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A weighted Hermite-Hadamard-type inequality
for convex-concave symmetric functions

By PETER CZINDER (Gyéngyés)

Abstract. In this paper we give a weighted version of the Hermite—-Hada-
mard inequality
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An extension of that result, applied for convex-concave symmetric functions, will
also be provided.
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1. Introduction

The so-called Hermite-Hadamard inequality [7] is one of the most
investigated classical inequalities concerning convex functions. It reads as
follows:

Theorem 1. Let J C R be an interval and f : J — R be a concave
(convex) function. Then, for all subinterval [a,b] C J with non-empty

interior,
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holds.

An account on the history of this inequality can be found in [8].
Surveys on various generalizations and developments can be found in [9]
and [4]. The description of best possible inequalities of Hadamard-Hermite
type are due to FINK [5]. A generalization to higher-order convex func-
tion can be found in [1], while [2] offers a generalization for functions that
are Beckenbach-convex with respect to a two dimensional linear space of
continuous functions.

In this form (1) is valid only for functions that are purely convex or
concave on their whole domain. In [3] we proved that under appropriate
conditions the same inequalities could be stated for a much larger family
of functions. The results, obtained for that situation, could be applied for
the investigation of the comparison problem for Gini and Stolarsky means.

In Section 2 we will use another method to extend Theorem 1, replac-
ing the arithmetic mean by more general means, applying weight functions.
For a further generalization of Theorem 1, in Section 3 we will introduce the
concept of odd and even functions with respect to a point. Finally, in Sec-
tion 4 we will combine these two directions of the extensions and present a
weighted version of the Hermite-Hadamard inequality for convex-concave
symmetric functions.

2. The weighted Hermite—-Hadamard inequality
for convex or concave functions

Given a positive, locally integrable weight function ¢ : J — R, define
the g-mean of a and b by

ff xo(r)dx
My(a,b) == “p——"—r.
fa o(z)dz
Then the following statement holds:

Theorem 2. Let J C R be an interval, f : J — R be a concave
(convex) function and ¢ : J — R a positive, locally integrable weight
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function. Then, for all subintervals [a,b] C J with non-empty interior,

PROOF. Suppose that f is concave over J and let e(x) := cx + d be a
support line of the function f at the point My(a,b). Let

f(b) — f(a) bf(a) — af(b)

9(w) = b—a T b—a

be the chord of f from (a, f(a)) to (b, f(b)). Then, applying the concavity,
e(x) = f(z) 2 g(x) (z€7),

that is,

Joe@et)de [} f@)ole)dr [} g(x)ow)dr
[ro@dr  — [Po(w)dz [P o(x)da

After a calculation, we obtain

b b
Jye@el@)dr _ J (e +djelw)dr 0 (o))

ff o(x)dx f; o(x)dx

and

Jy 9@o(x)dz  f(b) — f(a)

_ o b(@) — af )
Potwdr  boa HeOTTR
_ b— My(a,b) My(a,b) —a

o\ E e
o8 f(a) + 2L p ),
which proves (2).
For convex functions the proof is similar. (|

(It can immediately be seen that Theorem 1 is a special case of The-
orem 2 with o(z) =1.)
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Remark. The primary motivation for the various extension of the
Hermite-Hadamard inequality, such as those obtained by ZsoLT PALES
and the author [3] is to provide inequalities for the Gini and Stolarsky
means. (For details about these two parameter, two variable homogeneous
means see [6] and [10].)

Theorem 2 can also be applied, for instance, to give an upper and
lower bound for the Stolarsky mean S, (§,n). For, suppose that f(x) =
2775, o(z) := 2571 Then My(&,m) = Sss41(£,n), while (fgf(a:)g(x)dx)/
(fg7 o(x)dx) = (Sys(&,m))"~*. In this way we can give bounds for the
general Stolarsky mean in terms of a more special instance of it, namely,
by the one where the difference of the parameters equals 1

3. Odd and even functions with respect to a point

In the following we will encounter functions showing two kinds of sym-
metry.

Definition. Let J be a real interval, m € J. We say that the function
f:J — Ris odd with respect to the point m, if t — f(m +t) — f(m) is
odd, that is,

fm=t)+ fm+t)=2f(m) (el -m)Nn(im=7J), (4

while it is said to be even with respect to the point m, if t — f(m +1t) is
even, that is,

flm—t)=f(m+1) (te(@—=m)n(m-—7). (5)

In a recent paper [3] we proved that (1) is valid for a function f odd
with respect to a point m € J under appropriate convexity conditions:

Theorem 3. Let f:J — R be odd with respect to an element m € J
and let [a,b] be a subinterval of J with non-empty interior. If f is convex
over the interval 3 N (—oo, m] and concave over I N [m, c0), then

f<a;b> % _a/f > f()2f() “
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For the integral of the product of odd and even functions with respect
to the midpoint of the same interval, the following statement is true:

Lemma. Let g, h : [, 3] — R be integrable functions over [a, (3], g be
odd and h be even with respect to the point (o + 3)/2. Then

/j g(x)h(x)dx =g <a ; ﬁ) /aﬂ h(z)dx.

PROOF. Let m denote the midpoint of [«, 5]. By splitting the integral
at the point m and applying (4) and (5) for g and h, respectively, we get
that
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4. An extension of Theorem 2

Theorem 4. Let the function f : J — R be odd with respect to the
element m € J, o : J — R a positive, integrable weight function, which is
even with respect to m, and let [a,b] be a subinterval of J with non-empty
interior. Then the following statement is valid:

If f is convex in the interval J N (—oo, m] and concave in J N [m,o0),

then
>
P02y i / fa )
> b—Mg(a,b) My(a,b) —a
o) e )+ T ),
a+b
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PROOF. We may restrict ourselves to the proof of (i).

First we shall prove the left hand side inequality.

Suppose that m < (a+b)/2, f is convex over the interval IN (—oo, m|
and concave over JN[m,c0). We may assume that m > a. Then, applying
the lemma,

J2 T wp(@)de + [y, :cg(:c)d:c>
M,(a,b)) =
P = ( ff o(x)dx
m ffm_a o(z)dx + bem_a xo(x)dx
fbg (x)dz
f (W f2m a @ dl‘ fgm axQ( )dl‘)
be f Q f2m—a

Since (f?m ,ro(z)dx)/ (me , o(@)dx) = My(2m — a,b) — that is, a mean
of 2m — a and b, we get that

f (%)

b> M,(2m —a,b) >2m —a >m.

Therefore, both m and M,(2m —a,b) belong to the concavity domain of f.
Applying the concavity of f, we conclude that the last expression in (x) is
greater than or equal to

f2mll() m f2ma
-frz———-f()+ fQ

2m—a
_ f(m) fa f2m a f(MQ(2m—a,b)).

I olx) f@

Using the lemma, we replace the numerator of the first expression on
the right by fjm_a f(z)o(x)dxr. Summarizing the above calculations, we
obtain

-fﬂ%@m—aﬁD

fazm_af 1: f2m o
fo f@

f(My(a,b)) = = (My(2m — a,h). (8)
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Since f is concave over the interval [2m — a, b], we can apply the left hand
side inequality of Theorem 2 and get that

1 b

Fem - a0) = [ j@)ela)ds
f2m—a Q(IIZ)d.’L’ 2m—

Substituting this in (8) we obtain that

J2m e f (@) o(x)da
f: o(x)dx
fzbm_a o(z)dx ' 1 b
: [Po(@)dz [} o(x)dx /2  f@)o(z)dx
_ [ i@eta)is
fab o(x)dx

that is, the proof of the first inequality is complete.

[ (My(a, b)) >

I

To prove the second inequality in (7), it is enough to prove that

fab(b —xz)o(z)dz

’ bl’—a x)dx
[ 1ieyas > O DA ) | Sl ke

b—a

f@). (9

We need the following simple statements:

b—m m—a

(A) fm) = 7= (@) + T2 1),

b
B) fom—a)> 20 ) 20 a)

f(b).

For (A), observe that f is concave over the interval [m, b], containing the
point 2m — a. Thus,

b—2m+a m—a

fem=a) > Flm) + 225 (). (10)

b—m

Substituting 2f(m) — f(a) for f(2m — a) in (10), we obtain — after some
transformations — (A).

Moreover, if we put in (10) (f(a) + f(2m — a))/2 in place of f(m),
after rearranging the inequality, we get (B).
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After these preparations, we are ready to prove (9). First, applying
the lemma,

/ab f(x)o(x)dx = /jm_a f(z)o(z)dx + /2b F(2)o(z)dz

m—a

2m—a b
= f(m)/ o(xz)dx +/2 f(z)o(x)dz.

m—a

In the first term on the right hand side, we may apply (A) for f(m). We
can apply the right hand side inequality of Theorem 2 to the second term
of the last expression since f is concave in the interval [2m — a, b]:

b b b—x)o(x)dx
/2 F@)o(adn > Lmmab DD

b—2m+a

f;m_a(:z: —2m + a)o(x)dx

+ b—2m+a

Applying (A) and (B) to f(m) and f(2m — a), we get that

[ 1wz (5w + 5=t w) [ ety

b b—x)o(x)dx —2m+a m—a
+me_a( )o(x) <b 2m + f(a)+2(b—a)f(b)>

b—2m+a b—a
o (@ —2m+ a)o(x)dx
" b—2m+a 1)
_ 2m—a b b— d
= (B2 [ oy 4 Janmall =20 x] o

+

m—a [?m0 2(m —a) f;m_a(b—x)g(x)dx
b—a/a olw)dz + = b—2m+a

fgbm_a(:c —2m + a)o(x)dz
_l’_
b—2m-+a

o

Finally, we will check that the coefficients of f(a) and f(b) are the
desired ones.



A weighted Hermite—-Hadamard-type inequality 223

First, from the lemma we get that ffm_a(m —z)o(x)dx = 0. Thus,

o [ i St
=7 i - </jm—a(b —m)p(x)dxr + /2;_a(b — :c)g(a:)da:)
=7 i - </jm_a(b —x)o(x)dx + 21_@(6 - :c)g(a:)da:)
- ! - /ab(b — 2)o(x)dx.

This accounts for the coefficient of f(a). Moreover,

2(m — a) Jom_o(b = 2)o(@)dx [y (& —2m+a)o(x)da
+
b—a b—2m+a b—2m+a

_ b 2b—z)(m—a)+ (x—2m +a)(b—a)

B Lm—a (b — a)(b —2m + a) Q(.T)d.%‘
b r—a

N ~/2m—a b—a Q(IL’)d{L’,

while, with the lemma, again,

2m—a 2m—a 2m—a
m—a m—a T —a
— /a o(x)dx = /a — o(x)dx = /a — o(x)dx.

Therefore, the coefficient of f(b) equals

/jm_a T ) de + /b Z % o(x)da = - ! /ab(w — a)o(x)da,

b—a om—aq D — @

as required. O
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