A weighted Hermite–Hadamard-type inequality for convex-concave symmetric functions

By PÉTER CZINDER (Gyöngyös)

Abstract. In this paper we give a weighted version of the Hermite–Hadamard inequality

$$f\left(\frac{a+b}{2}\right) \stackrel{\geq}{(\leq)} \frac{1}{b-a} \int_a^b f(x) dx \stackrel{\geq}{(\leq)} \frac{f(a)+f(b)}{2}.$$

An extension of that result, applied for convex-concave symmetric functions, will also be provided.

1. Introduction

The so-called Hermite–Hadamard inequality [7] is one of the most investigated classical inequalities concerning convex functions. It reads as follows:

Theorem 1. Let $\mathfrak{I} \subset \mathbb{R}$ be an interval and $f: \mathfrak{I} \to \mathbb{R}$ be a concave (convex) function. Then, for all subinterval $[a,b] \subset \mathfrak{I}$ with non-empty interior,

$$f\left(\frac{a+b}{2}\right) \stackrel{\geq}{(\leq)} \frac{1}{b-a} \int_{a}^{b} f(x)dx \stackrel{\geq}{(\leq)} \frac{f(a)+f(b)}{2} \tag{1}$$

Mathematics Subject Classification: Primary 26D15, 26D07.

Key words and phrases: Hadamard's inequality, concave-convex functions.

The research was supported by the Hungarian Research Fund (OTKA), Grant Nos. T-047373.

216

holds.

An account on the history of this inequality can be found in [8]. Surveys on various generalizations and developments can be found in [9] and [4]. The description of best possible inequalities of Hadamard–Hermite type are due to Fink [5]. A generalization to higher-order convex function can be found in [1], while [2] offers a generalization for functions that are Beckenbach-convex with respect to a two dimensional linear space of continuous functions.

In this form (1) is valid only for functions that are purely convex or concave on their whole domain. In [3] we proved that under appropriate conditions the same inequalities could be stated for a much larger family of functions. The results, obtained for that situation, could be applied for the investigation of the comparison problem for Gini and Stolarsky means.

In Section 2 we will use another method to extend Theorem 1, replacing the arithmetic mean by more general means, applying weight functions. For a further generalization of Theorem 1, in Section 3 we will introduce the concept of odd and even functions with respect to a point. Finally, in Section 4 we will combine these two directions of the extensions and present a weighted version of the Hermite–Hadamard inequality for convex-concave symmetric functions.

2. The weighted Hermite–Hadamard inequality for convex or concave functions

Given a positive, locally integrable weight function $\varrho: \mathcal{I} \to \mathbb{R}_+$, define the ϱ -mean of a and b by

$$M_{\varrho}(a,b) := \frac{\int_a^b x \varrho(x) dx}{\int_a^b \varrho(x) dx}.$$

Then the following statement holds:

Theorem 2. Let $\mathfrak{I} \subset \mathbb{R}$ be an interval, $f: \mathfrak{I} \to \mathbb{R}$ be a concave (convex) function and $\rho: \mathfrak{I} \to \mathbb{R}$ a positive, locally integrable weight

function. Then, for all subintervals $[a,b] \subset \mathcal{I}$ with non-empty interior,

$$f(M_{\varrho}(a,b)) \stackrel{\geq}{(\leq)} \frac{1}{\int_{a}^{b} \varrho(x)dx} \int_{a}^{b} f(x)\varrho(x)dx$$

$$\stackrel{\geq}{(\leq)} \frac{b - M_{\varrho}(a,b)}{b - a} f(a) + \frac{M_{\varrho}(a,b) - a}{b - a} f(b).$$
(2)

PROOF. Suppose that f is concave over \mathfrak{I} and let e(x) := cx + d be a support line of the function f at the point $M_{\rho}(a,b)$. Let

$$g(x) = \frac{f(b) - f(a)}{b - a} \cdot x + \frac{bf(a) - af(b)}{b - a}$$

be the chord of f from (a, f(a)) to (b, f(b)). Then, applying the concavity,

$$e(x) \ge f(x) \ge g(x) \quad (x \in \mathcal{I}),$$

that is,

$$\frac{\int_{a}^{b} e(x)\varrho(x)dx}{\int_{a}^{b} \varrho(x)dx} \ge \frac{\int_{a}^{b} f(x)\varrho(x)dx}{\int_{a}^{b} \varrho(x)dx} \ge \frac{\int_{a}^{b} g(x)\varrho(x)dx}{\int_{a}^{b} \varrho(x)dx}.$$
 (3)

After a calculation, we obtain

$$\frac{\int_a^b e(x)\varrho(x)dx}{\int_a^b \varrho(x)dx} = \frac{\int_a^b (cx+d)\varrho(x)dx}{\int_a^b \varrho(x)dx} = cM_\varrho(a,b) + d = f(M_\varrho(a,b))$$

and

$$\frac{\int_{a}^{b} g(x)\varrho(x)dx}{\int_{a}^{b} \varrho(x)dx} = \frac{f(b) - f(a)}{b - a} M_{\varrho}(a, b) + \frac{bf(a) - af(b)}{b - a} \\
= \frac{b - M_{\varrho}(a, b)}{b - a} f(a) + \frac{M_{\varrho}(a, b) - a}{b - a} f(b),$$

which proves (2).

For convex functions the proof is similar.

(It can immediately be seen that Theorem 1 is a special case of Theorem 2 with $\varrho(x)\equiv 1$.)

Remark. The primary motivation for the various extension of the Hermite–Hadamard inequality, such as those obtained by ZSOLT PÁLES and the author [3] is to provide inequalities for the Gini and Stolarsky means. (For details about these two parameter, two variable homogeneous means see [6] and [10].)

Theorem 2 can also be applied, for instance, to give an upper and lower bound for the Stolarsky mean $S_{r,s}(\xi,\eta)$. For, suppose that $f(x) = x^{r-s}$, $\varrho(x) := x^{s-1}$. Then $M_{\varrho}(\xi,\eta) = S_{s,s+1}(\xi,\eta)$, while $(\int_{\xi}^{\eta} f(x)\varrho(x)dx)/(\int_{\xi}^{\eta} \varrho(x)dx) = (S_{r,s}(\xi,\eta))^{r-s}$. In this way we can give bounds for the general Stolarsky mean in terms of a more special instance of it, namely, by the one where the difference of the parameters equals 1.

3. Odd and even functions with respect to a point

In the following we will encounter functions showing two kinds of symmetry.

Definition. Let \mathfrak{I} be a real interval, $m \in \mathfrak{I}$. We say that the function $f: \mathfrak{I} \to \mathbb{R}$ is odd with respect to the point m, if $t \mapsto f(m+t) - f(m)$ is odd, that is,

$$f(m-t) + f(m+t) = 2f(m) \qquad (t \in (\mathfrak{I} - m) \cap (m-\mathfrak{I})), \tag{4}$$

while it is said to be even with respect to the point m, if $t \mapsto f(m+t)$ is even, that is,

$$f(m-t) = f(m+t) \qquad (t \in (\mathfrak{I}-m) \cap (m-\mathfrak{I})). \tag{5}$$

In a recent paper [3] we proved that (1) is valid for a function f odd with respect to a point $m \in \mathcal{I}$ under appropriate convexity conditions:

Theorem 3. Let $f: \mathbb{J} \to \mathbb{R}$ be odd with respect to an element $m \in \mathbb{J}$ and let [a,b] be a subinterval of \mathbb{J} with non-empty interior. If f is convex over the interval $\mathbb{J} \cap (-\infty, m]$ and concave over $\mathbb{J} \cap [m, \infty)$, then

$$f\left(\frac{a+b}{2}\right) \stackrel{\geq}{(\leq)} \frac{1}{b-a} \int_{a}^{b} f(x)dx \stackrel{\geq}{(\leq)} \frac{f(a)+f(b)}{2} \tag{6}$$

if
$$\frac{a+b}{2} \stackrel{\geq}{(\leq)} m$$
.

For the integral of the product of odd and even functions with respect to the midpoint of the same interval, the following statement is true:

Lemma. Let $g, h : [\alpha, \beta] \to \mathbb{R}$ be integrable functions over $[\alpha, \beta]$, g be odd and h be even with respect to the point $(\alpha + \beta)/2$. Then

$$\int_{\alpha}^{\beta} g(x)h(x)dx = g\left(\frac{\alpha+\beta}{2}\right)\int_{\alpha}^{\beta} h(x)dx.$$

PROOF. Let m denote the midpoint of $[\alpha, \beta]$. By splitting the integral at the point m and applying (4) and (5) for g and h, respectively, we get that

$$\int_{\alpha}^{\beta} g(x)h(x)dx = \int_{\alpha}^{m} g(x)h(x)dx + \int_{m}^{\beta} \left((2g(m) - g(2m - x))h(2m - x)dx \right)$$

$$= \int_{\alpha}^{m} g(x)h(x)dx - \int_{m}^{\alpha} \left((2g(m) - g(y))h(y)dy \right)$$

$$= \int_{\alpha}^{m} \left(g(x)h(x) + 2g(m)h(x) - g(x)h(x) \right)dx$$

$$= 2g(m) \int_{\alpha}^{m} h(x)dx = g(m) \int_{\alpha}^{\beta} h(x)dx.$$

4. An extension of Theorem 2

Theorem 4. Let the function $f: \mathcal{I} \to \mathbb{R}$ be odd with respect to the element $m \in \mathcal{I}$, $\varrho: \mathcal{I} \to \mathbb{R}$ a positive, integrable weight function, which is even with respect to m, and let [a,b] be a subinterval of \mathcal{I} with non-empty interior. Then the following statement is valid:

If f is convex in the interval $\mathfrak{I}\cap(-\infty,m]$ and concave in $\mathfrak{I}\cap[m,\infty),$ then

$$f\left(M_{\varrho}(a,b)\right) \overset{\geq}{\leq} \frac{1}{\int_{a}^{b} \varrho(x)dx} \int_{a}^{b} f(x)\varrho(x)dx$$

$$\overset{\geq}{\leq} \frac{b - M_{\varrho}(a,b)}{b - a} f(a) + \frac{M_{\varrho}(a,b) - a}{b - a} f(b),$$
(7)

if
$$\frac{a+b}{2} \stackrel{\geq}{(\leq)} m$$
.

PROOF. We may restrict ourselves to the proof of (i).

First we shall prove the left hand side inequality.

Suppose that $m \leq (a+b)/2$, f is convex over the interval $\mathfrak{I} \cap (-\infty, m]$ and concave over $\mathfrak{I} \cap [m, \infty)$. We may assume that m > a. Then, applying the lemma,

$$\begin{split} f\left(M_{\varrho}(a,b)\right) &= f\left(\frac{\int_{a}^{2m-a} x \varrho(x) dx + \int_{2m-a}^{b} x \varrho(x) dx}{\int_{a}^{b} \varrho(x) dx}\right) \\ &= f\left(\frac{m \int_{a}^{2m-a} \varrho(x) dx + \int_{2m-a}^{b} x \varrho(x) dx}{\int_{a}^{b} \varrho(x) dx}\right) \\ &= f\left(\frac{\int_{a}^{2m-a} \varrho(x) dx}{\int_{a}^{b} \varrho(x) dx} \cdot m + \frac{\int_{2m-a}^{b} \varrho(x) dx}{\int_{a}^{b} \varrho(x) dx} \cdot \frac{\int_{2m-a}^{b} x \varrho(x) dx}{\int_{2m-a}^{b} \varrho(x) dx}\right). \end{split}$$

Since $\left(\int_{2m-a}^b x\varrho(x)dx\right)/\left(\int_{2m-a}^b \varrho(x)dx\right)=M_\varrho(2m-a,b)$ – that is, a mean of 2m-a and b, we get that

$$b \ge M_{\varrho}(2m-a,b) \ge 2m-a > m.$$

Therefore, both m and $M_{\varrho}(2m-a,b)$ belong to the concavity domain of f. Applying the concavity of f, we conclude that the last expression in (*) is greater than or equal to

$$\begin{split} \frac{\int_a^{2m-a}\varrho(x)dx}{\int_a^b\varrho(x)dx} \cdot f(m) + \frac{\int_{2m-a}^b\varrho(x)dx}{\int_a^b\varrho(x)dx} \cdot f\left(M_\varrho(2m-a,b)\right) \\ &= \frac{f(m)\int_a^{2m-a}\varrho(x)dx}{\int_a^b\varrho(x)dx} + \frac{\int_{2m-a}^b\varrho(x)dx}{\int_a^b\varrho(x)dx} \cdot f\left(M_\varrho(2m-a,b)\right). \end{split}$$

Using the lemma, we replace the numerator of the first expression on the right by $\int_a^{2m-a} f(x)\varrho(x)dx$. Summarizing the above calculations, we obtain

$$f\left(M_{\varrho}(a,b)\right) \geq \frac{\int_{a}^{2m-a} f(x)\varrho(x)dx}{\int_{a}^{b} \varrho(x)dx} + \frac{\int_{2m-a}^{b} \varrho(x)dx}{\int_{a}^{b} \varrho(x)dx} \cdot f\left(M_{\varrho}(2m-a,b)\right). \tag{8}$$

Since f is concave over the interval [2m-a, b], we can apply the left hand side inequality of Theorem 2 and get that

$$f\left(M_{\varrho}(2m-a,b)\right) \ge \frac{1}{\int_{2m-a}^{b} \varrho(x)dx} \int_{2m-a}^{b} f(x)\varrho(x)dx.$$

Substituting this in (8) we obtain that

$$\begin{split} f\left(M_{\varrho}(a,b)\right) &\geq \frac{\int_{a}^{2m-a} f(x)\varrho(x)dx}{\int_{a}^{b}\varrho(x)dx} \\ &+ \frac{\int_{2m-a}^{b}\varrho(x)dx}{\int_{a}^{b}\varrho(x)dx} \cdot \frac{1}{\int_{2m-a}^{b}\varrho(x)dx} \int_{2m-a}^{b} f(x)\varrho(x)dx \\ &= \frac{\int_{a}^{b} f(x)\varrho(x)dx}{\int_{a}^{b}\varrho(x)dx}, \end{split}$$

that is, the proof of the first inequality is complete.

To prove the second inequality in (7), it is enough to prove that

$$\int_{a}^{b} f(x)\varrho(x)dx \ge \frac{\int_{a}^{b} (b-x)\varrho(x)dx}{b-a} f(a) + \frac{\int_{a}^{b} (x-a)\varrho(x)dx}{b-a} f(b). \tag{9}$$

We need the following simple statements:

(A)
$$f(m) \ge \frac{b-m}{b-a} f(a) + \frac{m-a}{b-a} f(b),$$

(B) $f(2m-a) \ge \frac{b-2m+a}{b-a} f(a) + \frac{2(m-a)}{b-a} f(b).$

For (A), observe that f is concave over the interval [m, b], containing the point 2m - a. Thus,

$$f(2m-a) \ge \frac{b-2m+a}{b-m}f(m) + \frac{m-a}{b-m}f(b).$$
 (10)

Substituting 2f(m) - f(a) for f(2m - a) in (10), we obtain – after some transformations – (A).

Moreover, if we put in (10) (f(a) + f(2m - a))/2 in place of f(m), after rearranging the inequality, we get (B).

After these preparations, we are ready to prove (9). First, applying the lemma,

$$\int_{a}^{b} f(x)\varrho(x)dx = \int_{a}^{2m-a} f(x)\varrho(x)dx + \int_{2m-a}^{b} f(x)\varrho(x)dx$$
$$= f(m)\int_{a}^{2m-a} \varrho(x)dx + \int_{2m-a}^{b} f(x)\varrho(x)dx.$$

In the first term on the right hand side, we may apply (A) for f(m). We can apply the right hand side inequality of Theorem 2 to the second term of the last expression since f is concave in the interval [2m - a, b]:

$$\int_{2m-a}^{b} f(x)\varrho(x)dx \ge \frac{\int_{2m-a}^{b} (b-x)\varrho(x)dx}{b-2m+a} f(2m-a) + \frac{\int_{2m-a}^{b} (x-2m+a)\varrho(x)dx}{b-2m+a} f(b).$$

Applying (A) and (B) to f(m) and f(2m-a), we get that

$$\int_{a}^{b} f(x)\varrho(x)dx \ge \left(\frac{b-m}{b-a}f(a) + \frac{m-a}{b-a}f(b)\right) \int_{a}^{2m-a} \varrho(x)dx
+ \frac{\int_{2m-a}^{b} (b-x)\varrho(x)dx}{b-2m+a} \left(\frac{b-2m+a}{b-a}f(a) + \frac{2(m-a)}{b-a}f(b)\right)
+ \frac{\int_{2m-a}^{b} (x-2m+a)\varrho(x)dx}{b-2m+a} f(b)
= \left[\frac{b-m}{b-a} \int_{a}^{2m-a} \varrho(x)dx + \frac{\int_{2m-a}^{b} (b-x)\varrho(x)dx}{b-a}\right] f(a)
+ \left[\frac{m-a}{b-a} \int_{a}^{2m-a} \varrho(x)dx + \frac{2(m-a)}{b-a} \frac{\int_{2m-a}^{b} (b-x)\varrho(x)dx}{b-2m+a} + \frac{\int_{2m-a}^{b} (x-2m+a)\varrho(x)dx}{b-2m+a}\right] f(b).$$

Finally, we will check that the coefficients of f(a) and f(b) are the desired ones.

First, from the lemma we get that $\int_a^{2m-a} (m-x)\varrho(x)dx = 0$. Thus,

$$\frac{b-m}{b-a} \int_a^{2m-a} \varrho(x)dx + \frac{\int_{2m-a}^b (b-x)\varrho(x)dx}{b-a}$$

$$= \frac{1}{b-a} \left(\int_a^{2m-a} (b-m)\varrho(x)dx + \int_{2m-a}^b (b-x)\varrho(x)dx \right)$$

$$= \frac{1}{b-a} \left(\int_a^{2m-a} (b-x)\varrho(x)dx + \int_{2m-a}^b (b-x)\varrho(x)dx \right)$$

$$= \frac{1}{b-a} \int_a^b (b-x)\varrho(x)dx.$$

This accounts for the coefficient of f(a). Moreover,

$$\frac{2(m-a)}{b-a} \frac{\int_{2m-a}^{b} (b-x)\varrho(x)dx}{b-2m+a} + \frac{\int_{2m-a}^{b} (x-2m+a)\varrho(x)dx}{b-2m+a} \\
= \int_{2m-a}^{b} \frac{2(b-x)(m-a) + (x-2m+a)(b-a)}{(b-a)(b-2m+a)} \varrho(x)dx \\
= \int_{2m-a}^{b} \frac{x-a}{b-a} \varrho(x)dx,$$

while, with the lemma, again,

$$\frac{m-a}{b-a} \int_a^{2m-a} \varrho(x) dx = \int_a^{2m-a} \frac{m-a}{b-a} \varrho(x) dx = \int_a^{2m-a} \frac{x-a}{b-a} \varrho(x) dx.$$

Therefore, the coefficient of f(b) equals

$$\int_{a}^{2m-a} \frac{x-a}{b-a} \varrho(x) dx + \int_{2m-a}^{b} \frac{x-a}{b-a} \varrho(x) dx = \frac{1}{b-a} \int_{a}^{b} (x-a) \varrho(x) dx,$$
 as required. \square

References

[1] M. Bessenyei and Zs. Páles, Higher-order generalizations of Hadamard's inequality, *Publ. Math. Debrecen* **61** (2002), 623–643.

- [2] M. Bessenyei and Zs. Páles, Hadamard-type inequalities for generalized convex functions, Math. Inequal. Appl. 6, no. 3 (2003), 379–392.
- [3] P. CZINDER and Zs. Páles, Some comparison inequalities for Gini and Stolarsky means, *Math. Inequal. Appl.*, (submitted).
- [4] S. S. DRAGOMIR and C. E. M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, Victoria University, 2000, http://rgmia.vu.edu.au/monographs/hermite_hadamard.html.
- [5] A. M. Fink, A best possible Hadamard inequality, Math. Inequal. Appl. 1, no. 2, (1998), 223–230.
- [6] C. Gini, Di una formula compressiva delle medie, Metron 13 (1938), 3-22.
- [7] J. HADAMARD, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171–215.
- [8] D. S. MITRINOVIĆ and I. B. LACKOVIĆ, Hermite and convexity, *Aequationes Math.* **28** (1985), 229–232.
- [9] C. NICULESCU and L.-E. PERSSON, Old and new on the Hermite–Hadamard inequality, *Real Anal. Exchange* **29**, no. 2 (2003/2004), 663–685.
- [10] K. B. Stolarsky, Generalizations of the logarithmic mean, Math. Mag. 48 (1975), 87–92.

PÉTER CZINDER BERZE NAGY JÁNOS GRAMMAR SCHOOL H-3200 GYÖNGYÖS, KOSSUTH STR. 33 HUNGARY

E-mail: pczinder@berze-nagy.sulinet.hu

(Received November 15, 2004; revised February 1, 2005)