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An open problem concerning the diophantine
equation a® + b* = ¢*

By MAOHUA LE (Zhanjiang)

Abstract. Let 7 be an odd integer with » > 1, and let m be an even in-
teger with m = 2 (mod 4). Let a, b, ¢ be positive integers satisfying (a,b,c) =
|V ()], |U(r)|,m? 4+ 1), where V(r) + U(r)y/=1 = (m + /=1)". In this paper
we prove that if ¢ is a prime and either » # 1 (mod 8) and m > 2r/7w or r = 1
(mod 8) and m > 417r3/2 then the equation a® + b¥ = ¢* has only the positive
integer solution (z,y, 2z) = (2,2,r).

1. Introduction

Let Z, N be the sets of all integers and positive integers respec-
tively. Let a, b, ¢ be fixed positive integers such that min(a,b,c) > 1
and ged(a,b,c) = 1. Let r be an odd integer with r > 1. In this paper we
consider the equation

a®*+v=c =x92€N (1)
for the case that a, b and c satisfy

a= V)|, b=U®F)|, c=m?+1, (2)
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where m is an even integer and
V() +U(r)V-1=(m+v-1)". (3)
We see from (3) that V(r) and U(r) are integers satisfying
V() +(U(r)* = (m* +1)7, ged(V(r),U(r)) =1, 2| V(r). (4)
It follows that if (2) holds, then
a? + b =" (5)

and (1) has a solution (z,y, z) = (2,2,7). In [1], CAO proposed the follow-
ing problem.

Open Problem. Let m =2 (mod 4) and c is a prime. It is possible
to prove (1) has only the solution (z,y,2) = (2,2,r) by some elementary
methods?

The above mentioned problem is related to a wide conjecture by TERAI
(see [6], [8]). By the proofs of [1, Corollaries 1 and 2|, the answer to the
question is “yes” for r = 3 or 5. In this paper, using some elementary
methods, we prove the following theorem.

Theorem 1. If (2) holds, r #1 (mod 8), m =2 (mod 4), m > 2r/7
and c is a prime, then (1) has only the solution (x,y, z) = (2,2,7).

On the other hand, using a lower bound for linear forms in two loga-
rithms given by LAURENT, MIGNOTTE and NESTERENKO [3], we solve the
remained cases as follows.

Theorem 2. If (2) holds, 7 =1 (mod 8),m = 2 (mod 4), m > 4173/
and c is a prime, then (1) has only the solution (x,y,z) = (2,2,7).

2. Proof of Theorem 1

Lemma 1 ([7, Formula 1.76]). For any positive integer n and any
complex numbers «, 3, we have

[n/2]
=Y m (a+B)" ¥ (—ap),

=0
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are positive integers.

where

For any positive integer n, let

Vin) = 3"+, Uin) = 5= =) )
B = 55, Py =22 @

where
e=mv—-1, é=m—+v—1 (])

Clearly, V(n), U(n) and F(n) are integers for any n, and E(n) is an integer
if 2+ n.

Lemma 2. If m > 2r/w, then V(n), U(n), E(n) and F(n) are positive
numbers forn =1,2,...,r.

PROOF. Since m? + 1 = ¢, we see from (8) that

e=+ce?V I = \lce VT (9)
where 6 is a unique real number satisfying
tan@z%, o<9<g. (10)
Substitute (9) into (6) and (7), we get
V(n) =% cos(nf), U(n)=c"?sin(nd) (11)
and 4 (nd
E(n) = cWU/Q%, F(n) = C(n_l)/QSJsIIi(Tne))’ (12)

respectively. By (10), we get
1 1
0 < 0 = arctan — < —. (13)
m - m

Hence, if m > 2r/7, then 0 < nf < nw/2r. It follows that 0 < nf < m/2
if n <r. Thus, by (11) and (12), the lemma is proved. O
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Lemma 3. Ifn is an odd integer, then we have
i)  Em)=(—-D""Y2n (mod m?), E(n) = (—1)""1/227"1 (mod ¢).
1 (mod 8), if m=2 (mod4)and n=1,3 (mod 8)
or m=0 (mod4)and n=1,7 (mod 8),
5 (mod8), if m=2 (mod4)and n=5,7 (mod 8)
or m=0 (mod4) and n=3,5 (mod 8).

(i) F(n) = (-1)""Y2 (mod m?), F(n)=(-1)""Y/22""1 (mod ¢).
(mod 8), if n=1 (mod 4),

1
(iv) F(n)=<3 (mod8), if m=2 (mod4) and n=3 (mod 4),
7 (mod 8), if m=0 (mod4) and n=3 (mod 4).
(V) B(n)= -2 (mod B(f)), E(n) ="V (mod F(£)),
where (= (n+ (—1)""1/2)/2,
PROOF. By (8), we get
e+E=2m, e—=2/-1, e=c (14)

Since 2 1 n, by Lemma 1, we get from (7) that

B(n) = (n§/2<—1>" ()2t = (ng/g | @mrieor, a9
Fin) = (ng(—l)i (500 Jn 2
(n—1)/2
- m (—dm?)nD/2i g (16)

Since
1 (mod8), ifm=0 (mod4),
c= (17)
5 (mod 8), ifm=2 (mod4),
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by (15) and (16), we obtain (i)—(iv) immediately.
On the other hand, we get from (6)—(8) that

o (1) £ () e =t e
Bn) = (18)
w(2) (252) e i
nitl c(n=1)/2 _ z(n-1)/2
AR (n—1)/2
< B) > ( 2 — 22 +c
if n=1 (mod 4),
. _ 19
(n) n—1 €(n+1)/2 _ g(”+1)/2 (n—1)/2 ( )
—4F < 2 > 52 _ &:2 + C )
\ if n=3 (mod 4),
where

c=(=D)D2) /2 (e (-1 /272

2 _ 22

is an integer. Thus, by (18) and (19), we obtain (v). The lemma is
proved. ]

Lemma 4 ([1, Lemma 3|). If (2) holds an m = 2 (mod 4), then we
have (a/c) = —1 and (b/c) = 1, where (x/*) denotes the Jacobi symbol.
Therefore, then the solutions (x,y, z) of (1) satisfy 2 | x.

Lemma 5. If (2) holds, m = 2 (mod 4) and m > 2r /7, then we have

(20)

<F(r)> 1, if r=1,3 (mod 8),
E(r) -1, if r=5,7 (mod 8).
PROOF. Since m > 2r/w, by Lemma 2, E(n) and F(n) are positive

integers for the odd integers n with 1 > n > r. If r = 1 (mod 4), then
(r4+1)/2 is an odd integer, and by (7), we get

F(r) + E(r) = 2 <T—£1>F<T+1>. (21)

2
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Hence, by (21), we obtain

(20 - () - () (B622) (2522). o

On applying Lemma 3 again and again, we get

COR It
(567) - (s = () i) o
(57) - (r#50) - () - () -+~

The combination (23)—(25) with (22) yields (20) for r =1 (mod 4).
Similarly, if » =3 (mod 4), then (r — 1)/2 is an odd integer and

F@y—E@y:%E<Tg1>F(r;1>. (26)

Therefore, we get from (26) that

(59 ~(“57 )~ () (&5) (Fr ) () - 0
By Lemma 3, we obtain

< 9 ) 1, if r=3 (mod 8),
-1, ifr=7 (mod 8),

~—

>:L (30)
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PO\ (B0 (=Y

B0 ) \F) \FED ) \FE
(22)- (25 )
=7 )" c =\¢)=t GV

The combination of (28)-(31) with (27) yields (20) for » = 3 (mod 4).
Thus, the lemma is proved. ([

Lemma 6 ([1, Theorem]). If (5) holds, b =3 (mod 4), c=5 (mod 8)
and c is a prime power, then (1) has only the solution (x,y,z) = (2,2,7).

Lemma 7. Let a, b, ¢ be fixed positive integers such that min(a, b, c)>1
and ged(a,b,c) = 1. If ¢ is an odd prime power, then (1) has at most one
solution (x,y, z) satisfying 2 | z and 2 | y.

PROOF. This lemma follows directly from the proof of [4, Theorem].
g

PROOF OF THEOREM 1. Since m > 2r/w, by Lemma 2, we see from
(2), (6) and (7) that

a=mE(r), b=F(r), c=m?+1. (32)

Since m = 2 (mod 4), by (17) and (iv) of Lemma 3, we get that if r = 3
(mod 4), then b =3 (mod 4) and ¢ =5 (mod 8). Therefore, by Lemma 6,
the theorem holds for 7 = 3 (mod 4).

Let (x,y,z) be a solution of (1) with (z,y, z) # (2,2,r). Since m = 2
(mod 4), by Lemma 4, we have 2 | x. On the other hand, if 2 { y, then

from (1) and (32) we get
b :
<—E(r)> , if 2]z,

(%) 24 2.

Since (¢/E(r)) =1 by (29), we see from (32) and (33) that

-G e

(33)
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However, by Lemma 5, we get (F/(r)/E(r)) = —1if r =5 (mod 8). There-
fore, we find from (34) that if r =5 (mod 8), then 2 | y. But, by Lemma 7,
it is impossible, since (z,y, z) # (2,2,7). Thus, if r # 1 (mod 8), then (1)
has only the solution (z,y,2) = (2,2,7). The theorem is proved. O

3. Proof of Theorem 2

Lemma 8 ([2]). Let p be an odd prime, and let u, v be coprime
positive integers. Then we have either ged(u + v, (uP +vP)/(u+v)) =1 or
ged(u 4+ v, (uP +vP)/(u +v)) = p. Moreover, if p | (uP +vP)/(u + v) then
P>t (uP +vP)/(u +v).

Lemma 9. If (32) holds and m > 4r/w, then we have max(a,b) < ¢"/?
and min(a, b) > cr=1/2,

PROOF. Since a? + b?> = ¢’, it follows that max(a,b) < ¢/2. Since
m > 4r/m, we get from (13) that

. : roow
0 <sinf < sin(rf) < rf < <7 (35)

Hence, by (12) and (32), we obtain
b= F(r) = 028000 eony (36)

sin 6

On the other hand, by (11), (32) and (35), we get
a=mE(r)=V(r)= /2 cos(rd) = cT/Z(l — (sin(rﬁ))2)1/2

a2\ 1/2 (37)
> /2 (1 — E) > 0.6¢7% > r=1/2,

Thus, by (36) and (37), we obtain min(a,b) > ¢"~1/2. The lemma is
proved. ]

Lemma 10. If (32) holds, m = 2 (mod 4), m > 4r/w and c is a
prime, then (1) has no solution (x,y, z) with 2 | z.
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PROOF. Under the assumption, by Lemma 4, we have 2 | z. If 2 | z,
then from (1) we get

AP at? =, A= a2 = by, b=biby, bibyeN. (38)

If follows that
bY 4 by = 2¢7/2. (39)

By Lemma 7, (1) has only the solution (z,y,z) = (2,2,r) satisfying 2 | =
and 2 | y. So we have 21y. If y > 1, then y > 3 and y has an odd prime
divisor p. Since ¢ is a prime, by Lemma 8, we get from (39) that

b+1>by +by>272"1 > 2 (40)
and

bi+by o Dby oy

c> > = /3 p /3
I T Te 2

= (B b B S B > > 2e— 1> ¢, (41)

a contradiction. So we have y = 1.

Ifr =2andy =1, then z < rand b(b—1) =0 (mod ¢*) by (1). Since
ged(b,e) =1, weget b—1=0 (mod ¢*) and b >b—1>¢* =a®+b > b,
a contradiction. It follows that x > 4, since 2 | . Then, by (38), we get

b>b =c*?+a%? > 2?2 > 242 (42)

But, by Lemma 9, we have b < ¢/2 and 2a2 > 2¢"~1 > 2¢"/2, since r > 3.
Thus, (42) is impossible. The lemma is proved. O

Lemma 11 ([5, Lemma 5]). Let a1, a2, b1, by be positive integers
satisfying min(ay,as) > 103. Further, let A = b;loga; — bylogas. If
A # 0, then we have

log |A| > —17.61(log a1 )(log az)(1.7735 + B)?,

where

B = max ( 8.445,0.2257 + log [ —2— + 2 .
logas  logaq
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Lemma 12. Let (x,y,z) be a solution of (1). If min(b,c) > 103,
x =2,y >3 andb? > a?, then we have

y < 1856 log c. (43)

PROOF. Since a® + Y = ¢* and W > a2, we get

20° & 1 a? 2H
zlog e = log(bY + a?) = ylog b + Z < )

by—i—czk_02k+1 bY + ¢*
20> X 3% (3log 2)a?
log b — ylogh+ 22520 (44)
<ylog +by+czkz_02k+1 o8Ot
1.04a?
< ylogb+ W

Let A = zlogc — ylogb. Then from (44) we get
log(1.04a?) — log |A| > ylogb. (45)

Since min(b, ¢) > 103, by Lemma 11, we have

log |A| > —17.61(log b)(log ¢)(1.7735 + B)?, (46)
where
B = max ( 8.445,0.2257 + log | — + 2 ). (47)
logb logc

If B = 8.445, then from (44) and (47) we obtain

2y z Yy 8.2193
< e> < 3712 48
log c logb+logb_e ’ (48)

whence we get (43).
If B > 8.445, then from (47) we get

B=02257+1log (= + 2. (49)
logb logc

Substitute (46) and (49) into (45), we get

log1.04 4+ 2loga z Y 2 Y
17.61 | 1.9992 + 1 — + — > —. (50
(log b)(log ) * ( +log (logb * log c>> log ¢ (50)
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Since b3 > a? and min(b, c) > 10, we have

log1.04 + 2log a

0.44 51
- (log b)(log ) (51)
By (44), we get
2y z Y
.22 . 2
0 +logc>logb+logc (52)
Thus, by (50)—(52), we obtain
9 2
0.44 +17.61 ( 1.9992 + log (022 + — ) ) > L,
log c log c
whence we conclude that (43) holds. The lemma is proved. O

PROOF OF THEOREM 2. Let (x,y, z) be a solution of (1) with
(x,y,2) # (2,2,7). Then, by Lemmas 4, 7 and 10, we have 2 | z, 2t y
and 2 t z, respectively. Since 7 = 1 (mod 8) and m > 41732 > 4r/x,
we see from (32) and (iv) of Lemma 3 that » > 9 and b = 1 (mod 8).
Further, since m = 2 (mod 4) and ¢ = 5 (mod 8), we get from (1) that
a*=c* - =5—-1=4 (mod 8). It follows that x = 2. Furthermore, we
find from the proof of Lemma 10 that y # 1 and y > 3. Since m > 4r/m,
by Lemma 9, we get b3 > 20=1/2 > ¢ > 42, Therefore, by Lemma 12,
the solution (z,y, z) satisfies (43).

On the other hand, we get from (15), (16) and (32) that

a> =7r*m? (mod m'), W=1- y<;> m?  (mod m?),

(53)
¢ =142zm? (mod m).
Substitute (53) into (1), we obtain
1 — 2 2
57“(1" —Dy+z=r" (mod m?). (54)

Since y > 3, we see from (54) that

1
57’(7’— Dy + 2z > 124+ m? (55)
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Since a® + b? = ¢" and a® + WY = ¢*, we have

Y = (a2 + b2)y > a4 ( Y >ayby 4 p
y/2
> b 4+ 20%Y + o’ (56)
= (a® + )2 = &,

It follows that ry > 2z. Therefore, by (55), we get

2 (% - 1) > m?>. (57)

The combination of (43) and (57) yields

2 2
> y/?— 1~ 928 log(:; T)-1 (58)
Since m > 41r%/2 we get from (58) that
92810g(16817° + 1) > 1681r + 1. (59)
However, (59) is false if 7 > 9. Thus, the theorem is proved. O
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