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The set of pseudo solutions of the differential equation
x(™ = f(t,z) in Banach spaces

By IRENEUSZ KUBIACZYK (Poznan)
and ANETA SIKORSKA-NOWAK (Poznari)

Abstract. In this paper we prove the existence theorem for the equation
(™) = f(t,z(t)) in Banach spaces where f is weakly-weakly sequentially con-
tinuous. Moreover, we prove that the set of pseudo-solutions of our equation is
compact and connected.

1. Introduction

In this paper we will deal with the Cauchy problem

2™ = f(t,x(t))
z(0) =0, tel={(0,a), acRy (1.1)
2(0) =1, ...,z D(0) = np_1,

where 71,...,9m-1 € E, m € N.

Throughout this paper (E, || - ||) will be denote a real Banach space,
E* the dual space, (R) fg f(s)ds the weak Riemann integral, (P) f(f f(s)ds
the Pettis integral ([8], [9], [12], [16]).

By (C(I,E),w) we will denote the space of all continuous functions
from I to F endowed with the topology o(C(I, E),C(I, E)*).
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This paper is divided into two main sections. In Section 1 we prove an
existence theorem for the problem (1.1). In Section 2 we prove that, the
set of pseudo-solutions of the equation (1.1) is compact and connected.

The result presented in this paper extends the results for CicHON [5],
CicHON, KUBIACZYK [6], CRAMER, LAKSMIKANTHAM and MITCHELL [7],
O’REGAN [15], SZUFLA [17], SZUFLA and SZUKALA [18].

Assume that B = {z € E : ||z|| < b, b >0} and f : I x B — E.
Moreover, let M = sup{||f(t,z)|| : t € I, © € B}. Choose a positive
number d such that d < a, Z;n:_ll 1741 % + M% <b,d" <1, (m>1).

Let J = (0,d). Weset B={z € C(J,E):z(t) e B, te J}.

We will consider the problem

(1) = p(t) + (R) /0 (R) /0 (P /0 " b (b))t - dtodty, (1.2)

0, m=1
where p(t) = {Z;,l_ll 0 3_3!, -
Now we recall the notion of the pseudo-solution. For such solutions,
the problem (1.1) is equivalent to the integral problem (1.2).
Fix z* € E*. Let us introduce the following definition:

is a continuous function.

Definition 1.1. A function x : I — FE is said to be a pseudo-solution

of the equation (1.1) if it satisfies the following conditions:

(i) = is a strongly absolutely continuous, (m — 1)-times weakly differen-
tiable,

(ii) Varer Imes A(z*)=0A(") "z : [ — E is m-times differentiable,

A(z*)CI

(iil) (z*z(m=Y(t) = 2*f(t,z(t)) for each t ¢ A(x*) and z(0) = 0,

2'(0) =n1,..., 2" D(0) = np_y.

In this paper we will use the measure of weak noncompactness devel-
oped by DEBLASI [3]. The proofs of properties of the measure of week
noncompactness see in [2].

Let A be a bounded nonvoid subset of F.

The de Blasi measure of weak noncompactness (3(A) is defined by

B(A) = inf{t > 0 : there exist C' € K such that A C C + tBy},
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where K% is the set of weakly compact subsets of £ and By is the norm
unit ball.
The properties of measure of weak noncompactness 3(A) are:

(i) if A C B then (A) < (B);

A) = B(A), where A denotes the closure of A;

A) = 0 if and only if A is a weakly relatively compact;
B) =

max{(A), 3(B)};
AA ) [AIB(A), (A € R);

A+ B) < 3(A) + B(B);
conv A) = B(A).

We can construct many other measures of noncompactness with the
above properties, by using a scheme from [1], [4].

We recall that a function f : I x B — E is called a Carathéodory
function if for each z € B, f(t,z) is measurable in ¢ and for almost all
t € I, f(t,z) is continuous. A function f : [ — FE is said to be weakly
continuous if it is continuous from [ to E endowed with its weak topology.

A function g : E — FE1, where E and F; are Banach spaces, is said to
be weakly — weakly sequentially continuous if for each weakly convergent
sequence () C E, a sequence (g(z,)) C Fj.

(v
(v

(vii

)
ii)
iii)
(iv)
)
i)
)

2. Existence of solution

We will use the following lemmas:

Lemma 2.1 ([14]). Let H C C(I, E) be a family of strongly equicon-
tinuous functions. Then Bc(H) = sup,c; S(H(t)) = B(H(I)), where
Bc(H) denotes the measure of weak noncompactness in C(I, E) and the
function t — B(H (t)) is continuous.

Lemma 2.2 ([6]). Let (X,d) be a metric space and let g : X — (E,w)
be sequentially continuous. If A C X is a connected subset in X, then g(A)
is a connected subset in (E,w).

Similar as in [10] we can prove the following lemma.
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Lemma 2.3. For each bounded, equicontinuous set X C C(I, E) and
for each ¢,d € I we have

ﬁ( / dX(s)ds) </ B (s,

where fch(s)ds = { fcdx(s)ds cxe X}

In the proof of the main theorem we will apply the following fixed
point theorem.

Theorem 2.1 ([13]). Let D be a closed convex subset of E, and let
F be a weakly sequentially continuous map from D into itself. If for some
x € D the implication

V =conv ({x} U F(V)) = V is relatively wekly compact, (2.1)
Now we prove an existence theorem for the problem (1.1).

Theorem 2.2. Assume, that for each strongly absolutely continuous
function x : J — E, f(-,x(-)) is Pettis integrable, f(t,-) is weakly-weakly
sequentially continuous and

BF(J x X)) < h(B(X)) for each X C B, (2.2)

where h is a function such that h(u) < u for u € Ry. Then there exists a
pseudo-solution of the problem (1.1) on J.

PRrROOF. By F, we define a mapping

Ft) =20+ () [(®) [Py [ St b

0, m=1,
1 i
2oy my 5o m> 1

We require that F : B — Bis weakly sequentially continuous.

where p(t) = {

(i) For any z* € E* such that ||*|] < 1 and for any z € B as
|x* f(t,z(t))] < M we have

|2 o (1)]

* [p(t)—l—(R) /0 ‘”) /0 T /0 e f(tm,x(tm))dtm...dtgdtl}
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m—1 ;
£
|- Z H%‘HT
j=1

+(R)/O (R)/Ol...(P)/Oml 12 (F (b 2 (b)) - .- dtadlty

m—1 j t t1 tm—1

< ]|773|| (R)/ (R)/ (P)/ Mdt,, ...dtadt1
— 0 0 0
J
m—1 i Mdm

< H773|| T <b.
= !

Hence

sup{|z* F(t)| : 2* € E*, ||z*|| < 1} and ||F,.(t)|| < b so F, € B.

(ii) Now we will prove that the set F,(B) is equicontinuous.
Because

[F% () = Fa(s)]| < [lp(t) — p(s)]]

n H(R) /Ot(R) /Otl...(P) /Otm_lf(tm,x(tm))dtm...dtgdtl

Mdm— 1
(m —1)!

< lp(®) —p(s)ll + |t —sl|, for each x € C(J, E),

so Fy(B) is strongly equicontinuous.

(iii) Now we will show weakly sequentially continuity of F.
Let x,, = z in (C(I, E),w).

|27 [P, (1) — Fa(t)]]

= o [p(t) +(R) /0 ‘”) ] (P) ?1 Ftons (b)) - dtndty

tm—1

—p(t)—(R)/t(R)/Otl...(P) / f(tm,x(tm))dtm...dtgdtl]
0

0
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= | [(R) / (R) / (P) / [F (s () — F (toms ()l dtzdtl]
0 0 0
< (R) / (R) / (P) / [ by (b)) — F (s (b))l - .- sty
0 0 0

Because x,, — x in (C(I,F),w) and f is weakly sequentially continuous
so F, is weakly sequentially continuous.

Suppose that V = conv (F, (V) U {0}) for some V C B.

We will prove that V is relatively weakly compact, thus (2.1) is satis-
fied. As F,(V) is equicontinuous, the function v(t) — S(V (¢)) is continu-
ous (by Lemma 2.1).

By the definition of V', the mean valued theorem for the Pettis integral,
Lemma 2.3, the strongly equicontinuity of the family of Riemann integrals,
by the properties of 5 and (2.2) we obtain:

BV (t)) = B(eonv (Fx(V) U{0})) < B(Fz(V))

_ g<p(t) +(R) /Ot(R) ] (P) tylf(tm,x(tm))dtm » dtzdt1>
0 0

tm—1

<g<(R)Oj(R)Z...(P) 07f(tm,x(tm))dtm...dtgdh)

tm—

<(R) [ (R) /0 tl...(R) 725[(13) / 1f(tm,a:(tm))dtm]dtm_1...dtgdtl
0

0

I
=
=
c\“
=
ﬁ
3
&
~
3
N
=
=
=
S
=
~
3
N
.
Sk

/

< (R)/t(R) /Otl...(R) 725[%_1 o F(J % V()b s ... dts
0 0
/
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By our assumptions about the function A we have

So

Because d™ < 1, we get v(t) = f(V(t)) =0 for t € J.

By Arzeld—Ascoli’s theorem, V' is relatively weakly compact. So, by
Theorem 2.1 F,. has a fixed point in B which is actually a pseudo-solution
of the problem (1.1). O

3. Compactness and connectedness

In this part we show that the set of pseudo-solutions of our equation
(1.1) is compact and connected.

Theorem 3.1. Under the assumptions of Theorem 2.2 the set S of
all pseudo-solutions of the Cauchy problem (1.1) on J is compact and
connected in (C(J, E),w).

PROOF. As S = F,(S), by repeating the above argument, with V' = S
we can show that S is relatively compact in (C(J, E),w). Since F is weakly
continuous on S(J)¥, S is weakly closed and consequently weakly compact.

For any n > 0 denotes by S, the set of all functions v : J — FE
satisfying the following conditions:

(1) u(0) =0, v/ (0) = ny,...,u™(0) = np_1,

m—1 -1 prgm—1
lu(t)—u(s)|| < K|t—s|, for t,s € J, where K = ]Z:; H?7j||dj! + (md_ ik

t1 tm—1

(id) supHu(t)—p(t)—(R)f(R)f...(P) [ f(tm,a:(tm))dtm...dtgdtlu<77.
teJ 0 0 0

The set S, is nonempty as S C S,,.
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Let p = min(a,n/K). For any € € (0,p) let v(-,¢) : J — E be defined
by the formula:

p(t), for0<t<e

olt ) = p<t>+<R>/0 <R>/01...
(P) /tml_sf(tmal’(tm))dtm ... dtadty, fore<t<d
0

Clearly v(-,¢) satisfies (i).
Furthermore we have:

o(t,e) — p(t) — (R) O/t (R) /0 Y ?1 Pt (b))t - - diadty
] (R)O/t(R) /Otl...(P)tz1f(tm,x(tm))dtm...dt2dt1 Cfor0<t<e
H(R)O/(R)/otl' y (]Zi_m[:}(tm,x(tm))dtm L dbsdt||, fore<t<d
Mg -dm !
S oo <7

thus v(-, €) satisfies (ii).
Now, we will prove that S, is connected. Define

) p(t), for0<t<e
ve(t) =
Fi(ve)(t—e), fore<t<d

where v, = v(+,¢). We will show that the mapping ¢ — v.(-) is sequentially
continuous from (0, p) into (C(J, E),w).
Let 0 < e < <d (when ¢ < e the argument is similar).
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For t € (0,¢)
2" (v(t) — vs(t))[ = 0. (3.1)

For t € (e,9)
|27 (ve(t) — vs(t))]

t1 tm—1—¢

" [(R)/t(R)/...(P) / F(toms 0= (tm)) b - . . dtadty
0 0

—(R) /t (R) / ...(P) tm/l_éf(tm,ve(tm))dtm...dt2dt1]
0

0 0
<N IR [(B) [Py [ ot dtads
0 tm—1—
* 0 dm—l 1)
<l 16— el - M (3.2)
For ¢ € (9,26)
|27 (ve(t) — vs(t))| = |27 (Fo(ve)(t — €) — Fi(vs)(t — 9))|
<2 [Fe(ve)(t —€) — Fi(ve)(t — 0)]]
+ |2*[Fy (ve) (t — ) — F(vs)(t — 6]
< |2 [Fy(ve)(t = 0) — Fi(vs)(t — 9)]|
m—1
) - M- hhﬁ—e—t&\
= |2 (Fy(ve)(t — 6) — Fr(vs)(t — 9)]|
m—1
Fllat| - M- (nff e (3.3)

Let (d,,) be a sequence such that §, — ¢ (6, > ¢).

By (3.1) and (3.2), it follows that vs, () converges weakly to v.(t),
uniformly for ¢t € (0,0). So Fy(vs,)(t) — Fy(v:)(t) weakly on (0,d). Now,
by (3.3) ws, (t) tends to v (t) weakly for each t € (0, 29).
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By repeating the above argument and using induction, we obtain that
the map € — v.(t) from (0,d) into (C(J, E),w) is sequentially continuous.
Therefore, by Lemma 2.2, the set {v.(-) : 0 < ¢ < d} is connected in
(C(J,E),w).

Let x € S,. Choose € > 0 such that 0 < e < d and

t1

x(t)—p(t)—(R)/(R)/...(P) / Ftns (b))l - .- diadty
0 0

0

sup
teJ

m—1

Me — < n.
LR pr s TR

For any ¢, 0 < g < d let y(-,q) : J — E be defined by the formula:

x(t), for0<t<gq
x(q) + p(t) ; 2(9) (t—q), for ¢ <t < min(d,q+¢)
y(t,q) = [ |
pt)+(R) [(R) [ ...
[
P) / Fltons (b @)l - diadly, for min(d,q + ) <1<d

By repeating the above consideration, with y(-,¢) in the place of v(-,¢),
one can show that y(-,q) € S, for each ¢ € (0,d) and the mapping
qg — y(,q) from J into (C(J, E),w) is sequentially continuous. Conse-
quently, by Lemma 2.2, the set T, = {y(-,q) : 0 < g < d} is connected in
(C(J,E),w).

Asy(-,0) = v(-,e) € VNT,, the set VUT, is connected, and therefore

the set W = |J T, UV is connected in (C(J, E),w).
x€Sy
Moreover S, C W, because x = y(-,d) € T} for each x € S,. On the

other hand W C S, since T, C S, and V C §;. Finally S, C W is a
connected subset of (C(J, E),w).

Suppose that the set S is not connected. As S weakly compact, there
exist nonempty weakly compact sets Wy and W5 such that S = W7 U Wsy
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and Wi NWs5 = (. Consequently there exists two disjoint weakly open sets
Uy, Uy such that Wy € Uy, Wy C Us. Suppose that for every n € N, there

exists a u, € V,, \ U, where V,, = f/n and U = Uy U Us.

Put H = {u, : n € N}*. Since u, — Fy(u,) — 0in C(J,E) as n —
oo and H(t) C {up(t) — Fyp(un)(t) : uy, € H} + F,(H)(t) repeating the
argument, from Theorem 2.2, one can show that there exists ug € H such
that ug = Fy(up), i.e. ug € S\ U. Furthermore, S C (C(J, E),w)\U, since
U is weakly open and hence ug € S, a contradiction.

Therefore, there is m € N such that V,, C U. Since Uy NV, # 0 #
Us NV,,, Vi, is not connected, a contradiction with the connectedness of
each V,,. Consequently, S is connected in (C'(J, E),w). O
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