An open problem concerning the diophantine equation $a^{x}+b^{x}=c^{z}$

By MAOHUA LE (Zhanjiang)

Abstract

Let r be an odd integer with $r>1$, and let m be an even integer with $m \equiv 2(\bmod 4)$. Let a, b, c be positive integers satisfying $(a, b, c)=$ $\left(|V(r)|,|U(r)|, m^{2}+1\right)$, where $V(r)+U(r) \sqrt{-1}=(m+\sqrt{-1})^{r}$. In this paper we prove that if c is a prime and either $r \not \equiv 1(\bmod 8)$ and $m>2 r / \pi$ or $r \equiv 1$ $(\bmod 8)$ and $m>41 r^{3 / 2}$, then the equation $a^{x}+b^{y}=c^{z}$ has only the positive integer solution $(x, y, z)=(2,2, r)$.

1. Introduction

Let \mathbb{Z}, \mathbb{N} be the sets of all integers and positive integers respectively. Let a, b, c be fixed positive integers such that $\min (a, b, c)>1$ and $\operatorname{gcd}(a, b, c)=1$. Let r be an odd integer with $r>1$. In this paper we consider the equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z}, \quad x, y, z \in \mathbb{N} \tag{1}
\end{equation*}
$$

for the case that a, b and c satisfy

$$
\begin{equation*}
a=|V(r)|, \quad b=|U(r)|, \quad c=m^{2}+1 \tag{2}
\end{equation*}
$$

[^0]where m is an even integer and
\[

$$
\begin{equation*}
V(r)+U(r) \sqrt{-1}=(m+\sqrt{-1})^{r} \tag{3}
\end{equation*}
$$

\]

We see from (3) that $V(r)$ and $U(r)$ are integers satisfying

$$
\begin{equation*}
(V(r))^{2}+(U(r))^{2}=\left(m^{2}+1\right)^{r}, \quad \operatorname{gcd}(V(r), U(r))=1, \quad 2 \mid V(r) \tag{4}
\end{equation*}
$$

It follows that if (2) holds, then

$$
\begin{equation*}
a^{2}+b^{2}=c^{r} \tag{5}
\end{equation*}
$$

and (1) has a solution $(x, y, z)=(2,2, r)$. In [1], CAO proposed the following problem.

Open Problem. Let $m \equiv 2(\bmod 4)$ and c is a prime. It is possible to prove (1) has only the solution $(x, y, z)=(2,2, r)$ by some elementary methods?

The above mentioned problem is related to a wide conjecture by Terai (see [6], [8]). By the proofs of [1, Corollaries 1 and 2], the answer to the question is "yes" for $r=3$ or 5 . In this paper, using some elementary methods, we prove the following theorem.

Theorem 1. If (2) holds, $r \not \equiv 1(\bmod 8), m \equiv 2(\bmod 4), m>2 r / \pi$ and c is a prime, then (1) has only the solution $(x, y, z)=(2,2, r)$.

On the other hand, using a lower bound for linear forms in two logarithms given by Laurent, Mignotte and Nesterenko [3], we solve the remained cases as follows.

Theorem 2. If (2) holds, $r \equiv 1(\bmod 8), m \equiv 2(\bmod 4), m>41 r^{3 / 2}$ and c is a prime, then (1) has only the solution $(x, y, z)=(2,2, r)$.

2. Proof of Theorem 1

Lemma 1 ([7, Formula 1.76]). For any positive integer n and any complex numbers α, β, we have

$$
\alpha^{n}+\beta^{n}=\sum_{j=0}^{[n / 2]}\left[\begin{array}{l}
n \\
j
\end{array}\right](\alpha+\beta)^{n-2 j}(-\alpha \beta)^{j},
$$

where

$$
\left[\begin{array}{l}
n \\
j
\end{array}\right]=\frac{(n-j-1)!n}{(n-2 j)!j!}, \quad j=0,1, \ldots,\left[\begin{array}{l}
n \\
2
\end{array}\right]
$$

are positive integers.
For any positive integer n, let

$$
\begin{array}{ll}
V(n)=\frac{1}{2}\left(\varepsilon^{n}+\bar{\varepsilon}^{n}\right), & U(n)=\frac{1}{2 \sqrt{-1}}\left(\varepsilon^{n}-\bar{\varepsilon}^{n}\right) \\
E(n)=\frac{\varepsilon^{n}+\bar{\varepsilon}^{n}}{\varepsilon+\bar{\varepsilon}}, & F(n)=\frac{\varepsilon^{n}-\bar{\varepsilon}^{n}}{\varepsilon-\bar{\varepsilon}} \tag{7}
\end{array}
$$

where

$$
\begin{equation*}
\varepsilon=m \sqrt{-1}, \quad \bar{\varepsilon}=m-\sqrt{-1} \tag{8}
\end{equation*}
$$

Clearly, $V(n), U(n)$ and $F(n)$ are integers for any n, and $E(n)$ is an integer if $2 \nmid n$.

Lemma 2. If $m>2 r / \pi$, then $V(n), U(n), E(n)$ and $F(n)$ are positive numbers for $n=1,2, \ldots, r$.

Proof. Since $m^{2}+1=c$, we see from (8) that

$$
\begin{equation*}
\varepsilon=\sqrt{c} e^{\theta \sqrt{-1}}, \quad \bar{\varepsilon}=\sqrt{c} e^{-\theta \sqrt{-1}} \tag{9}
\end{equation*}
$$

where θ is a unique real number satisfying

$$
\begin{equation*}
\tan \theta=\frac{1}{m}, \quad 0<\theta<\frac{\pi}{2} \tag{10}
\end{equation*}
$$

Substitute (9) into (6) and (7), we get

$$
\begin{equation*}
V(n)=c^{n / 2} \cos (n \theta), \quad U(n)=c^{n / 2} \sin (n \theta) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
E(n)=c^{(n-1) / 2} \frac{\cos (n \theta)}{\cos \theta}, \quad F(n)=c^{(n-1) / 2} \frac{\sin (n \theta)}{\sin \theta} \tag{12}
\end{equation*}
$$

respectively. By (10), we get

$$
\begin{equation*}
0<\theta=\arctan \frac{1}{m}<\frac{1}{m} \tag{13}
\end{equation*}
$$

Hence, if $m>2 r / \pi$, then $0<n \theta<n \pi / 2 r$. It follows that $0<n \theta<\pi / 2$ if $n \leq r$. Thus, by (11) and (12), the lemma is proved.

Lemma 3. If n is an odd integer, then we have
(i) $\quad E(n) \equiv(-1)^{(n-1) / 2} n\left(\bmod m^{2}\right), E(n) \equiv(-1)^{(n-1) / 2} 2^{n-1}(\bmod c)$.
(ii) $E(n) \equiv \begin{cases}1(\bmod 8), & \text { if } m \equiv 2(\bmod 4) \text { and } n \equiv 1,3(\bmod 8) \\ 5(\bmod 8), & \text { if } m \equiv 2(\bmod 4) \text { and } n \equiv 1,7(\bmod 8) \text {, } \\ & \text { or } m \equiv 0(\bmod 4) \text { and } n \equiv 3,5(\bmod 8) \\ & (\bmod 8) .\end{cases}$
(iii) $\quad F(n) \equiv(-1)^{(n-1) / 2}\left(\bmod m^{2}\right), F(n) \equiv(-1)^{(n-1) / 2} 2^{n-1}(\bmod c)$.
(iv) $F(n) \equiv\left\{\begin{array}{lll}1(\bmod 8), & \text { if } n \equiv 1(\bmod 4), \\ 3(\bmod 8), & \text { if } m \equiv 2(\bmod 4) \text { and } n \equiv 3(\bmod 4), \\ 7(\bmod 8), & \text { if } m \equiv 0(\bmod 4) \text { and } n \equiv 3(\bmod 4) .\end{array}\right.$
(V) $E(n) \equiv-c^{(n-1) / 2}(\bmod E(\ell)), E(n) \equiv c^{(n-1) / 2}(\bmod F(\ell))$,
where $\ell=\left(n+(-1)^{(n-1) / 2}\right) / 2$.
Proof. By (8), we get

$$
\begin{equation*}
\varepsilon+\bar{\varepsilon}=2 m, \quad \varepsilon-\bar{\varepsilon}=2 \sqrt{-1}, \quad \varepsilon \bar{\varepsilon}=c \tag{14}
\end{equation*}
$$

Since $2 \nmid n$, by Lemma 1, we get from (7) that

$$
\begin{align*}
E(n) & =\sum_{i=0}^{(n-1) / 2}(-1)^{i}\binom{n}{2 i} m^{n-2 i-1}=\sum_{i=0}^{(n-1) / 2}\left[\begin{array}{l}
n \\
i
\end{array}\right](2 m)^{n-2 i-1}(-c)^{i}, \tag{15}\\
F(n) & =\sum_{i=0}^{(n-1) / 2}(-1)^{i}\binom{n}{2 i+1} m^{n-2 i-1} \\
& =\sum_{i=0}^{(n-1) / 2}\left[\begin{array}{c}
n \\
i
\end{array}\right]\left(-4 m^{2}\right)^{(n-1) / 2-i} c^{i} . \tag{16}
\end{align*}
$$

Since

$$
c \equiv\left\{\begin{array}{lll}
1 & (\bmod 8), & \text { if } m \equiv 0 \quad(\bmod 4), \tag{17}\\
5 & (\bmod 8), & \text { if } m \equiv 2 \quad(\bmod 4),
\end{array}\right.
$$

by (15) and (16), we obtain (i)-(iv) immediately.
On the other hand, we get from (6)-(8) that

$$
\begin{align*}
& E(n)=\left\{\begin{array}{lll}
2 U\left(\frac{n-1}{2}\right) E\left(\frac{n+1}{2}\right)-c^{(n-1) / 2}, & \text { if } n \equiv 1 \quad(\bmod 4), \\
2 U\left(\frac{n+1}{2}\right) E\left(\frac{n-1}{2}\right)-c^{(n-1) / 2}, & \text { if } n \equiv 3 \quad(\bmod 4),
\end{array}\right. \tag{18}\\
& F(n)=\left\{\begin{aligned}
&-4 F\left(\frac{n+1}{2}\right)\left(\frac{\varepsilon^{(n-1) / 2}-\bar{\varepsilon}^{(n-1) / 2}}{\varepsilon^{2}-\bar{\varepsilon}^{2}}\right)+c^{(n-1) / 2}, \\
& \text { if } n \equiv 1(\bmod 4), \\
&-4 F\left(\frac{n-1}{2}\right)\left(\frac{\varepsilon^{(n+1) / 2}-\bar{\varepsilon}^{(n+1) / 2}}{\varepsilon^{2}-\bar{\varepsilon}^{2}}\right)+c^{(n-1) / 2} \\
& \text { if } n \equiv 3(\bmod 4),
\end{aligned}\right. \tag{19}
\end{align*}
$$

where

$$
\frac{\varepsilon^{\left(n-(-1)^{(n-1) / 2}\right) / 2}-\bar{\varepsilon}^{\left(n-(-1)^{(n-1) / 2}\right) / 2}}{\varepsilon^{2}-\bar{\varepsilon}^{2}}
$$

is an integer. Thus, by (18) and (19), we obtain (v). The lemma is proved.

Lemma 4 ([1, Lemma 3]). If (2) holds an $m \equiv 2(\bmod 4)$, then we have $(a / c)=-1$ and $(b / c)=1$, where $(* / *)$ denotes the Jacobi symbol. Therefore, then the solutions (x, y, z) of (1) satisfy $2 \mid x$.

Lemma 5. If (2) holds, $m \equiv 2(\bmod 4)$ and $m>2 r / \pi$, then we have

$$
\left(\frac{F(r)}{E(r)}\right)=\left\{\begin{array}{lll}
1, & \text { if } r \equiv 1,3 & (\bmod 8) \tag{20}\\
-1, & \text { if } & r \equiv 5,7
\end{array} \quad(\bmod 8) . ~ \$\right.
$$

Proof. Since $m>2 r / \pi$, by Lemma $2, E(n)$ and $F(n)$ are positive integers for the odd integers n with $1 \geq n \geq r$. If $r \equiv 1(\bmod 4)$, then $(r+1) / 2$ is an odd integer, and by (7), we get

$$
\begin{equation*}
F(r)+E(r)=2 E\left(\frac{r+1}{2}\right) F\left(\frac{r+1}{2}\right) . \tag{21}
\end{equation*}
$$

Hence, by (21), we obtain

$$
\begin{equation*}
\left(\frac{F(r)}{E(r)}\right)=\left(\frac{F(r)+E(r)}{E(r)}\right)=\left(\frac{2}{E(r)}\right)\left(\frac{E\left(\frac{r+1}{2}\right)}{E(r)}\right)\left(\frac{F\left(\frac{r+1}{2}\right)}{E(r)}\right) \tag{22}
\end{equation*}
$$

On applying Lemma 3 again and again, we get

$$
\begin{align*}
& \left(\frac{2}{E(r)}\right)=\left\{\begin{array}{lll}
1, & \text { if } r \equiv 1 \quad(\bmod 8), \\
-1, & \text { if } r \equiv 5 \quad(\bmod 8),
\end{array}\right. \tag{23}\\
& \left(\frac{E\left(\frac{r+1}{2}\right)}{E(r)}\right)=\left(\frac{E(r)}{E\left(\frac{r+1}{2}\right)}\right)=\left(\frac{-c^{(r-1) / 2}}{E\left(\frac{r+1}{2}\right)}\right)=\left(\frac{-1}{E\left(\frac{r+1}{2}\right)}\right)=1, \tag{24}\\
& \left(\frac{F\left(\frac{r+1}{2}\right)}{E(r)}\right)=\left(\frac{E(r)}{F\left(\frac{r+1}{2}\right)}\right)=\left(\frac{c^{(r-1) / 2}}{F\left(\frac{r+1}{2}\right)}\right)=\left(\frac{1}{F\left(\frac{r+1}{2}\right)}\right)=1 . \tag{25}
\end{align*}
$$

The combination (23)-(25) with (22) yields (20) for $r \equiv 1(\bmod 4)$.
Similarly, if $r \equiv 3(\bmod 4)$, then $(r-1) / 2$ is an odd integer and

$$
\begin{equation*}
F(r)-E(r)=2 c E\left(\frac{r-1}{2}\right) F\left(\frac{r-1}{2}\right) \tag{26}
\end{equation*}
$$

Therefore, we get from (26) that

$$
\begin{equation*}
\left(\frac{F(r)}{E(r)}\right)=\left(\frac{F(r)-E(r)}{E(r)}\right)=\left(\frac{2}{E(r)}\right)\left(\frac{c}{E(r)}\right)\left(\frac{E\left(\frac{r-1}{2}\right)}{E(r)}\right)\left(\frac{F\left(\frac{r-1}{2}\right)}{E(r)}\right) \tag{27}
\end{equation*}
$$

By Lemma 3, we obtain

$$
\begin{align*}
\left(\frac{2}{E(r)}\right) & =\left\{\begin{array}{lll}
1, & \text { if } r \equiv 3 & (\bmod 8) \\
-1, & \text { if } r \equiv 7 & (\bmod 8)
\end{array}\right. \tag{28}\\
\left(\frac{c}{E(r)}\right) & =\left(\frac{E(r)}{c}\right)=\left(\frac{(2 m)^{r-1}}{c}\right)=\left(\frac{1}{c}\right)=1 \tag{29}\\
\left(\frac{E\left(\frac{r-1}{2}\right)}{E(r)}\right) & =\left(\frac{E(r)}{E\left(\frac{r-1}{2}\right)}\right)=\left(\frac{-c^{(r-1) / 2}}{E\left(\frac{r-1}{2}\right)}\right)=\left(\frac{c}{E\left(\frac{r-1}{2}\right)}\right) \\
& =\left(\frac{E\left(\frac{r-1}{2}\right)}{c}\right)=\left(\frac{(2 m)^{(r-3) / 2}}{c}\right)=\left(\frac{1}{c}\right)=1 \tag{30}
\end{align*}
$$

$$
\begin{align*}
\left(\frac{F\left(\frac{r-1}{2}\right)}{E(r)}\right) & =\left(\frac{E(r)}{F\left(\frac{r-1}{2}\right)}\right)=\left(\frac{-c^{(r-1) / 2}}{F\left(\frac{r-1}{2}\right)}\right)=\left(\frac{c}{F\left(\frac{r-1}{2}\right)}\right) \\
& =\left(\frac{F\left(\frac{r-1}{2}\right)}{c}\right)=\left(\frac{(-1)^{(r-3) / 2} 2^{r-3}}{c}\right)=\left(\frac{1}{c}\right)=1 \tag{31}
\end{align*}
$$

The combination of (28)-(31) with (27) yields (20) for $r \equiv 3(\bmod 4)$. Thus, the lemma is proved.

Lemma $6([1$, Theorem $])$. If (5) holds, $b \equiv 3(\bmod 4), c \equiv 5(\bmod 8)$ and c is a prime power, then (1) has only the solution $(x, y, z)=(2,2, r)$.

Lemma 7. Let a, b, c be fixed positive integers such that $\min (a, b, c)>1$ and $\operatorname{gcd}(a, b, c)=1$. If c is an odd prime power, then (1) has at most one solution (x, y, z) satisfying $2 \mid x$ and $2 \mid y$.

Proof. This lemma follows directly from the proof of [4, Theorem].

Proof of Theorem 1. Since $m>2 r / \pi$, by Lemma 2, we see from (2), (6) and (7) that

$$
\begin{equation*}
a=m E(r), \quad b=F(r), \quad c=m^{2}+1 \tag{32}
\end{equation*}
$$

Since $m=2(\bmod 4)$, by (17) and (iv) of Lemma 3, we get that if $r \equiv 3$ $(\bmod 4)$, then $b \equiv 3(\bmod 4)$ and $c \equiv 5(\bmod 8)$. Therefore, by Lemma 6 , the theorem holds for $r \equiv 3(\bmod 4)$.

Let (x, y, z) be a solution of (1) with $(x, y, z) \neq(2,2, r)$. Since $m \equiv 2$ $(\bmod 4)$, by Lemma 4 , we have $2 \mid x$. On the other hand, if $2 \nmid y$, then from (1) and (32) we get

$$
1= \begin{cases}\left(\frac{b}{E(r)}\right), & \text { if } 2 \mid x \tag{33}\\ \left(\frac{b c}{E(r)}\right), & \text { if } 2 \nmid x\end{cases}
$$

Since $(c / E(r))=1$ by (29), we see from (32) and (33) that

$$
\begin{equation*}
\left(\frac{b}{E(r)}\right)=\left(\frac{F(r)}{E(r)}\right)=1 \tag{34}
\end{equation*}
$$

However, by Lemma 5 , we get $(F(r) / E(r))=-1$ if $r \equiv 5(\bmod 8)$. Therefore, we find from (34) that if $r \equiv 5(\bmod 8)$, then $2 \mid y$. But, by Lemma 7 , it is impossible, since $(x, y, z) \neq(2,2, r)$. Thus, if $r \not \equiv 1(\bmod 8)$, then (1) has only the solution $(x, y, z)=(2,2, r)$. The theorem is proved.

3. Proof of Theorem 2

Lemma 8 ([2]). Let p be an odd prime, and let u, v be coprime positive integers. Then we have either $\operatorname{gcd}\left(u+v,\left(u^{p}+v^{p}\right) /(u+v)\right)=1$ or $\operatorname{gcd}\left(u+v,\left(u^{p}+v^{p}\right) /(u+v)\right)=p$. Moreover, if $p \mid\left(u^{p}+v^{p}\right) /(u+v)$ then $p^{2} \nmid\left(u^{p}+v^{p}\right) /(u+v)$.

Lemma 9. If (32) holds and $m>4 r / \pi$, then we have $\max (a, b)<c^{r / 2}$ and $\min (a, b)>c^{(r-1) / 2}$.

Proof. Since $a^{2}+b^{2}=c^{r}$, it follows that $\max (a, b)<c^{r / 2}$. Since $m>4 r / \pi$, we get from (13) that

$$
\begin{equation*}
0<\sin \theta<\sin (r \theta)<r \theta<\frac{r}{m}<\frac{\pi}{4} \tag{35}
\end{equation*}
$$

Hence, by (12) and (32), we obtain

$$
\begin{equation*}
b=F(r)=c^{(r-1) / 2} \frac{\sin (r \theta)}{\sin \theta}>c^{(r-1) / 2} \tag{36}
\end{equation*}
$$

On the other hand, by (11), (32) and (35), we get

$$
\begin{align*}
a & =m E(r)=V(r)=c^{r / 2} \cos (r \theta)=c^{r / 2}\left(1-(\sin (r \theta))^{2}\right)^{1 / 2} \\
& >c^{r / 2}\left(1-\frac{\pi^{2}}{16}\right)^{1 / 2}>0.6 c^{r / 2}>c^{(r-1) / 2} \tag{37}
\end{align*}
$$

Thus, by (36) and (37), we obtain $\min (a, b)>c^{(r-1) / 2}$. The lemma is proved.

Lemma 10. If (32) holds, $m \equiv 2(\bmod 4), m>4 r / \pi$ and c is a prime, then (1) has no solution (x, y, z) with $2 \mid z$.

Proof. Under the assumption, by Lemma 4, we have $2 \mid x$. If $2 \mid z$, then from (1) we get

$$
\begin{equation*}
c^{z / 2}+a^{x / 2}=b_{1}^{y}, \quad c^{z / 2}-a^{x / 2}=b_{2}^{y}, \quad b=b_{1} b_{2}, \quad b_{1} b_{2} \in \mathbb{N} \tag{38}
\end{equation*}
$$

If follows that

$$
\begin{equation*}
b_{1}^{y}+b_{2}^{y}=2 c^{z / 2} \tag{39}
\end{equation*}
$$

By Lemma 7 , (1) has only the solution $(x, y, z)=(2,2, r)$ satisfying $2 \mid x$ and $2 \mid y$. So we have $2 \nmid y$. If $y>1$, then $y \geq 3$ and y has an odd prime divisor p. Since c is a prime, by Lemma 8, we get from (39) that

$$
\begin{equation*}
b+1 \geq b_{1}+b_{2} \geq 2 c^{z / 2-1}>2 c \tag{40}
\end{equation*}
$$

and

$$
\begin{align*}
c \geq \frac{b_{1}^{y}+b_{2}^{y}}{b_{1}^{y / p}+b_{2}^{y / p}} \geq & \frac{b_{1}^{y}+b_{2}^{y}}{b_{1}^{y / 3}+b_{2}^{y / 3}}=b_{1}^{2 y / 3}-b^{y / 3}+b_{2}^{2 y / 3} \\
& =\left(b_{1}^{y / 3}-b_{2}^{y / 3}\right)^{2}+b^{y / 3}>b^{y / 3} \geq b>2 c-1>c \tag{41}
\end{align*}
$$

a contradiction. So we have $y=1$.
If $x=2$ and $y=1$, then $z<r$ and $b(b-1) \equiv 0\left(\bmod c^{z}\right)$ by (1). Since $\operatorname{gcd}(b, c)=1$, we get $b-1 \equiv 0\left(\bmod c^{z}\right)$ and $b>b-1 \geq c^{z}=a^{2}+b>b$, a contradiction. It follows that $x \geq 4$, since $2 \mid x$. Then, by (38), we get

$$
\begin{equation*}
b \geq b_{1}=c^{z / 2}+a^{x / 2}>2 a^{x / 2} \geq 2 a^{2} \tag{42}
\end{equation*}
$$

But, by Lemma 9, we have $b<c^{r / 2}$ and $2 a^{2}>2 c^{r-1}>2 c^{r / 2}$, since $r \geq 3$. Thus, (42) is impossible. The lemma is proved.

Lemma 11 ([5, Lemma 5]). Let $a_{1}, a_{2}, b_{1}, b_{2}$ be positive integers satisfying $\min \left(a_{1}, a_{2}\right)>10^{3}$. Further, let $\Lambda=b_{i} \log a_{1}-b_{2} \log a_{2}$. If $\Lambda \neq 0$, then we have

$$
\log |\Lambda|>-17.61\left(\log a_{1}\right)\left(\log a_{2}\right)(1.7735+B)^{2}
$$

where

$$
B=\max \left(8.445,0.2257+\log \left(\frac{b_{1}}{\log a_{2}}+\frac{b_{2}}{\log a_{1}}\right)\right)
$$

Lemma 12. Let (x, y, z) be a solution of (1). If $\min (b, c)>10^{3}$, $x=2, y \geq 3$ and $b^{3}>a^{2}$, then we have

$$
\begin{equation*}
y<1856 \log c \tag{43}
\end{equation*}
$$

Proof. Since $a^{2}+b^{y}=c^{z}$ and $b^{y}>a^{2}$, we get

$$
\begin{align*}
z \log c & =\log \left(b^{y}+a^{2}\right)=y \log b+\frac{2 a^{2}}{b^{y}+c^{z}} \sum_{k=0}^{\infty} \frac{1}{2 k+1}\left(\frac{a^{2}}{b^{y}+c^{z}}\right)^{2 k} \\
& <y \log b+\frac{2 a^{2}}{b^{y}+c^{z}} \sum_{k=0}^{\infty} \frac{3^{-2 k}}{2 k+1}=y \log b+\frac{(3 \log 2) a^{2}}{b^{y}+c^{z}} \tag{44}\\
& <y \log b+\frac{1.04 a^{2}}{b^{y}}
\end{align*}
$$

Let $\Lambda=z \log c-y \log b$. Then from (44) we get

$$
\begin{equation*}
\log \left(1.04 a^{2}\right)-\log |\Lambda|>y \log b \tag{45}
\end{equation*}
$$

Since $\min (b, c)>10^{3}$, by Lemma 11, we have

$$
\begin{equation*}
\log |\Lambda|>-17.61(\log b)(\log c)(1.7735+B)^{2} \tag{46}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\max \left(8.445,0.2257+\log \left(\frac{z}{\log b}+\frac{y}{\log c}\right)\right) . \tag{47}
\end{equation*}
$$

If $B=8.445$, then from (44) and (47) we obtain

$$
\begin{equation*}
\frac{2 y}{\log c}<\frac{z}{\log b}+\frac{y}{\log b} \leq e^{8.2193}<3712 \tag{48}
\end{equation*}
$$

whence we get (43).
If $B>8.445$, then from (47) we get

$$
\begin{equation*}
B=0.2257+\log \left(\frac{z}{\log b}+\frac{y}{\log c}\right) . \tag{49}
\end{equation*}
$$

Substitute (46) and (49) into (45), we get

$$
\begin{equation*}
\frac{\log 1.04+2 \log a}{(\log b)(\log c)}+17.61\left(1.9992+\log \left(\frac{z}{\log b}+\frac{y}{\log c}\right)\right)^{2}>\frac{y}{\log c} \tag{50}
\end{equation*}
$$

Since $b^{3}>a^{2}$ and $\min (b, c)>10^{3}$, we have

$$
\begin{equation*}
0.44>\frac{\log 1.04+2 \log a}{(\log b)(\log c)} \tag{51}
\end{equation*}
$$

By (44), we get

$$
\begin{equation*}
0.22+\frac{2 y}{\log c}>\frac{z}{\log b}+\frac{y}{\log c} \tag{52}
\end{equation*}
$$

Thus, by (50)-(52), we obtain

$$
0.44+17.61\left(1.9992+\log \left(0.22+\frac{2 y}{\log c}\right)\right)^{2}>\frac{y}{\log c}
$$

whence we conclude that (43) holds. The lemma is proved.
Proof of Theorem 2. Let (x, y, z) be a solution of (1) with $(x, y, z) \neq(2,2, r)$. Then, by Lemmas 4,7 and 10 , we have $2 \mid x, 2 \nmid y$ and $2 \nmid z$, respectively. Since $r \equiv 1(\bmod 8)$ and $m>41 r^{3 / 2}>4 r / \pi$, we see from (32) and (iv) of Lemma 3 that $r \geq 9$ and $b \equiv 1(\bmod 8)$. Further, since $m \equiv 2(\bmod 4)$ and $c \equiv 5(\bmod 8)$, we get from (1) that $a^{x} \equiv c^{z}-b^{y} \equiv 5-1 \equiv 4(\bmod 8)$. It follows that $x=2$. Furthermore, we find from the proof of Lemma 10 that $y \neq 1$ and $y \geq 3$. Since $m>4 r / \pi$, by Lemma 9 , we get $b^{3}>c^{3(r-1) / 2}>c^{r}>a^{2}$. Therefore, by Lemma 12, the solution (x, y, z) satisfies (43).

On the other hand, we get from (15), (16) and (32) that

$$
\begin{gather*}
a^{2} \equiv r^{2} m^{2} \quad\left(\bmod m^{4}\right), \quad b^{y} \equiv 1-y\binom{r}{2} m^{2} \quad\left(\bmod m^{4}\right) \tag{53}\\
c^{z} \equiv 1+z m^{2} \quad\left(\bmod m^{4}\right)
\end{gather*}
$$

Substitute (53) into (1), we obtain

$$
\begin{equation*}
\frac{1}{2} r(r-1) y+z \equiv r^{2} \quad\left(\bmod m^{2}\right) \tag{54}
\end{equation*}
$$

Since $y \geq 3$, we see from (54) that

$$
\begin{equation*}
\frac{1}{2} r(r-1) y+z \geq r^{2}+m^{2} \tag{55}
\end{equation*}
$$

Since $a^{2}+b^{2}=c^{r}$ and $a^{2}+b^{y}=c^{z}$, we have

$$
\begin{align*}
c^{r y} & =\left(a^{2}+b^{2}\right)^{y}>a^{2 y}+\binom{y}{y / 2} a^{y} b^{y}+b^{2 y} \\
& >b^{2 y}+2 a^{2} b^{y}+a^{4} \tag{56}\\
& =\left(a^{2}+b^{y}\right)^{2}=c^{2 z} .
\end{align*}
$$

It follows that $r y>2 x$. Therefore, by (55), we get

$$
\begin{equation*}
r^{2}\left(\frac{y}{2}-1\right)>m^{2} . \tag{57}
\end{equation*}
$$

The combination of (43) and (57) yields

$$
\begin{equation*}
r^{2}>\frac{m^{2}}{y / 2-1}>\frac{m^{2}}{928 \log \left(m^{2}+1\right)-1} . \tag{58}
\end{equation*}
$$

Since $m>41 r^{3 / 2}$, we get from (58) that

$$
\begin{equation*}
928 \log \left(1681 r^{3}+1\right)>1681 r+1 \tag{59}
\end{equation*}
$$

However, (59) is false if $r \geq 9$. Thus, the theorem is proved.
Acknowledgements. The author would like to thank the referees for their valuable suggestions.

References

[1] Z.-F. CaO, A note on the diophantine equation $a^{x}+b^{y}=c^{z}$, Acta Arith. 91 (1999), 85-93.
[2] K. Inkeri, Untersuchungen über die Fermatsche Vermutung, Ann. Acad. Sci. Fennicae Ser. A I, no. 33 (1946), 60 pp.
[3] M. Laurent, M. Mignotte and Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory 55 (1995), 285-321.
[4] M.-H. Le, An upper bound for the number of solutions of the exponential diophantine equation $a^{x}+b^{y}=c^{z}$, Proc. Japan Acad. Ser. A Math. Sci. 75 (1999), 90-91.
[5] M.-H. Le, On the exponential diophantine equation $\left(m^{3}-3 m\right)^{x}+\left(3 m^{2}-1\right)^{y}=$ $\left(m^{2}+1\right)^{z}$, Publ. Math. Debrecen 58 (2001), 461-466.

An open problem concerning the diophantine equation $a^{x}+b^{x}=c^{z}$
[6] M.-H. Le, A conjecture concerning the exponential diophantine equation $a^{x}+b^{y}=c^{z}$, Acta Arith. 106 (2003), 4: 345-353.
[7] R. Lidl and H. Niederreiter, Finite fields, Addison-Wesley, Reading, MA, 1983.
[8] N. Terai, The diophantine equation $a^{x}+b^{y}=c^{z}$, Proc. Japan Acad. Ser. A Math. Sci. 70 (1994), 22-26.
maohua le
department of mathematics
zhanguiang normal college
29 CUNJin road, chikan
ZHANJIANG, GUANGDONG
P.R. CHINA
(Received May 22, 2003; final version December 27, 2005)

[^0]: Mathematics Subject Classification: 11D61.
 Key words and phrases: pure exponential diophantine equation, number of positive integer solutions.
 Supported by the National Natural Science Foundation of China (No. 10271104) and the Guangdong Provincial Natural Science Foundation (No. 04011425).

