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On the derived length of Lie solvable group algebras

By TIBOR JUHASZ (Debrecen)

Dedicated to Professor Adalbert Bovdi on his 70th birthday

Abstract. Let G be a nilpotent group with cyclic commutator subgroup of
order p™ and let F be a field of characteristic p. It is shown here that the Lie
derived length of the group algebra F'G is at most [logy(p™ + 1)]. Furthermore,
this bound is achived if and only if one of the following conditions is satisfied: (i)
pis odd; (ii) p = 2 and n < 2; (iii) p = 2, n > 3 and the nilpotency class of G is
at most n.

1. Introduction

Let G be a group and F a field. The group algebra F'G may be consi-
dered as a Lie algebra, with the usual bracket operation. Define the Lie
derived series and the strong Lie derived series of the group algebra F'G
respectively as follows: let §((FG) = 6O (FG) = FG and

st (FG) = [s(FG), o (FG)),

s (FG) = [6"(FG),6™ (FG)| FG,

where [X,Y] is the additive subgroup generated by all Lie commutators
[z,y] = zy — yx with x € X and y € Y. We say that FG is Lie solv-
able if there exists m € N such that §(FG) = 0 and the number
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dl(FG) = min{m € N | 6"/(FG) = 0} is called the Lie derived length
of FG. Similarly, FG is said to be strongly Lie solvable of derived length
dIX(FG) = m if 6™ (FG) = 0 and 6™V (FG) # 0. According to a result
of PAssi, PASSMAN and SEHGAL [6] a group algebra F'G is Lie solvable
if and only if one of the following conditions holds: (i) G is abelian; (ii)
char(F) = p and the commutator subgroup G’ of G is a finite p-group;
(iii) char(F') = 2 and G has a subgroup H of index 2 whose commutator
subgroup H' is a finite 2-group. It is easy to check that a group algebra
FQ@ is strongly Lie solvable if either G is abelian or char(F) = p and G’ is
a finite p-group.

Let G be a group with commutator subgroup of order p” and
char(F') = p. SHALEV [8] showed that

diL(FG) < [logy(2t(G"))],

where t(G’) denotes the nilpotent index of the augmentation ideal of F'G’
and [r] the upper integral part of a real number r. Moreover, Lemma 2.2 in
[8] states that if G is nilpotent of class 2 then dly, (FG) < [logy(t(G')+1)].
In particular, according to Proposition 2.3 in [8], if G is nilpotent of class 2
and G’ is cyclic of order p”, then

dL(FG) = [logy(p" + 1)].

In this paper our goal is to generalize the above results of SHALEV for
the case when the nilpotency class of G is not necessary 2. We obtain the
following.

Theorem 1. Let G be a nilpotent group with cyclic commutator
subgroup of order p" and let F' be a field of characteristic p. Then
dlL(FG) < [logy(p™ + 1)] with equality if and only if one of the following
conditions holds:

(i) p is odd;
(ii) p =2 and G is of order less than 8;

(iii) p =2, n > 3 and G has nilpotency class at most n.

Moreover, if char(F') = 2 we can extend our result as follows.
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Corollary 1. Let G be a nilpotent group with commutator subgroup
of order 2" and let F be a field of characteristic 2. Then dly(FG) =n+1
if and only if one of the following conditions holds:

(i) G’ is the noncyclic group of order 4 and ~3(G) # 1;
(ii) G’ is cyclic of order less than 8;

(i) G’ is cyclic, n > 3 and G has nilpotency class at most n.

In this paper w(F'G) denotes the augmentation ideal of F'G; for a nor-
mal subgroup H C G we understand by J(H) the ideal FG - w(FH). For
T,Y,T1,20,..., Ty € G let ¥ =y lay, (z,y) =271
tor (x1,x2,...,xy,) is defined inductively to be ((ml,xg, ey Tp—1), :cn) By
¢(G) we mean the center of the group G, by v,(G) the n-th term of the
lower central series of G with 7;(G) = G. Furthermore, denote by C,, the
cyclic group of order n. The n-th term of the upper Lie power series of F'G
is denoted by (FG)™ which is the associative ideal generated by all Lie
commutators [z,y] with z € FG™~Y and y € FG, where FG) = FG.

We shall use freely the identities

z¥, and the commuta-

[2,y2] = [v,9]z +yle, 2], oy, 2] = 2ly, 2] + [, 2]y,
and for units a, b, ¢ the commutator identities
(a,bc) = (a,c)(a,b) = (a,c)(a,b)(a,b,c);
(ab,c) = (a,c)’(b,c) = (a,c)(a,c,b)(b, c),
and that [a,b] = ba((a,b) — 1).

2. Preliminaries

We begin with a statement of independent interest about the strong
Lie derived length of group algebras which generalizes the Corollary 4 of
BAGINSKI's paper [1].

Proposition 1. Let G be a nilpotent group whose commutator sub-
group G’ is a finite p-group and let char(F) = p. If y3(G) C (G')? then

dI*(FG) = [logy(t(G") + 1)].
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ProOF. We show by induction on n that
s (FG) C (FG)®") for all n > 0.

Evidently, 60)(FG) = (FG)® and assume that 6 (FG) C (FG)®") for
some n. By elementary properties of upper Lie power series,

s (FG) = [™(FG), 6™ (FG) | FG C [(FG)*),(FG)*] FG

2n+1)

C(FOTIFPG = (FG)®™,

In view of 43(G) C (G)?, Theorem 3.1(i) from [3] states that (FG)?") =
J(G")?"~1. Furthermore, Lemma 2.2 in [7] asserts 3(G")*"~1 C 6" (FQ)
for all n > 1 and we have §("(FG) = 3(G')?"~1. It is easy to see that
6 (FG) = 0 if and only if 2% — 1 > ¢(G"), therefore n > log, (t(G') + 1),
which implies the statement. ]

Remark 1. (i) Since 6I"(FG) C 6 (FG) for all n, Proposition 1
yields an upper bound on the Lie derived length. Furthermore, if G is
nilpotent with cyclic commutator subgroup of order p”, then the condition
v3(G) C (G')? holds and thus

dif(FG) < [logy(p" +1)].

But, as we will see, the equality does not always hold.

(ii) As the following examples show, Proposition 1 breaks down with-
out the condition 73(G) C (G')P.

e Let G be a group with G’ = Cy x Cy such that y3(G) # 1 and let
char(F) = 2. Then v3(G) € (G)? and, by Theorem 3 and Theorem 6
from [5], dI*(FG) > 2. So dIX(FG) # [logy(t(G") 4 1)], because now
[logy(t(G') +1)] = 2.

e Let G be a group with G' = C5 x C3 x C3 such that v3(G) # 1 and
let char(F) = 3. Then v3(G) ¢ (G')® and, by Theorem 2.3 from [7],
dI¥(FG) > 3. Tt follows that dIX(FG) # [logy(t(G') + 1)], because
[logy(t(G") +1)] = 3.
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The next lemma will be used in the proof of the theorem.

Lemma 1. Let G be a nilpotent group with cyclic commutator sub-
group of order p™ and let char(F) = p. Then for all m,k > 1
(i) [W™FG),w(FG)] C 3Gy
(ii) [S(G’)m,ﬁ(G’)k] C J(GIymHR+L,

PROOF. (i) We use induction on m. For every y € G' and g € G we
have

ly—1Lg—1=[y.9] = 9y((y.9) — 1) € 3(13(G)) < I
This shows that the statement (i) holds for m = 1, because the elements
of the form g — 1 with 1 # g € G constitute an F-basis of w(FG).
Now, assume that [w™(FG'),w(FG)] C J3(G')™*P~1 for some m.
Then
[me(FG’),w(FG)]
Cw™(FG)|w(FG),w(FG)] + [w™(FG),w(FG)|w(FG")
CWw™(FGHI(GP + 3(GY™ P 1w(FG") C 3(G")™ TP,
and the proof of (i) is complete.

(ii) The statement (ii) is a consequence of (i), because
J(G) = w(FG)w(FG') +w(FG"). O

Let G be a group with commutator subgroup G’ = (z | 22" = 1),
where n > 3. It is well known that the automorphism group aut(G’) of
G’ is a direct product of the cyclic group (a) of order 2 and the cyclic
group () of order 2"~2 where the action of these automorphisms on G’ is
given by a(x) = 271, B(z) = 25. For g € G, let 7, denote the restriction
to G’ of the inner automorphism h +— h? of G. The map G — aut(G),
g — T4 is a homomorphism whose kernel coincides with the centralizer
C = Cg(G"). Clearly, the map ¢ : G/C — aut(G’) given by ¢(gC) = 74 is
a monomorphism.

The subset

Gs={9€G|pgC) (3}

of G will play an important role in the sequel. It is easy to check that
G is a subgroup of index not greater than 2 and g € G if and only if
x9 = 2% for some i € Z.
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Lemma 2. Let G be a group with cyclic commutator subgroup of
order 2", where n > 3 and let char(F') = 2. Then

(i) (y,9) € (G")* for all y € G’ and g € Gg;
(ii) [Ww™(FG"),w(FGg)] € I(G')™*3.

PROOF. Let g € Gg and y € G'.

(i) Clearly, (y,9) = y~ 99 = y~ 5" for some i > 0 and —1 4 5" = 0
(mod 4). Therefore, (y,g) € (G')*.

(ii) Using (i) we have that

v—1,9-1 =y, 9] =gy((y,9) — 1) € I(G")",

from which (ii) follows for m = 1. One can now finish the proof by induc-
tion, as in Lemma 1(i). O

Lemma 3. Let G be a group with commutator subgroup G' = (z |
22" = 1), where n > 3. Then the following are equivalent:
(i) Gg =G.

(ii) G has nilpotency class at most n.

ProoF. First of all, note that G is a nilpotent group of class at most
n+ 1.

(i) = (ii) By Lemma 2(i), 73(G) C (G')*, so |72(G)/v3(G)| > 4 and
the class of G is at most n.

(ii) = (i) Suppose that G has nilpotency class at most n, but Gg # G.
We claim that 22°° € Y (G) for all k > 2. Indeed, this is clear for k = 2
and assume its truth for some £ > 2. If g € G\ G then (:c2k_2,g) €
ve41(G) and (2277, g) = 22175 = (22"7")J with some i and odd j.
This means that 22 € v441(G), as desired. Therefore, yp41(G) # 1,
which is a contradiction. g

Lemma 4. Let G be a group with commutator subgroup G' = (z |
22" = 1), where n > 3. If G has nilpotency class n + 1 then (g, h) € (G")?
for all g,h € Gg.

ProOOF. If the lemma were not true we could choose the elements
g,h € Gg so that (g,h) = z. By definition of Gg we may additionally
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assume that (g,2) = 1. Lemma 3 states that G\ Gg # 0; let y be in
G \ Gg. Evidently, (g,y) = 2* for some i. Using the equalities

h h=1

_ -1
" =gz, " =g

c gt =ga, gv =gl
it is easy to check
g=ghv = gh‘ly‘lhy _ (g(x—l)h—l)y*hy _ gy_lhyx—l
= (g™ )t = (ga(aT)Y ) et = gala¥ (e Mg
= g(z,y) (@™, h),
which is a contradiction. In_deed7 keeping in mind that y € G\ Gg and h €

G we have (z,y) = 2717 € (22) \ () and (27, W¥) = 7115 e (z4),
thus (z,y)(x =% hY) # 1. O
The author wishes to thank C. BAGINSKI for the elementary proof of

the previous lemma.

Lemma 5. Let G be a group with commutator subgroup G' = (x |
22" = 1), where n > 3 and let char(F) = 2. If G has nilpotency class n+ 1
then dl (FG) < n.

PROOF. Clearly, the set of the Lie commutators [a,b] with a,b € G
spans the F-space 0J(FG). Since [a,b] = ¢" + g with g=ba and h=b,
while of course g" + g = [a,b] with @ = h~'g and b= h whenever g,h € G,
this spanning set for 6!J(FG) can also be described as the set of the
elements ¢g" + g with g,h € G. It follows that the Lie commutators
(1" + g1,92"% + go], where g1, 92, h1,hes € G, span 5[2}(FG). We shall
compute these Lie commutators. It is easy to check that

(1" + g1, 92" + g2] = g2 (((91,92) +1)((g2,h2) + 1) ((g1, 1) + 1)
+ (92, h2) ((g2, P2, g1) + 1) ((g1, P1) + 1) (1)
+ (91, 92)(91, 7)) ((91, h1, 92) + 1) ((g2, h2) + 1))

Firstly, if neither g nor go are in G then

(91" + g2, 92" + ga] = bos (2)
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for some b € G5 and g3 € w3(FG'). Indeed, it is clear from the definition of
G that then gog1 € G . Furthermore, the second factor on the right-hand
side of (1) always belongs to w3(FG’), because v3(G) C (G')2.

Secondly, if g1 or g2, say g1, belongs to G, then we claim that

(g1 + g1, 92" + ga] = goa (3)

for some g4 € WH(FG') and g € G.
For g1 € Gg, Lemma 2(i) asserts (g2, ho,g1) € (G'), therefore the
right-hand side of (1) can be written as

[01" + 91, 92" + 2] = g2 <<(91’92) * 1) ((91’ M)+ 1>

+ (91, 92) (g1, h1) ((gl, hi,g2) + 1)) ((gz, ha) + 1) + 929104

for some g4 € w*(FG’). In order to prove (3) it will be sufficient to show
that the element for some g4 € w*(FG'). In order to prove (3) it will be
sufficient to show that the element

0= ((91,92) +1) ((g91, 1) + 1)
+ (91, 92)(91,h1) ((91, h1, 92) + 1)

from the right-hand side of (4) belongs to w?(FG’).

This is clear if go also belongs to G g, because then by Lemma 4 and
Lemma 2(i) both summands of ¥ are in w?(FG’). Furthermore, if g2 ¢ Gg,
then 292 = 275 for some [ and we distinguish the following three cases:

Case 1: (g1, h1) € (G')%. Then (g1, h1,g2) = (g1, k1)1~ € (G')* and
¥ € w3(FG).
Case 2: (g1,92) € (G')?. By the well-known Hall-Witt identity,
-1
(gla hlag2)hl (h1_17g2_1791)92(927g1_17 hl_l)gl =1

Lemma 2(i) ensures that the second factor on the left-hand side belongs
to (G')* and this is true for the last factor too, because

-1
(92791_17h1_1) = ((91792)91 ah1_1>

1\ —1 1, -1 .
= ((91792)91 ) (91,92)% M = (g1, 92)%
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for some i. This means that (g1, k1, g2) € (G')*, which proves ¥ € w?(FG').

Case 3: (g1,h1) ¢ (G)? and (g1,92) ¢ (G')?. Then ((g1,h1)) =
{(g1,92)) = G’ and (g1,92) = (g1,h1)* for some odd k. With the nota-
tion y = (g1, h1) ¥ can be written as

_5l_ el _
I=@ D+ D+ T T ) =y T H 1y ),

Of course, if k = 1 (mod 4) then =51 +1 and y(y* 1 +1) are in w*(FG’),
therefore ¥ € w*(FG'). Otherwise, if k = 3 (mod 4) then y*=3 +1 ¢
w*(FG") which implies that

(24D + D)+ G2+ )+ @2+ 1))
2 +1) =9y’ +1 (mod *(FG")).

yy" 1) =y
=y

Similarly, we can obtain that

_5l _sl_ _rel_
A l=FT T D+ D)+ T TR+ + (YR )
=y’ +1 (mod w*(FG")).

Hence
9=y H 14y 1) =202 +1) =0 (mod WP(FG)),

which completes the checking of (3).

Let S be the additive subgroup generated by all elements of the form
gos and bz, where g € G, b€ Gg and g3 € W (FG'), 04 € WH(FG'). We
claim that [S,S] C J(G’)®. Indeed, the additive subgroup [S,S] can be
spanned by some Lie commutators of the forms [go4, hos] and [by 03, bans]
with g € G,b1,by € G, 03,13 € W (FG'), 04 € w(FG'). Furthermore,
by Lemma 1(i),

(904, ho3] = gloa, hos] + [g, ho3]oa
= gloa, h + o3 + hg((g,h) + 1) 0304 + h[g + 1, 03]04 € I(G")®,

and by Lemma 2(ii) and Lemma 4,

[b1o3, bans] = b1 03, bans] + [b1, bans]e3
= by[03, ba + 1] + ba[b1 + 1,m3]03 + b1b2 ((b1,b2) + 1)n303
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also belongs to J(G’)3. Therefore, [S,S] C J(G')8.
From (2) and (3) we get 6% (FG) C S, so we have

B(FG) = [BP(FG), P (FG)] €[S, 8] € 3(G")°.
Now, we use induction on k£ to show that
sE(FG) C 3(GHY forall k> 3. (5)

Indeed, assuming the validity of (5) for some k& > 3 we have

2k+l

5[k+1](FG) _ [5[k](FG),5[k](FG)] C [j(G/)Zk’j(G/)Zk] C j(G’)

and this proves the truth of (5) for every k > 3.
Keeping in mind that G’ has order 2", (5) implies that 6/ (FG) = 0.
Hence dlz (FG) < n and the proof is complete. O

Lemma 6. Let G be a nilpotent group with commutator subgroup
G' = (x| 2?" = 1), char(F) = p and assume that one of the following
conditions holds:

(i) p=2, n >3 and G has nilpotency class at most n;
(i) p is odd.
Then dl,(FG) = [logy(p"™ + 1)].

PROOF. Since G’ is cyclic of order p”, we can choose a,b € G such
that (a,b) = z. First of all, we claim that

[pla™ b%al] = (ms — )b a™ (2 — 1)  (mod I(G)?) (6)
for every [, s, m,t € Z. Indeed, an easy computation yields
[blam, ba'] = bsatblam((blam, b*a') — 1)
= b a™ M (af o) (Ve b¥a") - 1) (7)
= bl+sam+t((blam, b*a’) —1) (mod 3(G"?),

and
(t'a™, b%a’) = V', a") (0™, %) = (b, a)" (a,b)™

= gmsit (mod (G")P),
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because 73(G) C (G')P. Thus (bla™,b%al) = 2™~ 1+P! for some 4. In view
of the identity uv —1 = (u—1)(v —1) + (u— 1) + (v — 1), we have

(t'a™ b%al) — 1 = (ms — It + pi)(x — 1)
= (ms —lt)(zx — 1) (mod J(G")?)

and putting this into (7) we obtain (6).
Now, let k > 1, l,m,s,t € Z, 21,29 € 3(G’)2k and set

fe(lymys,t, 21, 29) = [blam(x — 1)2k_1 + 21, b%al (x — 1)2k_1 + ZQ].
We shall show that

fk’(lamasata 21, 22)

= (ms — )b a™ ! (z — 1)2“1_1

(mod 3(GH2).  (8)

Lemma 1(ii) ensures that the elements [b'a™(z — 1)2k_1, 2], [21, 22| and
[21,b%a! (z — 1)2k_1] belong to J(G')2""", thus
fk(la m,s,t, 21, 22)

= [t'a™(x - 1)2k_1, bial(z — 1)2k_1] (mod J(G")

2k+1

).

In the case p = 2, Lemma 3 forces b'a™, b’al € Gg, so we may apply
Lemma 2(ii) to obtain that

[blam, (x — 1)2k_1], [(w - 1)2k_1, bsat] € J(G’)Qkﬂ.

Furthermore, for p > 2 the above inclusion follows from Lemma 1(i). This
implies that

Fullym, s,t, 21, 29) = pla™, b*a’](z — 1)2' =2 (mod 3(G")2"),

which, together with (6), proves (8).
Define the following three series inductively by:

w=a, wvo=b, wy=>bta"t,



254 Tibor Juhéasz

and, for k£ > 0,

Uk4+1 = [uk’avk]’ Vk+1 = [uk’awk’]a Wr4+1 = [wkavk’]'

Obviously, the k-th elements of these series belong to 5! (FG). By induc-
tion on k we show for odd k that

ug = tba(r — 1)216_1 (mod j(G/)2k);
op=+b" o — 1) (mod 3(G)?); 9)
wy, = +a (z — 1)2k_1 (mod j(G/)Qk)a

and if k£ is even then

up = ta(x — 1)2k_1 (mod S(G')Qk);
k

o = bz — )2 (mod 3(G)Y); (10)
wp=+b ez — 1D (mod 3(G)Y).

Evidently, u; = [a,b] = ba(z — 1), and by (6) we have

=—-bl(z—1) (modI(G)?),

4
S
I
=
S
L
IS
-
I

and w; = [b"'a"1,b] = —a~ (2 —1) (mod J(G’)?). Therefore (9) holds for
k=1.

Now, assume that (9) is true for some odd k. According to (8) the
congruences

upy1 = (1,1, —1,0,u;’,v1")

= +(—Da(z — D1 (mod 3(G")2);
vpr1 = £f1(1,1,0, =1, ug’, v")

= +b(z — 1)1 (mod 3(G)2):;
wWee1 = £f1(0,—1,—1,0,ux’, vi")

=+bta Nz - 1)2k+l_1 (mod J(G")

2k+1

)

hold, where w;', vi’, wi’ are suitable elements from J(G’ )Qk. Similarly,
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supposing the truth of (10) for some even k we see
up1 = £fx(0,1,1,0,up’, v1)
= tba(z — 1271 (mod 3(GH2 ),
U1 = £f5(0,1, =1, =1, up’, vp)
= +(—1)p H(z -1

2k+1

(mod J(G')* " );

Wg41 = j:fk(_]-a _17 ]-7 07 ukla Uk/)
=+(-a Yz -1 (mod 3(G")2").

So, (9) and (10) are valid for any k£ > 0.

Assume that & < [logy(p" + 1)]. Then 2% — 1 < p" and the elements
U, Vg, wi are nonzero in SN (FQG), thus dip (FG) > [logy(p" + 1)].

At the same time, Remark 1(i) says that dl (FG) < [logy(p"+1)]. O

3. Proofs of Theorem 1 and Corollary 1

PrRoOOF OF THEOREM 1. For p = 2 and n < 3 the statement is a
consequence of Remark 1(i) and Theorem 3 in [5]. In the other cases

Lemma 5 and Lemma 6 state the required result. The proof is complete.
O

PROOF OF COROLLARY 1. Clearly, if G’ is cyclic the statement im-
mediately follows from Theorem 1. Now, assume that G’ is noncyclic and
SM(FG) # 0. We know from [2] that FG is Lie nilpotent, and as we
have already seen, 6!(FG) C (FG)?"). Thus (FG)?") # 0 and The-
orem 1 of [4] states that G’ = Cy x Cy and v3(G) # 1. Conversely, if
G' = Cy x Cy then t(G’") = 3 and dI(FG) < [logy (2-3)] = 3. Further-
more, when v3(G) # 1, Theorem 3 in [5] says that dl; (FG) # 2. Therefore
dlz(FG) = 3 and the corollary is proved. O
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