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Index form equations in biquadratic fields:
the p-adic case

By ISTVÁN GAÁL (Debrecen) and GÁBOR NYUL (Debrecen)

Abstract. We give an efficient algorithm for determining elements of index
divisible by fixed primes only in biquadratic number fields. In other words, we
solve the p-adic version of the index form equation in such fields.

1. Introduction

Let m,n be distinct square-free integers, l = gcd(m,n), and define
m1, n1 by m = lm1, n = ln1. In this case the quartic field K = Q(

√
m,

√
n )

has Galois group V4 (the Klein four group). Several aspects of the very
nice special properties and structure of these fields are described in the
literature (for a summary see I. Gaál [3]).

We recall that if {1, ω2, ω3, ω4} is an integral basis of a biquadratic field
K with ring of integers ZK and discriminant DK , then the corresponding
index form is given by

I(x2, x3, x4)

=
1√|DK |

∏
1≤i<j≤4
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2

)
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)
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)
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and the elements α ∈ ZK of given index I(α) = (ZK : Z[α]) = m are of
the form α = x1 + x2ω2 + x3ω3 + x4ω4 where x1 ∈ Z is arbitrary and
x2, x3, x4 ∈ Z are solutions of the index form equation I(x2, x3, x4) = ±m

(cf. [3]).
T. Nakahara [10] showed that infinitely many of these fields are

monogene but the minimal index of such fields can be arbitrary large.
I. Gaál, A. Pethő and M. Pohst [5] characterized the field index of
biquadratic fields. M. N. Gras and F. Tanoe [7] gave necessary and
sufficient conditions for the monogenity of these fields. In the totally real
case I. Gaál, A. Pethő and M. Pohst [6] gave an efficient algorithm
for determining all generators of power integral bases of biquadratic fields.
G. Nyul [11] described all monogene totally complex biquadratic fields
and gave explicitely all generators of power integral bases in them.

The purpose of the present paper is to solve the p-adic analogue of the
index form equation in biquadratic fields. Let p1, . . . , ps be given distinct
primes. Consider the solutions x2, x3, x4 ∈ Z, gcd(x2, x3, x4) = 1, 0 ≤
t1, . . . , ts ∈ Z of the equation

I(x2, x3, x4) = ±pt1
1 · · · pts

s . (1)

By a general result of K. Győry [8] this equation has only finitely many
solutions and effective upper bounds (far too large for practical applica-
tions) can be given for the solutions.

The solutions give all elements of index divisible by p1, . . . , ps only.
Note that except from an example solved by N. P. Smart [12] (in a very
simple totally complex cyclic quartic field, using two primes) no p-adic
index form equations have been solved so far.

2. Preliminaries

The integral basis and discriminant of K was described by K. S.

Williams [15] according to the following five cases. We add also the
corresponding index forms:

Case 1. m ≡ 1 (mod 4), n ≡ 1 (mod 4), m1 ≡ 1 (mod 4), n1 ≡ 1 (mod 4)
integral basis: {1, (1 +

√
m )/2, (1 +

√
n )/2, (1 +

√
m +

√
n +

√
m1n1 )/4},

discriminant: DK = (lm1n1)2
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I(x2, x3, x4) =
(
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Case 2. m ≡ 1 (mod 4), n ≡ 1 (mod 4), m1 ≡ 3 (mod 4), n1 ≡ 3 (mod 4)
integral basis: {1, (1 +

√
m )/2, (1 +

√
n )/2, (1−√

m +
√

n +
√

m1n1 )/4},
discriminant: DK = (lm1n1)2

I(x2, x3, x4) =
(
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Case 3. m ≡ 1 (mod 4), n ≡ 2 (mod 4)
integral basis: {1, (1 +

√
m)/2,

√
n, (

√
n +

√
m1n1 )/2}, discriminant:

DK = (4lm1n1)2

I(x2, x3, x4) =
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Case 4. m ≡ 2 (mod 4), n ≡ 3 (mod 4)
integral basis: {1,√m,

√
n, (

√
m +

√
m1n1 )/2}, discriminant:

DK = (8lm1n1)2

I(x2, x3, x4) =
(

l

2
(2x2 + x4)2 − n1

2
x2

4

)

×
(
2lx2

3 −
m1

2
x2

4

)(
2n1x

2
3 −

m1

2
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.

Case 5. m ≡ 3 (mod 4), n ≡ 3 (mod 4)
integral basis: {1,√m, (

√
m +

√
n )/2, (1 +

√
m1n1 )/2}, discriminant:

DK = (4lm1n1)2

I(x2, x3, x4)=
(
l(2x2 + x3)2−n1x
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Note that for integer x2, x3, x4 all factors attain integer values.
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In order to be able to deal with all cases in a unique way introduce
integer parameters u1, u2, u3, a, b, c, d, f , g, t and new variables x, y, z

according to the following table:

Case u1 u2 u3 a b c d f g t x y z

1. m1 n1 l n1 4 m1 4 n1 4 1 x4 2x2+x4 2x3+ x4

2. m1 n1 l n1 4 m1 4 n1 4 1 x4 2x2−x4 2x3+ x4

3. m1 4n1 l n1 1 m1 4 n1 1 1 x4 x2 2x3+ x4

4. m1 n1 l n1 2 m1/2 1 2n1 1 2 x4 2x2+x4 x3

5. m1 n1 4l n1 1 m1 1 n1 4 1 x4 2x2+x3 x3

Note that m1 is even in Case 4.
Denote by Fi = Fi(x2, x3, x4) the absolute value of the i-th factor of

the index form. It is easily seen by direct calculations (see [6]) that

Lemma 1. The following relation holds:

±u1F1 ± u2F2 = ±u3F3. (2)

For the quadratic factors F1, F2, F3 of the index form we have

(ax)2 − ny2 = ±abF1

(cx)2 − mz2 = ±cdF2

(fz)2 − m1n1y
2 = ±fgF3.

(3)

These equations split into linear factors in the quadratic fields M1 =
Q(

√
n ), M2 = Q(

√
m ), M3 = Q(

√
m1n1 ), respectively, which are the

three quadratic subfields of K. The linear factors of the left hand sides of
(3) are connected according to the identity

tc(ax −√
ny) − ta(cx −√

mz) =
√

m(fz −√
m1n1y). (4)

3. Representation

In the following we assume that x2, x3, x4 ∈ Z, gcd(x2, x3, x4) = 1,
0 ≤ t1, . . . , ts ∈ Z is an arbitrary but fixed solution of equation (1), hence
Fi(x2, x3, x4) ∈ Z for i = 1, 2, 3. Now I(x2, x3, x4) = ±F1F2F3 implies
that F1, F2, F3 is a solution of the S-unit equation over Z

± u1F1 ± u2F2 = ±u3F3

Fi = pαi1
1 · · · pαis

s (i = 1, 2, 3).
(5)
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We are going to find the primitive solutions f1, f2, f3 ∈ N of (5), that is
those with gcd(f1, f2, f3) = 1. Then all solutions of (5) are of the form

Fi = fi · pa1
1 · · · pas

s (i = 1, 2, 3) (6)

with arbitrary 0 ≤ a1, . . . , as ∈ Z. Set

fi = pai1
1 · · · pais

s (1 ≤ i ≤ 3). (7)

Further, for j = 1, . . . , s let

a′ij = aij + ordpj(ui) (i = 1, 2, 3). (8)

Then ±u1f1 ± u2f2 = ±u3f3 can be written in the form

±u′
1p

a′
11

1 · · · pa′
1s

s ± u′
2p

a′
21

1 · · · pa′
2s

s = ±u′
3p

a′
31

1 · · · pa′
3s

s (9)

where u′
1, u′

2, u′
3 are relatively prime to p1, . . . , ps. In this equation we again

simplify with the possible common p1, . . . , ps factors coming from u1, u2,
u3 and assume that at most one of a′1j , a′2j , a′3j is positive (1 ≤ j ≤ s).
Having determined a′ij we have to multiply with the same factors again to
get the original a′ij, then by (8) we obtain aij and (7) gives (f1, f2, f3).

4. Sketch of the algorithm

In this section we briefly sketch the main steps of our procedure to
make it easier to follow the arguments below.

Step I. Solving the S-unit equation (9) over Z. This is done in Sec-
tion 5. The procedure involves application of p-adic linear form estimates
giving an upper bound of magnitude 1018 − 1028 for the exponents in our
examples. We use a reduction procedure to reduce these bounds to about
5–23 in the examples. Then we can calculate the values of a′ij explicitely
using direct testing.

Step II. The common factor of F1, F2, F3 is pa1
1 · · · pas

s , cf. (6). In
Section 6 we show that in fact in most of the cases the exponents a1, . . . , as

attain only very small values. The exceptional case occurs only when there
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is a prime pi which splits into the product of two distinct prime ideals in
all the three quadratic subfields of K.

Step III. If pi splits into the product of two distinct prime ideals in
all the three quadratic subfields of K, then in order to determine the corre-
sponding ai we have to solve an S-unit equation over K (see Example 2).
This is done in Section 7. This procedure involves p-adic and complex
linear form estimates (giving an upper bound 1032 for the unknown expo-
nents) as well as repeated application of reduction procedures both in the
p-adic and complex cases (which are used to reduce the bound to 28 in
Example 2).

Step IV. From the explicit values of F1, F2, F3 we determine the
values of x, y, z in (3) and from those the values of x2, x3, x4 either by
using the procedure of [6] (totally real case) or [11] (totally complex case).

5. Solving the S-unit equation over Z

5.1. P -adic linear form estimates.
Consider equation (9). For any j the exponent a′1j is either zero or

0 < a′1j = ordpj

(
±u′

2p
a′
21

1 · · · pa′
2s

s ± u′
3p

a′
31

1 · · · pa′
3s

s

)
= ordpj

(
1 ± u′

2

u′
3

p
a′
21−a′

31
1 · · · pa′

2s−a′
3s

s

)
(10)

since the right hand side contains no pj factor.
Using the estimates of K. Yu [16] (see also [13]) we obtain

a′1j = ordpj

(
logpj

u′
2

u′
3

+ (a′21 − a′31) logpj
p1 + · · · + (a′2s − a′3s) logpj

ps

)

< C1 log H (11)

where H = max a′ij . Observe that again the j-th term is missing and only
one of a′2k, a

′
3k can be positive. A similar upper bound can be derived for

a′2j , a′3j by interchanging their roles for j = 1, . . . , s, whence H < C1 log H,
which implies an upper bound for H.

To simplify the calculations, if u′
1u

′
2u

′
3 have only a few prime factors,

then we can extend the set of primes with these primes (see Example 2).
Then by symmetry we have less cases to consider.
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5.2. P -adic reduction.
The reduction procedure is based on B. M. M. de Weger’s ideas [14].
A variant of it was formulated by I. Gaál, I. Járási and F. Luca [4]
which we can use here, as well. Lemma 4.1 of [4] can be used to (11) to
reduce the bound for H in several steps (see the Examples).

6. GCD calculations

Using a primitive solution f1, f2, f3 of (5) by (6) we can write (3) in
the form

(ax)2 − ny2 = ±s1 P

(cx)2 − mz2 = ±s2 P

(fz)2 − m1n1y
2 = ±s3 P

(12)

with s1 = abf1, s2 = cdf2, s3 = fgf3 and P = pa1
1 · · · pas

s . By our
assumption gcd(x2, x3, x4) = 1 and by the definition of x, y, z we get
gcd(x, y, z) = 1 or 2. In the following we assume 2 ∈ {p1, . . . , ps} (we may
extend the set of primes otherwise).

The two lemmas below play an important role in our calculations.
Their proofs can be given by elementary means, just using divisibility
arguments. For this reason we only detail the proof of one characteristic
case.

Lemma 2. (i) If p /∈ {p1, . . . , ps} is a prime then p � gcd(x, y), p �

gcd(x, z), p � gcd(y, z).

(ii) if pi∈{p1, . . . , ps} \ {2} then (iii) if pi= 2 then

ordpi(gcd(x, y))≤ ordpi(s1)/2 ordpi(gcd(x, y))≤ (ord2(s1)+ 3)/2
ordpi(gcd(x, z))≤ (ordpi(s2)+ 1)/2 ordpi(gcd(x, z))≤ (ord2(s2)+ 3)/2
ordpi(gcd(y, z))≤ ordpi(s3)/2 ordpi(gcd(y, z))≤ (ord2(s3)+ 2)/2

Proof of Lemma 2. As an example we prove the first statement of
(ii). Let α be a positive exponent with pα

i | x, y. By gcd(x, y, z) ≤ 2 and
pi �= 2 we obtain pi � z. Then p2α

i | s1P follows from the first equation
of (12).
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Indirectly suppose 2α > ordpi(s1). Then pi | P , hence by the second
and third equations of (12) pi | mz2 and pi | f2z2. By pi � z it is easy to
see that pi | m and pi | f . Further, pi | f, pi �= 2 implies pi | n1, hence
from gcd(m1, n1) = 1 we get pi � m1. But pi | m implies pi | l whence
p2

i | n1l = n. This contradicts to n being square-free. �

Let x, y, z ∈ Z be an arbitrary but fixed solution of (12). Then for
i = 1, 2, 3 we set

i αi βi ϕi1 ϕi2 D1i D2i

1 a
√

n ax −√
ny ax +

√
ny 0 3

2 c
√

m cx −√
mz cx +

√
mz 1 3

3 f
√

m1n1 fz −√
m1n1y fz +

√
m1n1y 0 2

We recall that we have M1= Q(
√

n ), M2=Q(
√

m ), M3= Q(
√

m1n1 ).
There are three possible ways for a rational prime p to split in a quadratic
field. According to these possibilities we have the following statement.

Lemma 3.

(i) Let pj ∈ {p1, . . . , ps} \ {2}. If (pj) is a prime ideal in Mi (i = 1, 2, 3),
then aj ≤ 2max(ordpj(2αi), ordpj(2βi)) + D1i.

(ii) Let pj = 2. If (2) is a prime ideal in Mi (i = 1, 2, 3), then

aj ≤ 2max(ord2(2αi), ord2(2βi)) + D2i.

(iii) Let pj ∈ {p1, . . . , ps} \ {2}. If (pj) = ℘2 for some prime ideal ℘ in Mi,

then aj ≤ max(ord℘(2αi), ord℘(2βi)) + D1i.

(iv) Let pj = 2. If (2) = ℘2 for some prime ideal ℘ in Mi, then

aj ≤ max(ord℘(2αi), ord℘(2βi)) + D2i.

(v) Let pj ∈ {p1, . . . , ps} \ {2}. If (pj) = ℘ · ℘ for some prime ideal

℘ in Mi, then, assuming ℘k | (ϕi1) and ℘k | (ϕi1), we have k ≤
max(ordpj(2αi), ordpj(2βi)) + (ordpj(si) + D1i)/2 where for any σ ∈
ZMi by ordpj(σ) we mean min(ord℘(σ), ord℘(σ)).

(vi) Let pj = 2. If in Mi we have (2) = ℘ · ℘ for some prime ideal ℘, then

assuming ℘k | (ϕi1) and ℘k | (ϕi1) we have k ≤ max(ord2(2αi),
ord2(2βi)) + (ord2(si) + D2i)/2 where for any σ ∈ ZMi by ord2(σ) we

mean min(ord℘(σ), ord℘(σ)).
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Proof of Lemma 3. As an example we prove (i). Assume that (pj)
is a prime ideal in M1 and set aj = aj + ordpj(s1). The first equation of
(12) implies

p
aj

j ‖ (ax)2 − ny2 = ϕ11 · ϕ12.

Since ϕ11 and ϕ12 are conjugates over M1, hence p
bj

j |ϕ11 if and only if

p
bj

j |ϕ12 for a non-negative bj . If bj is the greatest possible value with this

property, then aj = 2bj , p
bj

j | ϕ11 + ϕ12 = 2ax and p
bj

j | ϕ12 − ϕ11 = 2
√

ny

also hold. These imply bj ≤ ordpj (2a) + ordpj (x) and bj ≤ ordpj (2
√

n ) +
ordpj(y). By Lemma 2 min(ordpj (x), ordpj(y)) ≤ ordpj(s1)/2. Com-
bining these inequalities we obtain bj ≤ max(ordpj(2a), ordpj(2

√
n )) +

ordpj(s1)/2, which proves the proposition since aj = 2bj . �

Using the above lemma if pj ∈ {p1, . . . , ps} remains prime or is the
square of a prime ideal in one of the quadratic subfields of K, then we can
derive a small upper bound for aj . If this can be done for all primes on
the right hand side of (1), then there are altogether just a few possibilities
for F1, F2, F3. In such cases (3) can be solved in the totally real case by
using the method of I. Gaál, A. Pethő and M. Pohst [6] by solving
systems of simultaneous Pellian equations (see Example 1), or in the totally
complex case by the help of the method of G. Nyul [11] using that one
of the quadratic factors of the index form is definite.

On the other hand, if there are primes among p1, . . . , ps which split
into the product of two distinct prime ideals in all quadratic subfields of
K, then we have to proceed by solving an S-unit equation over the quartic
field K.

7. S-unit equation over the quartic field

In this section we apply the identity (4). Using standard arguments
(see e.g. K. Győry [8]) we derive from (4) an S-unit equation over the
quartic field K. Note that there are effective upper bounds for the solutions
of S-unit equations (see e.g. K. Győry [9]) but direct calculations utilizing
the properties of our specific S-unit equation give much sharper bounds.
This also prepares the application of the reduction procedure.
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We detail the totally real case only, which is the most interesting
one. In the totally complex case we have to simplify some formulas in a
straightforward way.

7.1. Constructing the S-unit equation.
For our purpose we first factorize ϕi1 in the corresponding quadratic sub-
field Mi. For i = 1, 2, 3, let Ii1, Ii2, Ii3 be pairwise disjoint subsets of
{1, 2, . . . , s} with {1, 2, . . . , s} = Ii1 ∪ Ii2 ∪ Ii3 so that in Mi

I. (pj) is prime for j ∈ Ii1

II. (pj) = ℘2
ji for j ∈ Ii2

III. (pj) = ℘ji1 · ℘ji2 for j ∈ Ii3

with suitable prime ideals ℘ji, ℘ji1, ℘ji2 of Mi. We have

ϕi1 · ϕi2 = ±si · pa1
1 · · · pas

s (i = 1, 2, 3).

Note that there are small upper bounds for aj for j ∈ ⋃3
i=1(Ii1 ∪

Ii2), hence the corresponding factors can be dealt with as constants. This
reduces the number of variables in the S-unit equation considerably. If the
bound for aj is not very small, then it can be dealt with as a variable in a
straightforward way as well, if the total number of variables in the S-unit
equation does not become too large and this way we can spare to consider a
couple of cases. Sometimes these variables cancel from the S-unit equation
(see the Example 2).

Denote by hi the class number of Mi and let εi be a fundamental
unit of Mi (i = 1, 2, 3). Set h = lcm(h1, h2, h3). For j ∈ Ii3 there are
distinct (coprime, conjugated) prime ideals ℘ji1 and ℘ji2 in Mi such that
(pj) = ℘ji1 · ℘ji2. There are integral elements πji1 and πji2 in Mi with
℘h

ji1 = (πji1), ℘h
ji2 = (πji2).

Let I = I13 ∩ I23 ∩ I33. To simplify our notation we use the represen-
tation

ϕi1 = ±δi · εei
i ·
∏
j∈I

π
dj

jikji

where δi is an integer in Mi, whose few possible values can be determined
easily, kji = 1 or 2 and dj = [aj/h]. By calculating the values of dj we can
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determine aj for j ∈ I. Using standard arguments by (4) we have

±ρ1ε
e1
1 ε−e3

3

∏
j∈I

(
πj1kj1

πj3kj3

)dj

± ρ2ε
e2
2 ε−e3

3

∏
j∈I

(
πj2kj2

πj3kj3

)dj

= 1, (13)

where ρ1 = (tc · δ1)/(
√

m · δ3), ρ2 = (ta · δ2)/(
√

m · δ3).
Let E = max(|e1|, |e2|, |e3|), E1 = max(|e1|, |e3|), E2 = max(|e2|, |e3|),

D = max
j∈I

dj , H = max(E,D), H1 = max(E1,D), and H2 = max(E2,D).

Using the arguments of [9] we deduce now from (13) inequalities in ei and
dj to which p-adic and complex linear form estimates can be applied.

7.2. P -adic upper bounds.
We are going to derive an upper bound for D. Fix j ∈ I. Observe that for
i = 1, 2, 3, k = 1, 2 we have ordpj(πjik) = 0 or h, more exactly, it is h for
k = 1 and 0 for k = 2, or conversely. Moreover, these elements πji1 and
πji2 can be chosen to be conjugated of each other over Mi. This means,
that for any fixed kj1 and kj3 in (13) there is a conjugation γ 	→ γ∗ (γ ∈ K)
of K such that ordpj (π

∗
j1kj1

) = h and ordpj(π
∗
j3kj3

) = 0. We apply such a
suitable conjugation to equation (13) but omit the (.)∗ for simplifying the
notation. Remark that the εi are pj-adic units as well as the other πj′ik for
j′ �= j. Then the pj-adic value of the first term of (13) is h · dj + ordpj(ρ1)
which is positive except if dj is very small which case can be considered
separately. We have

0 < h · dj + ordpj(ρ1)

= ordpj

(
± 1 ± ρ2 εe2

2 ε−e3
3

∏
j∈I

(
πj2kj2

πj3kj3

)dj
)

.
(14)

Appling the estimates of K. Yu [16] (see also [13]) we confer h · dj +
ordpj(ρ1) < C ′

2 log H2 with a huge constant C ′
2. By performing the same

arguments for each j ∈ I, this implies

D < C2 log H2. (15)

Similarly, we obtain
D < C3 log H1. (16)
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7.3. Upper bounds for the exponents of the units.
Using standard arguments we obtain, that there is a conjugate η∗1 of η1 =
εe1
1 ε−e3

3 such that |η∗1 | < exp(−c3 E1). Similarly, there is a conjugate η∗∗2

of η2 = εe2
2 ε−e3

3 such that |η∗∗2 | < exp(−c3 E2). We have∣∣∣∣∣∣ρ∗1 η∗1
∏
j∈I

(
π∗

j1kj1

π∗
j3kj3

)dj

∣∣∣∣∣∣ < c4 exp(−c3 E1) cD
5 , (17)

and similarly, ∣∣∣∣∣∣ρ∗∗2 η∗∗2

∏
j∈I

(
π∗∗

j2kj2

π∗∗
j3kj3

)dj

∣∣∣∣∣∣ < c4 exp(−c3 E2) cD
5 , (18)

where the constant c5 is straightforward to calculate. Let c6 = c3/(2 log c5).
If we choose c5 large enough, we have 0 < c6 < 1.

Now if c6E1 ≤ D then by (16) we have H1 ≤ C3
c6

log H. Similarly, if
c6E2 ≤ D, by (15) we obtain H2 < C2

c6
log H.

If D < c6E1, then H1 = E1. Using equation (13) by (18) we have∣∣∣∣∣∣log |ρ∗2| + e2 log |ε∗2| − e3 log |ε∗3| +
∑
j∈I

dj log

∣∣∣∣∣
π∗

j2kj2

π∗
j3kj3

∣∣∣∣∣
∣∣∣∣∣∣

< 2c4 exp
(
−c3

2
H1

)
.

(19)

Applying the lower bounds of Baker and Wüstholz [2] (see also [13]) to
the linear forms in the logarithms of algebraic numbers in (19) we obtain
an inequality of type H1 < 2

c3
(log(2c4) + C3 log H).

Similarly, if D < c6E2 then using (18) and∣∣∣∣∣∣log |ρ∗∗1 | + e1 log |ε∗∗1 | − e3 log |ε∗∗3 | +
∑
j∈I

dj log

∣∣∣∣∣
π∗∗

j1kj1

π∗∗
j3kj3

∣∣∣∣∣
∣∣∣∣∣∣

< 2c4 exp
(
−c3

2
H2

) (20)

we get an upper bound of the same type for H2.
Hence, combining all possible cases, we conclude H < C4 log H which

implies an upper bound for H. Denote this upper bound by H0.
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7.4. P -adic reduction.
In the present situation we have to perform both reduction concerning
d1, . . . , ds (p-adic reduction) and the exponents e1, e2, e3 of the units (usu-
ally called complex reduction) to diminish the upper bound H0 obtained
for H.

The p-adic reduction step is based on the equation (14) (where we had
to take a suitable conjugate of the equation). By (14) we have

h · dj + ordpj(ρ1)

= ordpj

(
logpj

ρ2 + e2 logpj
ε2 − e3 logpj

ε3 +
∑
j∈I

dj logpj

(
πj2kj2

πj3kj3

))
.

Using D ≤ H < H0 we apply Lemma 4.1 of [4] for each j ∈ I. Then we
achieve a reduced bound DR for D which is much smaller than H0 (in the
first reduction step it is about the logarithm of H0).

In the further reduction procedure we also have to consider all possible
cases we considered at deriving the initial upper bound for H. If c6E1 ≤ D

then similarly we obtain that DR/c6 is an upper bound for H1. Similarly,
if c6E2 ≤ D then DR/c6 is an upper bound for H2.

7.5. Reduction of the bound for the exponents of units.
Assume D < c6E1. We apply Lemma 2.2.2 of [3] to the linear form
inequality (19). Using the bound H2 < H0 we can derive an upper bound
H ′

1 for H1.
Similarly, if D < c6E2 then using H1 < H0 the application of the

lemma to (20) gives a bound H ′
2 for H2.

We put H ′
0 = max(H ′

1,H
′
2,DR/c6) in place of H0 and repeat the p-

adic reduction step and the reduction for the exponents of units as long as
the reduced bound is less than the original one.

8. Examples

8.1. Example 1. A totally real biquadratic field.
Consider the totally real field K = Q(

√
5,
√

2 ). We have m = m1 = 5,
n = n1 = 2, l = 1 and K belongs to Case 3. Denote by I(x2, x3, x4)
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the index form corresponding to the integral basis in Case 3, let p1 = 2,
p2 = 3, p3 = 5 in equation (1). Yu’s theorem gives the upper bound 1018

for the exponents in equation (5) which is then reduced by Lemma 4.1 of
[4] according to

step H < ‖b1‖ > µ new bound

I. 1018 0.2 · 1019 125 126
II. 126 252 17 18
III. 18, p = 2 36 11 12
III. 18, p = 3 36 8 8
III. 18, p = 5 36 5 5

We obtain 99 primitive solutions f1, f2, f3.
The quadratic subfields of K are M1 = Q(

√
2 ), M2 = Q(

√
5 ) and

M3 = Q(
√

10 ). The ideal (2) is a square in M1 and M3 and prime in M2.
The ideal (3) is prime in M1 and M2. The ideal (5) is prime in M1 and
square in M2 and M3. Hence by applying Lemma 3 we obtain a1 ≤ 5,
a2 = a3 = 0. The 99 · 6 = 594 possible triples F1, F2, F3 were considered
by the method of I. Gaál, A. Pethő and M. Pohst [6]. There are 140
solutions of (1).
(x2, x3, x4, 2t13t25t3) = (1,−1, 1, 31), (−1,−1, 1, 31), (1, 0, 1, 31), (−1, 0, 1, 31),
(7,−8, 5, 31), (7, 3, 5, 31), (−7, 3, 5, 31), (−7,−8, 5, 31), (−1, 1, 0, 31), (1, 1, 0, 31),
(2, 1, 1, 22), (0,−1, 1, 22), (0, 0, 1, 22), (−2,−2, 1, 22), (2,−2, 1, 22), (−2, 1, 1, 22),
(0,−2, 1, 2232), (2, 0, 1, 2232), (2,−1, 1, 2232), (−2, 0, 1, 2232), (−2,−1, 1, 2232),
(0, 1, 1, 2232), (4, 2, 3, 2232), (−4, 2, 3, 2232), (4,−5, 3, 2232), (−4,−5, 3, 2232),
(2, 1, 2, 2431), (−2, 1, 0, 2431), (2, 1, 0, 2431), (−2,−3, 2, 2431), (−2, 1, 2, 2431),
(2,−3, 2, 2431), (−3,−4, 2, 2233), (−3, 2, 2, 2233), (3,−4, 2, 2233), (3, 2, 2, 2233),
(1, 2, 0, 2233), (−1, 2, 0, 2233), (−3,−4, 3, 3252), (3, 1, 3, 3252), (−3, 1, 3, 3252),
(3,−4, 3, 3252), (3,−1, 2, 3252), (−3,−1, 2, 3252), (1, 2, 1, 3252), (1,−3, 1, 3252),
(−1, 2, 1, 3252), (−1,−3, 1, 3252), (41,−47, 29, 3252), (41, 18, 29, 3252),
(−41, 18, 29, 3252), (−41,−47, 29, 3252), (0, 1, 2, 28), (0,−3, 2, 28), (48, 21, 34, 28),
(−48,−55, 34, 28), (−48, 21, 34, 28), (48,−55, 34, 28), (−4,−4, 3, 223152),
(2, 2, 1, 223152), (−2,−3, 1, 223152), (−2, 2, 1, 223152), (2,−3, 1, 223152),
(4, 1, 3, 223152), (4,−4, 3, 223152), (−4, 1, 3, 223152), (−4, 1, 2, 2731), (4,−3, 2, 2731),
(4, 1, 2, 2731), (−4,−3, 2, 2731), (6, 3, 4, 2452), (−6, 3, 4, 2452), (−6,−7, 4, 2452),
(6,−7, 4, 2452), (−2,−1, 2, 2452), (2,−1, 2, 2452), (0, 2, 1, 2253), (0,−3, 1, 2253),
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(−10, 4,7, 2253), (10,−11,7, 2253), (10, 4, 7, 2253), (−10,−11, 7, 2253), (4, 3, 0, 2732),
(−4, 3, 0, 2732), (−4, 1, 0, 2732), (4, 1, 0, 2732), (−12,−13, 8, 2732), (−12, 5, 8, 2732),
(12,−13, 8, 2732), (12, 5, 8, 2732), (5, 4, 0, 243152), (−5, 4, 0, 243152),
(−8,−9, 6, 2832), (−8, 3, 6, 2832), (8,−9, 6, 2832), (8, 3, 6, 2832), (−4,−1, 2, 2752),
(4,−1, 2, 2752), (0,−4, 3, 223253), (0, 1, 3, 223253), (−4, 3, 4, 273152),
(−4,−7, 4, 273152), (4, 3, 4, 273152), (4,−7, 4, 273152), (6, 5, 0, 243253),
(−6, 5, 0, 243253), (−14, 5, 10, 243253), (−14,−15, 10, 243253), (14, 5, 10, 243253),
(14,−15, 10, 243253), (2, 5, 0, 243253), (−2, 5, 0, 243253), (8, 3, 4, 283152),
(8,−7, 4, 283152), (−8,−7, 4, 283152), (−8, 3, 4, 283152), (0, 3, 4, 2853),
(0,−7, 4, 2853), (4, 5, 0, 273153), (−4, 5, 0, 273153), (0,−13, 8, 21034), (0, 5, 8, 21034),
(24,−29, 18, 293252), (24, 11, 18, 293252), (−24,−29, 18, 293252),
(−24, 11, 18, 293252), (8,−3, 6, 293252), (−8,−3, 6, 293252), (8, 5, 0, 293153),
(−8, 5, 0, 293153), (−28, 15, 20, 273354), (28,−35, 20, 273354), (28, 15, 20, 273354),
(−28,−35, 20, 273354), (−16, 5, 0, 2113353), (16, 5, 0, 2113353), (0,−29, 18, 2103453),
(0, 11, 18, 2103453), (32, 25, 0, 2133155), (−32, 25, 0, 2133155).

8.2. Example 2. An example for solving the S-unit equation
over K.
Consider the field K = Q(

√
19,

√
7 ). This field belongs to Case 5 and we

have m = m1 = 19, n = n1 = 7, l = 1. Let p1 = 2, p2 = 3. According
to the remark at the end of Section 5.1 we extended this set of primes
with 7 and 19. Denote by I(x2, x3, x4) the index form corresponding to
the integral basis given in Case 5. Yu’s theorem implies an upper bound
1028 for the exponents in equation (5), which is then reduced according to
the following table.

Step H < ‖b1‖ > µ newbound

I. 1028 0.35 · 1029 300 301
II. 301 1043 34 35
III. 35 122 23 24
IV. 24, p = 2 84 22 23
IV. 24, p = 3 84 16 16

We obtain six primitive solutions f1, f2, f3.

In M1 = Q(
√

7 ) the class number is 1, 2 is the square of a prime ideal,
3 is the product of two distinct prime ideals. Similarly in M2 = Q(

√
19 ).

In M3 = Q(
√

133 ) the class number is 1, 2 is prime, 3 is the product of
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two distinct prime ideals. Using Lemma 3 we get a1 ≤ 5 for the exponent
of 2 in (6). Since a1 is even, this implies that only a1 = 0, 2, 4 is possible.
To determine a2 we have to solve an S-unit equation over the quartic field.
By using the p-adic linear form estimates we get a2 < 0.65 · 1028 log H1,
a2 < 0.65 · 1028 log H2. If a2 < 0.807Ei, the linear form estimates for
the exponents of units (application of the estimates of Baker–Wüstholz)
imply H < 1032. Otherwise, if a2 ≥ 0.807Ei then H < 1030. Hence we
conclude H < 1032. Using this bound we applied the p-adic reduction
and reduction for the exponents of units (application of Lemma 2.2.2 of
[3]). The following table summarizes the reduction procedure showing
characteristic values that we mostly had in the several possible cases. In
the table “p-adic µ” and “Digits” refers to the accuracy used by the p-adic
reduction and the application of Lemma 2.2.2 of [3], respectively.

Step H < p−adic µ complex Digits new bound

I. 1032 400 200 445
II. 445 32 50 36
III. 36 25 30 28

Finally we got a2 ≤ 28, e1, e2, e3 ∈ [−28, 28] which bounds are valid in
all cases. We also have a1 = 0, 2, 4. We substituted these possible ex-
ponents into the corresponding representation of ϕi1 (i = 1, 2, 3). We
calculated the corresponding x, y, z, then x2, x3, x4 and checked whether
gcd(x2, x3, x4) = 1 and the index of the corresponding element in K is a
product of powers of 2 and 3 only. There are 52 solutions of equation (1)
which are listed below.
(x2, x3, x4, 2t13t2) = (1,−1, 0, 31), (0, 1, 0, 31), (−1, 5,−1, 2231), (4,−5,−1, 2231),
(−4, 5,−1, 2231), (1,−5,−1, 2231), (3,−4,−1, 34), (−1, 4,−1, 34), (1,−4,−1, 34),
(−3, 4,−1, 34), (−12, 61,−14, 34), (49,−61,−14, 34), (−49, 61,−14, 34),
(12,−61,−14, 34), (0,−1, 1, 2234), (−1, 1, 1, 2234), (1,−1, 1, 2234), (0, 1, 1, 2234),
(3,−4, 0, 2632), (−1, 4, 0, 2632), (0,−4,−1, 2434), (−4, 4,−1, 2434), (4,−4,−1, 2434),
(0, 4,−1, 2434), (−13, 16,−4, 2635), (3,−16,−4, 2635), (−3, 16,−4, 2635),
(13,−16,−4, 2635), (−3, 7,−2, 310), (4,−7,−2, 310), (−4, 7,−2, 310), (3,−7,−2, 310),
(3,−4, 4, 2737), (−1, 4, 4, 2737), (1,−4, 4, 2737), (−3, 4, 4, 2737), (15,−8,−8, 29311),
(7, 8,−8, 29311), (−7,−8,−8, 29311), (−15, 8,−8, 29311), (24,−29,−11, 22316),
(−5, 29,−11, 22316), (5,−29,−11, 22316), (−24, 29,−11, 22316),
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(147,−748, 172, 27313), (−601, 748, 172, 27313), (601,−748, 172, 27313),
(−147, 748, 172, 27313), (−60, 32,−13, 24322), (−28,−32,−13, 24322),
(28, 32,−13, 24322), (60,−32,−13, 24322).

9. Computational experiences

We implemented our algorithm in Maple and executed the routines on
a PC (1GHz CPU) under Linux.

The resolution of the S-unit equations over Z took just a few minutes.
Also, the further computations in Example 1 were fast.

In Example 2 the resolution of the S-unit equation in K took a few
hours. This was mainly because of the tedious calculation of the p-adic
logarithms with high accuracy. Further, the enumeration of the remaining
small values of the exponents, testing all possible values of γ1, γ2, γ3

and checking the prime factors of the candidate elements x2ω2 + x3ω3 +
x4ω4 took again about couple of hours of CPU time. Note that these
procedures can be made much faster by implementing an efficient routine
for calculating p-adic logarithms of algebraic numbers (this is missing in
Maple) and by using a sieve in testing.
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