loops is that the above two proper-
ties are not necessarily equivalent. The smallest possible counterexample
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is a nonassociative power associative loop of order 5 and exponent 2, cf.
[15, Example I.4.5].

Throughout this paper, we therefore postulate: A finite power asso-
ciative loop L is said to be a 2-loop if it is of exponent 2s, for some s.

Note that if L is a C-loop of order 2k then L is a 2-loop, by Corol-
lary 4.8. The converse is not true, even for the smaller class of Steiner
loops, as is demonstrated by the nonassociative Steiner loop of order 10.

5. Square roots of unity

Example 3.7 demonstrates that the subset K = {x ∈ L; x2 = e} of a
C-loop L is not necessarily a subloop of L. We are going to see that in the
commutative case, K is not only a subloop, but a normal subloop.

Lemma 5.1. Let L be a commutative, alternative, inverse property

loop. Then (xy)2 = x2y2 for every x, y ∈ L.

Proof. Consider u = x−1(x−1 · (xy)(xy)). By alternativity, u =
x−1(x−1(xy) · (xy)). By the inverse property, u = x−1(y · xy). By com-
mutativity, u = x−1(xy · y). By alternativity, u = x−1(x · yy). Finally,
by the inverse property, u = yy. Thus (xy)(xy) = x(xu) = x(x(yy)) =
(xx)(yy). �

Proposition 5.2. Let L be a commutative C-loop, and let K consist

of all elements of exponent 2 in L. Then K is a normal subloop of L and

L/K is a group.

Proof. By Lemma 5.1, the map x 
→ x2 is an endomorphism of L.
Its kernel K is therefore a normal subloop of L.

It remains to show that L/K is associative. This is true if and only if
((xy)z)−1(x(yz) · u) ∈ K for every x, y, z ∈ L, u ∈ K, or, equivalently, if
((xy)z)2 = (x(yz) · u)2. Since squaring is a homomorphism and since all
squares are in the nucleus, we can rewrite the last equation as x2y2z2 =
x2y2z2u2, which certainly holds, as u ∈ K. �

Corollary 5.3. Let L be a commutative C-loop and let A be the

subloop of L generated by all associators [x, y, z], where x, y, z ∈ L. Then

A is of exponent at most 2.
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Proof. Let K be as in Proposition 5.2. Since L/K is associative, all
associators must be in K. Thus A ⊆ K. �

Even in the noncommutative case we can say something about the
associators.

Lemma 5.4. Let L be a loop with normal nucleus. Then all associa-

tors of L commute with all nuclear elements of L.

Proof. This is [11, Lemma 4.2(vii)]. �

Corollary 5.5. Let L be a C-loop. Then all associators of L commute

with all nuclear elements. In particular, associators commute with all

squares.

It would be nice if products of associators were again associators. Un-
fortunately, this fails already for extra loops (hence for C-loops), by [10].

6. An analogy between extra loops and C-loops

The smallest variety of nonassociative loops of Bol–Moufang type is
that of extra loops (cf. [17]). We would like to describe an analogy between
extra loops and commutative C-loops.

A loop L is conjugacy closed, if for every x, y ∈ L, L−1
x LyLx is a left

translation, and R−1
x RyRx is a right translation.

It is well known that extra loops are exactly conjugacy closed Moufang
loops (see, for instance, [11]). Basarab [1] showed that L/N is an abelian
group for any conjugacy closed loop L and its nucleus N . (Also see [11],
[6].) Since extra loops are also precisely Moufang loops with squares in
the nucleus, L/N is an elementary abelian 2-group whenever L is extra.
Proposition 2.8 shows that L/N is a Steiner loop when L is a C-loop. Since
Steiner loops are commutative of exponent 2, they differ from elementary
abelian 2-groups “only” in their lack of associativity.

The analogy can be extended little further for commutative C-loops.
We have seen that all associators in a commutative C-loop are of order at
most 2. The same is true for extra loops.

However, all associators of an extra loop are in the nucleus. This is
not the case for commutative C-loops, as Example 3.8 illustrates.
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7. Decomposition for finite commutative C-loops

We finish this paper with a decomposition theorem for finite commu-
tative C-loops.

Lemma 7.1. Let L be a finite commutative C-loop. Let U = {x ∈
L; |x| is a power of 2}, V = {x ∈ L; |x| is relatively prime to 2}. Then:

(i) U ≤ L, V ≤ L,

(ii) V is contained in the nucleus of L, hence V is a commutative group,

(iii) V � L,

(iv) U � L,

(v) UV = {uv; u ∈ U, v ∈ V } = L,

(vi) U ∩ V = {e}.
Proof. First of all, by commutativity and diassociativity (Lemma 4.4),

we have (xy)n = xnyn for every x, y ∈ L and every integer n.
Let x, y ∈ U . Let n be the least common multiple of |x|, |y|. Since

x, y are powers of 2, n is a power of 2 (the maximum of |x| and |y|). As
(xy)n = xnyn = e, we see that |xy| divides n, and is therefore a power
of 2.

Let x, y ∈ V . Let n be the least common multiple of |x|, |y|. Since
both x, y are relatively prime to 2, so is n. As (xy)n = xnyn = e, we
see that |xy| divides n, and is therefore relatively prime to 2. We have
proved (i).

Let x ∈ V . We want to show that x belongs to the nucleus of L. Let
n = |x|. Then n + 1 = 2m is even, and x = xn+1 = (xm)2 is a square.
Since C-loops are nuclear square loops, x is in the nucleus.

Any subloop contained in the center of L is normal in L. By (ii), V is
contained in the center of L, and so V � L.

We now show that U is normal in L. Thanks to commutativity, all we
have to show is that x(yU) = (xy)U for every x, y ∈ L. This is equivalent
to showing that z = (xy)−1(x(yu)) ∈ U for every u ∈ U . Let s = 2k be the
order of u. Then zs = x−sy−sxsysus = (xy)−s(xy)s = e, by Lemma 5.1.
Thus the order of z divides s = 2k, and z ∈ U follows.

Since (vi) follows immediately from the definition of U and V , it re-
mains to prove that UV = L. Let x ∈ L, and let |x| = 2ks, where k > 0
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and s > 0 is an odd integer. (There is nothing to prove when k = 0 or
s = 0.) Since 2k, s are relatively prime, there are integers m, n such that
1 = m2k + ns [4, Theorem 2-4]. Then x = uv, where u = xns, v = x2km.
Since u(2k) = xns2k

= 1, we see that |u| divides 2k, hence |u| is a power
of 2, and u ∈ U follows. Similarly, since vs = x2kns = 1, we see that |v|
divides s, hence |v| is odd, and v ∈ V follows. �

Universal algebraists define loops equivalently as sets with three binary
operations ·, \, /, and one nullary operation e such that x · (x \ y) = y,
x/y · y = x, (x · y)/y = x, x \ (x · y) = y, x/x = x \ x = e. Thus x \ y is
the solution z to the equation x · z = y, and similarly for x/y.

We will use this notation in the proof of the following theorem, that
could be called the internal direct product for loops. The theorem appears
in a more general form in Bruck’s book [3, Lemma IV.5.1]. Since he does
not give a proof, we provide it.

Theorem 7.2 (Bruck). Let L be a loop with normal subloops K,

H such that K ∩ H = {e}, KH = {kh; k ∈ K, h ∈ H} = L. Then L is

the direct product of K, H.

Proof. We first show that any element x ∈ L decomposes uniquely
as a product kh, k ∈ K, h ∈ H. At least one decomposition exists since
KH = L. Let k0h0 = k1h1 be two such decompositions. Then k0 =
(k1h1)/h0. Now, (k1h1)/h0 belongs to (Kh1)/(Kh0) = K(h1/h0) (since K

is a normal subloop), and there is therefore k ∈ K such that k0 = k(h1/h0).
Then k \ k0 = h1/h0 belongs to K ∩ H = {e}, and thus h1 = h0, which in
turn implies k0 = (k1h1)/h0 = (k1h0)/h0 = k1.

Define f : K × H → L by (k, h) 
→ kh. By the preceding paragraph,
f is one-to-one and onto. It remains to show that f is a homomorphism,
i.e., that (k0h0)(k1h1) = k0k1 · h0h1 for every k0, k1 ∈ K, h0, h1 ∈ H.
Since K is normal, we have x = (k0h0)(k1h1) ∈ Kh0 · Kh1 = K(h0h1),
and there is k ∈ K such that x = k(h0h1). Since H is normal, we have
x ∈ k0H · k1H = (k0k1)H, and there is h ∈ H such that x = (k0k1)h.
Since x has a unique decomposition, we must have k = k0k1, and so
x = (k0k1)(h0h1). �

Theorem 7.3. Let L be a finite commutative C-loop. Then L =
U × V , where U = {x ∈ L; |x| is a power of 2}, V = {x ∈ L; |x| is odd}.
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Proof. Combine Lemma 7.1 and Theorem 7.2. �
Corollary 7.4. Every finite commutative C-loop is a direct product

of a finite commutative group and a finite commutative 2-C-loop, and vice
versa.

It is worth noting that we did not assume finiteness of the loop in this
section, only the fact that every element has finite order. Power associa-
tive loops with all elements of finite order are called torsion loops. Thus,
Lemma 7.1, Theorem 7.3 and Corollary 7.4 remain valid if all occurrences
of “finite” in their statements are replaced by “torsion”.

We conclude this paper with yet another analogy between C-loops and
Moufang loops. Theorem 7.3 shows that finite commutative C-loops are
of the form U × V , where U consists of elements whose order is a power
of 2, and V consist of elements whose order is relatively prime to 2. By
[9, Corollary of Theorem 3], finite commutative Moufang loops are of the
from U ×V , where U consists of elements whose order is a power of 3, and
V consist of elements whose order is relatively prime to 3.
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