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An open problem concerning the diophantine
equation ax + bx = cz

By MAOHUA LE (Zhanjiang)

Abstract. Let r be an odd integer with r > 1, and let m be an even in-
teger with m ≡ 2 (mod 4). Let a, b, c be positive integers satisfying (a, b, c) =
(|V (r)|, |U(r)|, m2 + 1), where V (r) + U(r)

√−1 = (m +
√−1 )r. In this paper

we prove that if c is a prime and either r �≡ 1 (mod 8) and m > 2r/π or r ≡ 1
(mod 8) and m > 41r3/2, then the equation ax + by = cz has only the positive
integer solution (x, y, z) = (2, 2, r).

1. Introduction

Let Z, N be the sets of all integers and positive integers respec-
tively. Let a, b, c be fixed positive integers such that min(a, b, c) > 1
and gcd(a, b, c) = 1. Let r be an odd integer with r > 1. In this paper we
consider the equation

ax + by = cz, x, y, z ∈ N (1)

for the case that a, b and c satisfy

a = |V (r)|, b = |U(r)|, c = m2 + 1, (2)
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where m is an even integer and

V (r) + U(r)
√−1 = (m +

√−1 )r. (3)

We see from (3) that V (r) and U(r) are integers satisfying

(V (r))2 + (U(r))2 = (m2 + 1)r, gcd(V (r), U(r)) = 1, 2 | V (r). (4)

It follows that if (2) holds, then

a2 + b2 = cr (5)

and (1) has a solution (x, y, z) = (2, 2, r). In [1], Cao proposed the follow-
ing problem.

Open Problem. Let m ≡ 2 (mod 4) and c is a prime. It is possible
to prove (1) has only the solution (x, y, z) = (2, 2, r) by some elementary
methods?

The above mentioned problem is related to a wide conjecture by Terai

(see [6], [8]). By the proofs of [1, Corollaries 1 and 2], the answer to the
question is “yes” for r = 3 or 5. In this paper, using some elementary
methods, we prove the following theorem.

Theorem 1. If (2) holds, r �≡ 1 (mod 8), m ≡ 2 (mod 4), m > 2r/π
and c is a prime, then (1) has only the solution (x, y, z) = (2, 2, r).

On the other hand, using a lower bound for linear forms in two loga-
rithms given by Laurent, Mignotte and Nesterenko [3], we solve the
remained cases as follows.

Theorem 2. If (2) holds, r ≡ 1 (mod 8), m ≡ 2 (mod 4), m > 41r3/2

and c is a prime, then (1) has only the solution (x, y, z) = (2, 2, r).

2. Proof of Theorem 1

Lemma 1 ([7, Formula 1.76]). For any positive integer n and any

complex numbers α, β, we have

αn + βn =
[n/2]∑
j=0

[
n

j

]
(α + β)n−2j(−αβ)j ,
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where [
n

j

]
=

(n − j − 1)!n
(n − 2j)! j!

, j = 0, 1, . . . ,
[
n

2

]

are positive integers.

For any positive integer n, let

V (n) =
1
2
(εn + ε̄n), U(n) =

1
2
√−1

(εn − ε̄n), (6)

E(n) =
εn + ε̄n

ε + ε̄
, F (n) =

εn − ε̄n

ε − ε̄
, (7)

where
ε = m

√−1, ε̄ = m −√−1. (8)

Clearly, V (n), U(n) and F (n) are integers for any n, and E(n) is an integer
if 2 � n.

Lemma 2. If m > 2r/π, then V (n), U(n), E(n) and F (n) are positive

numbers for n = 1, 2, . . . , r.

Proof. Since m2 + 1 = c, we see from (8) that

ε =
√

c eθ
√−1, ε̄ =

√
c e−θ

√−1, (9)

where θ is a unique real number satisfying

tan θ =
1
m

, 0 < θ <
π

2
. (10)

Substitute (9) into (6) and (7), we get

V (n) = cn/2 cos(nθ), U(n) = cn/2 sin(nθ) (11)

and
E(n) = c(n−1)/2 cos(nθ)

cos θ
, F (n) = c(n−1)/2 sin(nθ)

sin θ
, (12)

respectively. By (10), we get

0 < θ = arctan
1
m

<
1
m

. (13)

Hence, if m > 2r/π, then 0 < nθ < nπ/2r. It follows that 0 < nθ < π/2
if n ≤ r. Thus, by (11) and (12), the lemma is proved. �



286 Maohua Le

Lemma 3. If n is an odd integer, then we have

(i) E(n) ≡ (−1)(n−1)/2n (mod m2), E(n) ≡ (−1)(n−1)/22n−1 (mod c).

(ii) E(n) ≡




1 (mod 8), if m ≡ 2 (mod 4) and n ≡ 1, 3 (mod 8)

or m ≡ 0 (mod 4) and n ≡ 1, 7 (mod 8),

5 (mod 8), if m ≡ 2 (mod 4) and n ≡ 5, 7 (mod 8)

or m ≡ 0 (mod 4) and n ≡ 3, 5 (mod 8).

(iii) F (n) ≡ (−1)(n−1)/2 (mod m2), F (n) ≡ (−1)(n−1)/22n−1 (mod c).

(iv) F (n) ≡




1 (mod 8), if n ≡ 1 (mod 4),

3 (mod 8), if m ≡ 2 (mod 4) and n ≡ 3 (mod 4),

7 (mod 8), if m ≡ 0 (mod 4) and n ≡ 3 (mod 4).

(V) E(n) ≡ −c(n−1)/2 (mod E(�)), E(n) ≡ c(n−1)/2 (mod F (�)),

where � = (n + (−1)(n−1)/2)/2.

Proof. By (8), we get

ε + ε̄ = 2m, ε − ε̄ = 2
√−1, εε̄ = c. (14)

Since 2 � n, by Lemma 1, we get from (7) that

E(n) =
(n−1)/2∑

i=0

(−1)i
(

n

2i

)
mn−2i−1 =

(n−1)/2∑
i=0

[
n

i

]
(2m)n−2i−1(−c)i, (15)

F (n) =
(n−1)/2∑

i=0

(−1)i
(

n

2i + 1

)
mn−2i−1

=
(n−1)/2∑

i=0

[
n

i

]
(−4m2)(n−1)/2−ici. (16)

Since

c ≡

1 (mod 8), if m ≡ 0 (mod 4),

5 (mod 8), if m ≡ 2 (mod 4),
(17)
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by (15) and (16), we obtain (i)–(iv) immediately.
On the other hand, we get from (6)–(8) that

E(n) =




2U
(

n − 1
2

)
E

(
n + 1

2

)
− c(n−1)/2, if n ≡ 1 (mod 4),

2U
(

n + 1
2

)
E

(
n − 1

2

)
− c(n−1)/2, if n ≡ 3 (mod 4),

(18)

F (n) =




−4F
(

n + 1
2

)(
ε(n−1)/2 − ε̄(n−1)/2

ε2 − ε̄2

)
+ c(n−1)/2,

if n ≡ 1 (mod 4),

−4F
(

n − 1
2

)(
ε(n+1)/2 − ε̄(n+1)/2

ε2 − ε̄2

)
+ c(n−1)/2,

if n ≡ 3 (mod 4),

(19)

where
ε(n−(−1)(n−1)/2)/2 − ε̄(n−(−1)(n−1)/2)/2

ε2 − ε̄2

is an integer. Thus, by (18) and (19), we obtain (v). The lemma is
proved. �

Lemma 4 ([1, Lemma 3]). If (2) holds an m ≡ 2 (mod 4), then we

have (a/c) = −1 and (b/c) = 1, where (∗/∗) denotes the Jacobi symbol.

Therefore, then the solutions (x, y, z) of (1) satisfy 2 | x.

Lemma 5. If (2) holds, m ≡ 2 (mod 4) and m > 2r/π, then we have

(
F (r)
E(r)

)
=




1, if r ≡ 1, 3 (mod 8),

−1, if r ≡ 5, 7 (mod 8).
(20)

Proof. Since m > 2r/π, by Lemma 2, E(n) and F (n) are positive
integers for the odd integers n with 1 ≥ n ≥ r. If r ≡ 1 (mod 4), then
(r + 1)/2 is an odd integer, and by (7), we get

F (r) + E(r) = 2E
(

r + 1
2

)
F

(
r + 1

2

)
. (21)
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Hence, by (21), we obtain(
F (r)
E(r)

)
=
(

F (r) + E(r)
E(r)

)
=
(

2
E(r)

)(
E( r+1

2 )
E(r)

)(
F ( r+1

2 )
E(r)

)
. (22)

On applying Lemma 3 again and again, we get
(

2
E(r)

)
=


1, if r ≡ 1 (mod 8),

−1, if r ≡ 5 (mod 8),
(23)

(
E( r+1

2 )
E(r)

)
=

(
E(r)

E( r+1
2 )

)
=

(
−c(r−1)/2

E( r+1
2 )

)
=

(
−1

E( r+1
2 )

)
= 1, (24)

(
F ( r+1

2 )
E(r)

)
=

(
E(r)

F ( r+1
2 )

)
=

(
c(r−1)/2

F ( r+1
2 )

)
=

(
1

F ( r+1
2 )

)
= 1. (25)

The combination (23)–(25) with (22) yields (20) for r ≡ 1 (mod 4).
Similarly, if r ≡ 3 (mod 4), then (r − 1)/2 is an odd integer and

F (r) − E(r) = 2cE
(

r − 1
2

)
F

(
r − 1

2

)
. (26)

Therefore, we get from (26) that(
F (r)
E(r)

)
=
(

F (r)−E(r)
E(r)

)
=
(

2
E(r)

)(
c

E(r)

)(
E( r−1

2 )
E(r)

)(
F ( r−1

2 )
E(r)

)
. (27)

By Lemma 3, we obtain
(

2
E(r)

)
=


1, if r ≡ 3 (mod 8),

−1, if r ≡ 7 (mod 8),
(28)

(
c

E(r)

)
=
(

E(r)
c

)
=
(

(2m)r−1

c

)
=
(

1
c

)
= 1, (29)

(
E( r−1

2 )
E(r)

)
=

(
E(r)

E( r−1
2 )

)
=

(
−c(r−1)/2

E( r−1
2 )

)
=

(
c

E( r−1
2 )

)

=

(
E( r−1

2 )
c

)
=

(
(2m)(r−3)/2

c

)
=
(

1
c

)
= 1, (30)
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F ( r−1

2 )
E(r)

)
=

(
E(r)

F ( r−1
2 )

)
=

(
−c(r−1)/2

F ( r−1
2 )

)
=

(
c

F ( r−1
2 )

)

=

(
F ( r−1

2 )
c

)
=

(
(−1)(r−3)/22r−3

c

)
=
(

1
c

)
= 1. (31)

The combination of (28)–(31) with (27) yields (20) for r ≡ 3 (mod 4).
Thus, the lemma is proved. �

Lemma 6 ([1, Theorem]). If (5) holds, b ≡ 3 (mod 4), c ≡ 5 (mod 8)
and c is a prime power, then (1) has only the solution (x, y, z) = (2, 2, r).

Lemma 7. Let a, b, c be fixed positive integers such that min(a, b, c)>1
and gcd(a, b, c) = 1. If c is an odd prime power, then (1) has at most one

solution (x, y, z) satisfying 2 | x and 2 | y.

Proof. This lemma follows directly from the proof of [4, Theorem].
�

Proof of Theorem 1. Since m > 2r/π, by Lemma 2, we see from
(2), (6) and (7) that

a = mE(r), b = F (r), c = m2 + 1. (32)

Since m = 2 (mod 4), by (17) and (iv) of Lemma 3, we get that if r ≡ 3
(mod 4), then b ≡ 3 (mod 4) and c ≡ 5 (mod 8). Therefore, by Lemma 6,
the theorem holds for r ≡ 3 (mod 4).

Let (x, y, z) be a solution of (1) with (x, y, z) �= (2, 2, r). Since m ≡ 2
(mod 4), by Lemma 4, we have 2 | x. On the other hand, if 2 � y, then
from (1) and (32) we get

1 =




(
b

E(r)

)
, if 2 | x,

(
bc

E(r)

)
, if 2 � x.

(33)

Since (c/E(r)) = 1 by (29), we see from (32) and (33) that(
b

E(r)

)
=
(

F (r)
E(r)

)
= 1. (34)



290 Maohua Le

However, by Lemma 5, we get (F (r)/E(r)) = −1 if r ≡ 5 (mod 8). There-
fore, we find from (34) that if r ≡ 5 (mod 8), then 2 | y. But, by Lemma 7,
it is impossible, since (x, y, z) �= (2, 2, r). Thus, if r �≡ 1 (mod 8), then (1)
has only the solution (x, y, z) = (2, 2, r). The theorem is proved. �

3. Proof of Theorem 2

Lemma 8 ([2]). Let p be an odd prime, and let u, v be coprime

positive integers. Then we have either gcd(u+ v, (up + vp)/(u + v)) = 1 or

gcd(u + v, (up + vp)/(u + v)) = p. Moreover, if p | (up + vp)/(u + v) then

p2 � (up + vp)/(u + v).

Lemma 9. If (32) holds and m > 4r/π, then we have max(a, b) < cr/2

and min(a, b) > c(r−1)/2.

Proof. Since a2 + b2 = cr, it follows that max(a, b) < cr/2. Since
m > 4r/π, we get from (13) that

0 < sin θ < sin(rθ) < rθ <
r

m
<

π

4
. (35)

Hence, by (12) and (32), we obtain

b = F (r) = c(r−1)/2 sin(rθ)
sin θ

> c(r−1)/2. (36)

On the other hand, by (11), (32) and (35), we get

a = mE(r) = V (r) = cr/2 cos(rθ) = cr/2(1 − (sin(rθ))2)1/2

> cr/2

(
1 − π2

16

)1/2

> 0.6cr/2 > c(r−1)/2.
(37)

Thus, by (36) and (37), we obtain min(a, b) > c(r−1)/2. The lemma is
proved. �

Lemma 10. If (32) holds, m ≡ 2 (mod 4), m > 4r/π and c is a

prime, then (1) has no solution (x, y, z) with 2 | z.
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Proof. Under the assumption, by Lemma 4, we have 2 | x. If 2 | z,
then from (1) we get

cz/2 + ax/2 = by
1, cz/2 − ax/2 = by

2, b = b1b2, b1b2 ∈ N. (38)

If follows that
by
1 + by

2 = 2cz/2. (39)

By Lemma 7, (1) has only the solution (x, y, z) = (2, 2, r) satisfying 2 | x

and 2 | y. So we have 2 � y. If y > 1, then y ≥ 3 and y has an odd prime
divisor p. Since c is a prime, by Lemma 8, we get from (39) that

b + 1 ≥ b1 + b2 ≥ 2cz/2−1 > 2c (40)

and

c ≥ by
1 + by

2

b
y/p
1 + b

y/p
2

≥ by
1 + by

2

b
y/3
1 + b

y/3
2

= b
2y/3
1 − by/3 + b

2y/3
2

=
(
b
y/3
1 − b

y/3
2

)2 + by/3 > by/3 ≥ b > 2c − 1 > c, (41)

a contradiction. So we have y = 1.
If x = 2 and y = 1, then z < r and b(b−1) ≡ 0 (mod cz) by (1). Since

gcd(b, c) = 1, we get b − 1 ≡ 0 (mod cz) and b > b − 1 ≥ cz = a2 + b > b,
a contradiction. It follows that x ≥ 4, since 2 | x. Then, by (38), we get

b ≥ b1 = cz/2 + ax/2 > 2ax/2 ≥ 2a2. (42)

But, by Lemma 9, we have b < cr/2 and 2a2 > 2cr−1 > 2cr/2, since r ≥ 3.
Thus, (42) is impossible. The lemma is proved. �

Lemma 11 ([5, Lemma 5]). Let a1, a2, b1, b2 be positive integers

satisfying min(a1, a2) > 103. Further, let Λ = bi log a1 − b2 log a2. If

Λ �= 0, then we have

log |Λ| > −17.61(log a1)(log a2)(1.7735 + B)2,

where

B = max
(

8.445, 0.2257 + log
(

b1

log a2
+

b2

log a1

))
.
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Lemma 12. Let (x, y, z) be a solution of (1). If min(b, c) > 103,

x = 2, y ≥ 3 and b3 > a2, then we have

y < 1856 log c. (43)

Proof. Since a2 + by = cz and by > a2, we get

z log c = log(by + a2) = y log b +
2a2

by + cz

∞∑
k=0

1
2k + 1

(
a2

by + cz

)2k

< y log b +
2a2

by + cz

∞∑
k=0

3−2k

2k + 1
= y log b +

(3 log 2)a2

by + cz

< y log b +
1.04a2

by
.

(44)

Let Λ = z log c − y log b. Then from (44) we get

log(1.04a2) − log |Λ| > y log b. (45)

Since min(b, c) > 103, by Lemma 11, we have

log |Λ| > −17.61(log b)(log c)(1.7735 + B)2, (46)

where

B = max
(

8.445, 0.2257 + log
(

z

log b
+

y

log c

))
. (47)

If B = 8.445, then from (44) and (47) we obtain

2y
log c

<
z

log b
+

y

log b
≤ e8.2193 < 3712, (48)

whence we get (43).
If B > 8.445, then from (47) we get

B = 0.2257 + log
(

z

log b
+

y

log c

)
. (49)

Substitute (46) and (49) into (45), we get

log 1.04 + 2 log a

(log b)(log c)
+ 17.61

(
1.9992 + log

(
z

log b
+

y

log c

))2

>
y

log c
. (50)
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Since b3 > a2 and min(b, c) > 103, we have

0.44 >
log 1.04 + 2 log a

(log b)(log c)
. (51)

By (44), we get

0.22 +
2y

log c
>

z

log b
+

y

log c
. (52)

Thus, by (50)–(52), we obtain

0.44 + 17.61
(

1.9992 + log
(

0.22 +
2y

log c

))2

>
y

log c
,

whence we conclude that (43) holds. The lemma is proved. �

Proof of Theorem 2. Let (x, y, z) be a solution of (1) with
(x, y, z) �= (2, 2, r). Then, by Lemmas 4, 7 and 10, we have 2 | x, 2 � y

and 2 � z, respectively. Since r ≡ 1 (mod 8) and m > 41r3/2 > 4r/π,
we see from (32) and (iv) of Lemma 3 that r ≥ 9 and b ≡ 1 (mod 8).
Further, since m ≡ 2 (mod 4) and c ≡ 5 (mod 8), we get from (1) that
ax ≡ cz − by ≡ 5− 1 ≡ 4 (mod 8). It follows that x = 2. Furthermore, we
find from the proof of Lemma 10 that y �= 1 and y ≥ 3. Since m > 4r/π,
by Lemma 9, we get b3 > c3(r−1)/2 > cr > a2. Therefore, by Lemma 12,
the solution (x, y, z) satisfies (43).

On the other hand, we get from (15), (16) and (32) that

a2 ≡ r2m2 (mod m4), by ≡ 1 − y

(
r

2

)
m2 (mod m4),

cz ≡ 1 + zm2 (mod m4).
(53)

Substitute (53) into (1), we obtain

1
2
r(r − 1)y + z ≡ r2 (mod m2). (54)

Since y ≥ 3, we see from (54) that

1
2
r(r − 1)y + z ≥ r2 + m2. (55)
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Since a2 + b2 = cr and a2 + by = cz, we have

cry = (a2 + b2)y > a2y +
(

y

y/2

)
ayby + b2y

> b2y + 2a2by + a4

= (a2 + by)2 = c2z.

(56)

It follows that ry > 2x. Therefore, by (55), we get

r2
(y

2
− 1
)

> m2. (57)

The combination of (43) and (57) yields

r2 >
m2

y/2 − 1
>

m2

928 log(m2 + 1) − 1
. (58)

Since m > 41r3/2, we get from (58) that

928 log(1681r3 + 1) > 1681r + 1. (59)

However, (59) is false if r ≥ 9. Thus, the theorem is proved. �
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