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Skew derivations with annihilating Engel conditions

By CHEN-LIAN CHUANG (Taipei), MING-CHU CHOU (Taipei)
and CHENG-KAI LIU (Taipei)

Abstract. Let R be a noncommutative prime ring and a € R. Suppose that
§ is a o-derivation of R such that a[6(x),z], = 0 for all z € R, where k is a fixed
positive integer. Then a = 0 or § = 0 except when R = My(GF(2)).

1. Introduction and results

Throughout this paper, R is always a prime ring with center Z(R).
For z,y € R, set [z,y| = [z,y] = 2y — yz and [z,ylr = [[z,ylk—1,y] for
k> 1.

Let o0 be an automorphism of R. A o-derivation 6 : R — R is an
additive map satisfying d(rs) = o(r)d(s) + o(r)s for all r,s € R. For
brevity, o-derivations are generally called skew derivations. When ¢ is an
identity map, o-derivations are simply ordinary derivations. For o # 1,
the simplest example of o-derivations is the 1 — o, where 1 denotes the
identity map. Thus results of skew derivations are generalizations of both
derivations and automorphisms.

For a subset S of R, a mapping f : § — R is called centralizing
if [f(z),z] € Z(R) for all x € S. In [19] POSNER showed that R must
be commutative if it possesses a nonzero centralizing derivation on R.
In [17] MAYNE proved the analogous result for nonidentity centralizing
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automorphisms. Many related generalizations have been obtained by a
number of authors in the literature. See, for instance, [11]-[13], [18] and
[21]. Recently, F1L1PPIS [7] proved the following: Let R be a prime ring of
characteristic different from 2, d a nonzero derivation and L a noncentral
Lie ideal of R. For a € R, if a[d(u),u] = 0 for all uw € L, then a = 0. That
is, the left annihilator of the set {[d(u),u] | v € L} is zero. SHIUE [20]
generalized this result by imposing the condition: a[d(u),u]; = 0 for all
u € L, where k is a fixed positive integer. The main purpose of this article
is to extend Shiue’s result to skew derivations. Precisely, we will prove the
following

Main Theorem. Let R be a noncommutative prime ring and a € R.
Suppose that § is a o-derivation of R such that a[&(:c),x]k = 0 for all
x € R, where k is a fixed positive integer. Then a = 0 or § = 0 except
when R = M>(GF(2)).

We give an example to show that the exceptional case indeed exists in
the Main Theorem.

Example. Let R = M3(GF(2)), a = e11 + e1p and o(z) = grg !,
where ¢ = e12 + e21. Let § be a nonzero inner o-derivation defined by
b = ea1 + €92, that is §(z) = o(x)b — bxz. Then by a direct computation we
have a[[0(z),z],z] =0 for all z € R.

2. Preliminaries

We denote by @ the two-sided Martindale quotient ring of R and by C'
the center of (), which is called the extended centroid of R. Note that @
is also a prime ring and C'is a field (see [1] for details).

A o-derivation § of ) is called inner if §(x) = o(z)b—bx for some b € Q.
Otherwise, it is said to be outer. An automorphism o of @) is called inner
if there exists an invertible g € @ such that o(z) = gzg~! for all x € Q.
Otherwise, it is said to be outer. It is well-known that any automorphism
of R can be uniquely extended to an automorphism of (). Thus it is easy
to verify that any o-derivation of R can be uniquely extended to a o-
derivation of Q. An automorphism (a o-derivation respectively) of R is
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called X-inner or X-outer according as its extension to @ is equal to an
inner automorphism (or an inner o-derivation respectively) of @ or not.

An automorphism o of @ is called Frobenius if, in the case of char R=0,
o(a) = a for all a € C and if, in the case of char R = p > 2, o(a) = o?"
for all a € C, where n is a fixed integer, positive, zero, or negative.

Theorem A. ([5]). Let R be a prime ring with an X-outer o-der-
ivation 6. Then any generalized polynomial identity of R in the form
¢(zi,0(x;)) = 0 yields the generalized polynomial identity ¢(z;,y;) = 0
of R, where x;,y; are distinct indeterminates.

Theorem B. ([3]). Let R be a prime ring with an X-outer auto-
morphism o. Suppose that R satisfies a generalized polynomial identity
d(x;,0(x;)) = 0, where ¢(x;,y;) is a nontrivial generalized polynomial in
distinct indeterminates x;,y;. Then R is a GPI-ring.

Theorem C. ([4]). Let R be a prime ring with an automorphism o.
Suppose that o is not an Frobenius automorphism of R. Then any gen-
eralized polynomial identity of R in the form ¢(z;,0(x;)) = 0 yields the
generalized polynomial identity ¢(z;,y;) = 0 of R, where x;,y; are distinct
indeterminates.

Theorem D. ([9, p. 140] or [1, Theorem 4.7.4]). Let R be a prime
GPI-ring with an automorphism ¢ and extended centroid C'. Suppose
that o(«) = « for all « € C. Then o is an X-inner automorphism.

Let Vp be a right vector space over a division ring D. An additive map
T € End(V) is called semi-linear transformation if for some automorphism
7 of D, T'(va) = (Tw)1(«) for all v € V and a € D (see [8, p. 44]).

Theorem E. ([8, p. 79]). Let R be a primitive ring with nonzero
socle and RV a faithful irreducible left R-module. Let D = End(rV).
Suppose that o is an automorphism of R. Then there exists a semi-linear
automorphism T € End(V) such that o(r) = TrT~! for all r € R.

Lemma F. ([15, Lemma 1.2]). Let R be a prime ring and a;, b;, ¢j,d; €
RC'. Suppose that > " | aixbi—FZ?:l cjzd; =0 forallz € R. Ifay,...,an
are C-independent, then each b; is a C-linear combination of dy, ..., dy.
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3. Proof of the Main Theorem

We first give a well-known lemma which has appeared in various pa-
pers.

Lemma 1. Let Vp be a right vector space over a division ring D with
dimVp > 2 and T € End(V) such that v and Tv are D-dependent for
every v € V. Then there exists A € D such that Tv= v\ for allv e V.

PROOF. For each v €V, we write Tv=wvA\,, where A\, € D. Pick a non-
zerov € V. For w € V, if w and v are D-independent, then (w+v)A\y4y =
T(w4+wv)=T(w)+T(v) = why +0Ay. SO W( Ayt — Aw) = V( Ay — Awto),s
and A4y = Ay = Ap. If w and v are D-dependent, there exists u € V
such that u and v are D-independent. So v and w are also D-independent.
Then A, = A, = A\y,. We have done. O

The following lemma plays a key role in our proof.

Lemma 2. Let R be a dense subring of the ring of linear transfor-
mations of a vector space Vp over a division ring D, containing nonzero
linear transformations of finite rank, where dim Vp > 2. Let o be an au-
tomorphism of R. Suppose that a,b € R and 6(z) = o(z)b — bz satisfy
alo(z),z], = 0 for all © € R, where k is a fixed positive integer. Then
a =0 or § =0 unless dim Vp = 2 and D = GF(2), the Galois field of two
elements.

PrOOF. We assume a # 0 and 0 # 0 and proceed to show that
D = GF(2). Since R is a primitive ring with nonzero socle [8, p. 75],
by Theorem E, there exists a semi-linear automorphism 7' € End(V') such
that o(z) = TaT~! for all x € R. Hence a[TzT'b — bx,z];, = 0 for all
z € R.

We claim that there exists vy € V such that vy and T~ 'buvy are D-
independent: If not, then v and T~ 'bv are D-dependent for all v € V.
That is, for each v € V there exists A\, € D such that T~'bv = v\,. By
Lemma 1, there exists A € D such that T~ 'bv = v for all v € V. Then

§(z)v = (TzT b — bx)v = T(xv)) — bzv = T((zv)\) — bav
= T(T 'bxv) — bav =0,
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forallz € Rand v € V. Since V is faithful, we have § = 0, a contradiction.
So vg and T~ 'byy are D-independent for some vy € V.

First, assume dimVp > 3. Choose w € V such that w is D-inde-
pendent of vg and T 'bvg. By the density of R, there exists z € R such
that

zvo=0, 2T 'bvg=T"'w, zw=w.

This implies that

k
0= a[TzT b — bx, z]pvy = aZ(—l)’ <i>xZ(TxT_lb — bx)x" g
i=0
= (=D *aa*TzT vy = (-1 Fazfw = (-1)Faw

and so aw = 0. Since w+ vy is also D-independent of vy and T~ bvg, using
w1 instead of w, we also have a(w+wvg)=0. Similarly, a(w+T~'bvy)=0.
So avg = 0 and a7 'bvg = 0. Then aV = 0, a contradiction.

Second, assume dimVp = 2. Then vy and T 'bug form a basis of
Vp. We claim that there exists w € V such that w ¢ voD and Tw ¢ vyD.
Suppose on the contrary, for each w € V, either w € voD or w € (T~ vg)D.
Then V = voD U (T~ 'vg)D. As a vector space cannot be the union of two
proper subspace, we must have dim Vp = 1, a contradiction. For such
w with w ¢ voD and w ¢ (T~ 'vg)D, write w = voa + (T bvy)3 and
Tw = vyy + (T~ 'bvg)¢, where o, 3,7,£ € D and 3,¢ # 0. By the density
of R, there exists € R such that zvg = 0,27 'buy = w. This implies
that zw = x(voa + (T 1bvg)B) = (T 'bvg) B = wpB and

zTw = x(vey + (T~ 1bg)l) = wt.
Then

0= a[TzT b — bz, z|pvo = (—1)Faz*TxT bug
= (=DFazPTw = (=1)*az" 1wl = (1) awp* ¢

and so aw = 0. If there exists a nonzero A € D such that T'(w+vo) ¢ voD,
using w+ v instead of w, we have a(w+vg\) = avgA = 0 and so avy = 0.
Since w and vy are D-independent and dim Vp = 2, we have aV = 0, a
contradiction. Thus T'(w + vg\) € vgD for all nonzero A € D. Suppose
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that |D| > 2. Choose two nonzero \; and Ay in D with A; # A9 such
that T'(w + voA1) € voD and T'(w + vgA2) € vgD. Then T (vg(A; — A2)) =
T(w + voA1) — T'(w + voA2) € voD and using semi-linearity of 7', we have
T(vg) € voD and then T'(w) € voD, a contradiction. The proof is now
complete. ]

PrOOF OF MAIN THEOREM. We may assume a # 0 and § # 0 and
proceed to show that R = Ms(GF(2)). Suppose that ¢ is X-outer. By
Theorem A, we have aly, 2| = 0 for all z,y € R. Pick b € R\C and replace
y by xb—bx. Then a[d(x),z]; = 0 for all x € R, where d(x) = zb—bx is a
nonzero X-inner derivation. Hence we may assume that § is X-inner and
write §(z) = o(x)b — bz for some b € Q.

Case 1. Suppose that o is X-inner. Thus there exists an invertible
element g € @ such that o(x) = grg~!. Note that g~'b ¢ C. If g 'be C,
then 6(z) = grg~'b — bx = g(xg~'b — g~ 'bx) = g[z,g7'b] = 0, a contra-
diction. With this, we can see easily that

k—1

f(z) =alo(z)b— bz, z] L =a Z(—l)i <I;> 2 (grg~ b — ba)xk !

i=0
+ (=D az®(—b)x + (=1)*azFgrg™'b

is a nontrivial GPI of R, since ¢g7'b ¢ C and a # 0. By [2], f(z) is also
a GPI of Q. Denote by F' the algebraic closure of C' or C' according as C'
is infinite or finite respectively. By a standard argument [14, Proposition],
f(z) is also a GPI of Q ®¢ F. Since @ ®¢ F' is a centrally closed prime
F-algebra [6, Theorem 3.5], by replacing R, C' with @ ®¢ F' and F respec-
tively, we may assume that R is centrally closed and the field C is either
algebraically closed or finite. By MARTINDALE’s Theorem [16, Theorem 3],
R is a primitive ring having nonzero socle with the field C as its associated
division ring. By [8, p. 75] R is isomorphic to a dense subring of the ring
of linear transformations of a vector space V over C, containing nonzero
linear transformations of finite rank. Since R is not commutative, we may
assume dimg V' > 2. By Lemma 2, we are done in this case.

Case 2. Suppose that o is X-outer. We first claim that if a # 0 and
b # 0, then R is a GPI-ring: Observe that a[yb — ba:,a:]k = a[yb, x]k —

a [ba:, a:] is a nontrivial generalized polynomial. Thus a[o(x)b—bz, x|, =0

k
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is a nontrivial GPI of R. So R is a GPI-ring follows from Theorem B. By [4],
alo(z)b— bz, x|, = 0 is also a GPI of Q. By MARTINDALE’s Theorem [16],
@ is a primitive ring having nonzero socle and its associated division ring
D is finite-dimensional over C'. Hence @) is isomorphic to a dense subring
of the ring of linear transformations of a vector space V' over D, containing
nonzero linear transformations of finite rank. If dim Vp > 2, by Lemma 2,
we are done. So we may assume dim Vp = 1, that is, Q@ = D. If C
is finite, then dim Do < oo implies that D is also finite. Thus D is a
field by Wedderburn’s Theorem [8, p. 183] on finite division rings. In
particular, @ is commutative, a contradiction. Hence from now on we
assume C' is infinite and @ is a division ring. By assumption a # 0, we
have [o(x)b — bz, x];, = 0 for all z € R.

Subcase 1. Suppose that o is not Frobenius. Then by Theorem C,
[yb — bz, z];, = 0 for all x,y € R. Taking y = =z, we have [b,z]p41 = 0
for all x € R. By [12], it follows that b € C. Then 0 = [yb — bx, x|, =
bly — x,z|x = by, z]g. Thus 0 = [y, z]; for all z,y € R. Soy € C for all
y € R by [12] again. Hence R is commutative, a contradiction.

Subcase 2. Suppose that o is Frobenius. For simplicity, we denote z¢
by o(x). We may assume that char R = p > 0. Otherwise, if char R = 0,
then the Frobenius automorphism o fixes C' and hence must be X-inner
by Theorem D, a contradiction. So for all @ € C, a® = of" for some
nonzero fixed integer n. Also we may assume n # 0 by Theorem D. By [4],
[o(x)b—bx,x];, = 0 for all z € Q. Replacing = by x +« , where 0 # « € C,
we have

0=[(z+a)b—bz+a),z+als=[(a7+)b—blz+a)z],

= [b, z]xa?" — [b, x]per + [27b — bx, x), = [b, x]pa?" — [b, z]p0r.

If [b,2]p # O for some = € Q, we see that o?” = o for all a € C. So C
is finite, a contradiction. Hence [b,z]y = 0 for all z € Q. By [12], we
have b € C and then 0 = [27b — bx, x|, = b[z? — x, x| = b[z7, x];. Thus
0 = [29,x]k. Since there exists integer m such that p”™ > k, we have
that [27,z],m» = 0. It follows that [a:”,:cpm] = 0 for all z € Q, since
char R=p > 0.

Suppose first n > 1. For a € C and y € @, replacing x by z 4+ ay, we
have 0 = [(z + ay)?, (z + ay)?" | = [27 + of"y7, Z?:o ¢i(z,y)a'], where
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¢i(x,y) denotes the sum of all monic monomials with z-degree p™ — i and
y-degree i for 0 <4 < p™. In particular, ¢1(z,y) = 2"ty + 2P" “2yx +
oyl = Zf:o_l @™ =1=0yxi As C is infinite, it follows from the
Vander Monde determinant argument that [z, ¢1(x,y)] = 0. Hence

pr—1 pr—1
2° Z ."L‘(pm_l_i)yxi _ Z l‘(pm_l_i)yl‘il‘g -0 (1)
i=0 i=0

for all z,y € Q. Given =z € Q, if ¢1(x,y) is an identity of @, that is,
¢1(x,y)=0for all y € Q, then 0= [z, ¢1(z,y)] = [x, Zf:o_l x(pm_l_i)yxi] =
[P, y] for all y € Q. Thus 2P" € C. If 2P" € C for all € R, then Q is
a field by [8, p. 185, Theorem 3| and R is commutative, a contradiction.
We may thus choose z € @Q such that 2P" ¢ C and for this =, ¢1(z,vy)
is not an identity in y. Let 1 < [ < p™ — 1 be the maximal integer
such that 1,z,...,2' are C-independent. Write ¢;(z,y) = Zé:o rlyg;(z),
where g;() are polynomials in 1,z, ..., z! over C. Note that g,(x) # 0 for
some s, since ¢1(x,y) is not an identity in y. Rewrite (1) in a form that

pT—1

l
z° Z x(pm—l—z)yxz _ Zx’ygi(x)x” — 0’
i=0 1=0

for all y € Q. By Lemma F, g;(z)z? are C-linear combinations of 1, z, ...,
2P~ for i = 0,...,l. Since gs(x) # 0 for some s and @ is a division
ring, we also have x7 is the C-linear combination of {gs(z)~t2?}. Hence
[z7,2] = 0. For any y € @, there exist infinite many 3 € C such that
(z+ By)P" ¢ C. Thus 0 = [(z + By)°,z + By] = [27 + 7"y, x + By]. By
the Vander Monde determinant argument again, [z7,y] = 0 for all y € Q.
Then 27 € C. Hence z € C and so zP" € C, a contradiction.

Suppose next that n < —1. Recall that [x",xpm] =0 for all z € Q.
Similarly, replacing « by = + ay, we have 0 = [(a: +ay)?, (x + ay)pm] =
[x" +aP"ye, Zf:o oi(x, y)ai] , where ¢;(x,y) denotes the sum of all monic
monomials with z-degree p™ — ¢ and y-degree ¢ for 0 < i < p™. Then
[a? " 27 + 47, Zf:o ¢i(z,y)a’] = 0. As C is infinite, it follows from the
Vander Monde determinant argument that [y”,a:pm] =0 for all z,y € R.
Thus @ is commutative by [12], a contradiction. The proof is now com-
plete. (|
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