

Title: An open problem concerning the diophantine equation $a^{x}+b^{x}=c^{z}$
Author(s): Maohua Le
Let r be an odd integer with $r>1$, and let m be an even integer with $m \equiv 2$ $(\bmod 4)$. Let a, b, c be positive integers satisfying $(a, b, c)=\left(|V(r)|,|U(r)|, m^{2}+1\right)$, where $V(r)+U(r) \sqrt{-1}=(m+\sqrt{-1})^{r}$. In this paper we prove that if c is a prime and either $r \not \equiv 1(\bmod 8)$ and $m>2 r / \pi$ or $r \equiv 1(\bmod 8)$ and $m>41 r^{3 / 2}$, then the equation $a^{x}+b^{y}=c^{z}$ has only the positive integer solution $(x, y, z)=(2,2, r)$.

Address:

Maohua Le
Department of Mathematics
Zhangjiang Normal College
29 Cunjin Road, Chikan
Zhanjiang, Guangdong
P.R. China

