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The set of pseudo solutions of the differential equation
x(m) = f(t, x) in Banach spaces

By IRENEUSZ KUBIACZYK (Poznań)
and ANETA SIKORSKA-NOWAK (Poznań)

Abstract. In this paper we prove the existence theorem for the equation
x(m) = f(t, x(t)) in Banach spaces where f is weakly-weakly sequentially con-
tinuous. Moreover, we prove that the set of pseudo-solutions of our equation is
compact and connected.

1. Introduction

In this paper we will deal with the Cauchy problem
x(m) = f(t, x(t))

x(0) = 0,

x′(0) = η1, . . . , x
(m−1)(0) = ηm−1,

t ∈ I = 〈0, a〉, a ∈ R+ (1.1)

where η1, . . . , ηm−1 ∈ E, m ∈ N.
Throughout this paper (E, ‖ · ‖) will be denote a real Banach space,

E∗ the dual space, (R)
∫ t
0 f(s)ds the weak Riemann integral, (P )

∫ t
0 f(s)ds

the Pettis integral ([8], [9], [12], [16]).
By (C(I,E), ω) we will denote the space of all continuous functions

from I to E endowed with the topology σ(C(I,E), C(I,E)∗).
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This paper is divided into two main sections. In Section 1 we prove an
existence theorem for the problem (1.1). In Section 2 we prove that, the
set of pseudo-solutions of the equation (1.1) is compact and connected.

The result presented in this paper extends the results for Cichoń [5],
Cichoń, Kubiaczyk [6], Cramer, Laksmikantham and Mitchell [7],
O’Regan [15], Szufla [17], Szufla and Szuka�la [18].

Assume that B = {x ∈ E : ‖x‖ < b, b > 0} and f : I × B → E.
Moreover, let M = sup{‖f(t, x)‖ : t ∈ I, x ∈ B}. Choose a positive
number d such that d ≤ a,

∑m−1
j=1 ‖ηj‖dj

j! + M dm

m! < b, dm < 1, (m > 1).

Let J = 〈0, d〉. We set B̃ = {x ∈ C(J,E) : x(t) ∈ B, t ∈ J}.
We will consider the problem

x(t) = p(t)+ (R)
∫ t

0
(R)

∫ t1

0
. . . (P )

∫ tm−1

0
f(tm, x(tm))dtm . . . dt2dt1, (1.2)

where p(t) =

{
0, m = 1∑m−1

j=1 ηj · tj

j! , m > 1
is a continuous function.

Now we recall the notion of the pseudo-solution. For such solutions,
the problem (1.1) is equivalent to the integral problem (1.2).

Fix x∗ ∈ E∗. Let us introduce the following definition:

Definition 1.1. A function x : I → E is said to be a pseudo-solution
of the equation (1.1) if it satisfies the following conditions:

(i) x is a strongly absolutely continuous, (m − 1)-times weakly differen-
tiable,

(ii) ∀x∗∈E∗∃mesA(x∗)=0
A(x∗)⊂I

A(x∗) x∗x : I → E is m-times differentiable,

(iii) (x∗x(m−1))′(t) = x∗f(t, x(t)) for each t /∈ A(x∗) and x(0) = 0,
x′(0) = η1, . . . , x

(m−1)(0) = ηm−1.

In this paper we will use the measure of weak noncompactness devel-
oped by DeBlasi [3]. The proofs of properties of the measure of week
noncompactness see in [2].

Let A be a bounded nonvoid subset of E.
The de Blasi measure of weak noncompactness β(A) is defined by

β(A) = inf{t > 0 : there exist C ∈ Kω such that A ⊂ C + tB0},



The set of pseudo solutions of the differential equation. . . 299

where Kω is the set of weakly compact subsets of E and B0 is the norm
unit ball.

The properties of measure of weak noncompactness β(A) are:

(i) if A ⊂ B then β(A) ≤ β(B);

(ii) β(A) = β(A), where A denotes the closure of A;

(iii) β(A) = 0 if and only if A is a weakly relatively compact;

(iv) β(A ∪ B) = max{β(A), β(B)};
(v) β(λA) = |λ|β(A), (λ ∈ R);

(vi) β(A + B) ≤ β(A) + β(B);

(vii) β(conv A) = β(A).

We can construct many other measures of noncompactness with the
above properties, by using a scheme from [1], [4].

We recall that a function f : I × B̃ → E is called a Carathéodory
function if for each x ∈ B̃, f(t, x) is measurable in t and for almost all
t ∈ I, f(t, x) is continuous. A function f : I → E is said to be weakly
continuous if it is continuous from I to E endowed with its weak topology.

A function g : E → E1, where E and E1 are Banach spaces, is said to
be weakly – weakly sequentially continuous if for each weakly convergent
sequence (xn) ⊂ E, a sequence (g(xn)) ⊂ E1.

2. Existence of solution

We will use the following lemmas:

Lemma 2.1 ([14]). Let H ⊂ C(I,E) be a family of strongly equicon-

tinuous functions. Then βC(H) = supt∈I β(H(t)) = β(H(I)), where

βC(H) denotes the measure of weak noncompactness in C(I,E) and the

function t → β(H(t)) is continuous.

Lemma 2.2 ([6]). Let (X, d) be a metric space and let g : X → (E,ω)
be sequentially continuous. If A ⊂ X is a connected subset in X, then g(A)
is a connected subset in (E,ω).

Similar as in [10] we can prove the following lemma.
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Lemma 2.3. For each bounded, equicontinuous set X ⊂ C(I,E) and

for each c, d ∈ I we have

β

( ∫ d

c
X(s)ds

)
≤

∫ d

c
β(X(s))ds,

where
∫ d
c X(s)ds =

{ ∫ d
c x(s)ds : x ∈ X

}
.

In the proof of the main theorem we will apply the following fixed
point theorem.

Theorem 2.1 ([13]). Let D be a closed convex subset of E, and let

F be a weakly sequentially continuous map from D into itself. If for some

x ∈ D the implication

V = conv ({x} ∪ F (V )) ⇒ V is relatively wekly compact, (2.1)

Now we prove an existence theorem for the problem (1.1).

Theorem 2.2. Assume, that for each strongly absolutely continuous

function x : J → E, f(·, x(·)) is Pettis integrable, f(t, ·) is weakly-weakly

sequentially continuous and

β(f(J × X)) ≤ h(β(X)) for each X ⊂ B, (2.2)

where h is a function such that h(u) < u for u ∈ R+. Then there exists a

pseudo-solution of the problem (1.1) on J .

Proof. By Fx we define a mapping

Fx(t) = p(t) + (R)
∫ t

0
(R)

∫ t1

0
. . . (P )

∫ tm−1

0
f(tm, x(tm))dtm . . . dt2dt1,

where p(t) =

{
0, m = 1,∑m−1

j=1 ηj · tj

j! , m > 1.

We require that Fx : B̃ → B̃ is weakly sequentially continuous.

(i) For any x∗ ∈ E∗ such that ‖x∗‖ ≤ 1 and for any x ∈ B as
|x∗f(t, x(t))| ≤ M we have

|x∗Fx(t)|

=
∣∣∣∣x∗

[
p(t) + (R)

∫ t

0
(R)

∫ t1

0
. . . (P )

∫ tm−1

0
f(tm, x(tm))dtm . . . dt2dt1

]∣∣∣∣
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≤ ‖x∗‖ ·
m−1∑
j=1

‖ηj‖‖t
j‖

j!

+ (R)
∫ t

0
(R)

∫ t1

0
. . . (P )

∫ tm−1

0
|x∗(f(tm, x(tm)))|dtm . . . dt2dt1

≤
m−1∑
j=1

‖ηj‖dj

j!
+ (R)

∫ t

0
(R)

∫ t1

0
. . . (P )

∫ tm−1

0
Mdtm . . . dt2dt1

≤
m−1∑
j=1

‖ηj‖dj

j!
+

M · dm

m!
< b.

Hence

sup{|x∗Fx(t)| : x∗ ∈ E∗, ‖x∗‖ ≤ 1} and ‖Fx(t)‖ ≤ b so Fx ∈ B̃.

(ii) Now we will prove that the set Fx(B̃) is equicontinuous.
Because

‖Fx(t) − Fx(s)‖ ≤ ‖p(t) − p(s)‖

+
∥∥∥∥(R)

∫ t

0
(R)

∫ t1

0
. . . (P )

∫ tm−1

0
f(tm, x(tm))dtm . . . dt2dt1

∥∥∥∥
≤ ‖p(t) − p(s)‖ +

Mdm−1

(m − 1)!
|t − s|, for each x ∈ C(J,E),

so Fx(B̃) is strongly equicontinuous.

(iii) Now we will show weakly sequentially continuity of Fx.
Let xn → x in (C(I,E), ω).

|x∗[Fxn(t) − Fx(t)]|

=
∣∣∣∣x∗

[
p(t) + (R)

∫ t

0
(R)

t1∫
0

. . . (P )

tm−1∫
0

f(tm, xn(tm))dtm . . . dt2dt1

− p(t) − (R)

t∫
0

(R)
∫ t1

0
. . . (P )

tm−1∫
0

f(tm, x(tm))dtm . . . dt2dt1

]∣∣∣∣
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=
∣∣∣∣x∗

[
(R)

t∫
0

(R)

t1∫
0

. . . (P )

tm−1∫
0

[f(tm, xn(tm))− f(tm, x(tm))]dtm . . . dt2dt1

]∣∣∣∣
≤ (R)

t∫
0

(R)

t1∫
0

. . . (P )

tm−1∫
0

|x∗[f(tm, xn(tm)) − f(tm, x(tm))]|dtm . . . dt2dt1.

Because xn → x in (C(I,E), ω) and f is weakly sequentially continuous
so Fx is weakly sequentially continuous.

Suppose that V = conv (Fx(V ) ∪ {0}) for some V ⊂ B̃.
We will prove that V is relatively weakly compact, thus (2.1) is satis-

fied. As Fx(V ) is equicontinuous, the function v(t) → β(V (t)) is continu-
ous (by Lemma 2.1).

By the definition of V , the mean valued theorem for the Pettis integral,
Lemma 2.3, the strongly equicontinuity of the family of Riemann integrals,
by the properties of β and (2.2) we obtain:

β(V (t)) = β(conv (Fx(V ) ∪ {0})) ≤ β(Fx(V ))

= β

(
p(t) + (R)

∫ t

0
(R)

t1∫
0

. . . (P )

tm−1∫
0

f(tm, x(tm))dtm . . . dt2dt1

)

≤ β

(
(R)

t∫
0

(R)

t1∫
0

. . . (P )

tm−1∫
0

f(tm, x(tm))dtm . . . dt2dt1

)

≤ (R)

t∫
0

(R)
∫ t1

0
. . . (R)

tm−2∫
0

β

[
(P )

tm−1∫
0

f(tm, x(tm))dtm

]
dtm−1 . . . dt2dt1

≤ (R)

t∫
0

(R)
∫ t1

0
. . . (R)

tm−2∫
0

β[tm−1 · conv f(J × V (J))]dtm−1 . . . dt1

≤ (R)

t∫
0

(R)
∫ t1

0
. . . (R)

∫ tm−2

0
tm−1 · h(β(V (J)))dtm−1 . . . dt1

≤ dm

m!
· h(β(V (J))).
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By our assumptions about the function h we have

β(V (t)) ≤ dm

m!
β(V (J)).

So
β(V (J)) ≤ dm

m!
β(V (J)).

Because dm < 1, we get v(t) = β(V (t)) = 0 for t ∈ J .

By Arzelá–Ascoli’s theorem, V is relatively weakly compact. So, by
Theorem 2.1 Fx has a fixed point in B̃ which is actually a pseudo-solution
of the problem (1.1). �

3. Compactness and connectedness

In this part we show that the set of pseudo-solutions of our equation
(1.1) is compact and connected.

Theorem 3.1. Under the assumptions of Theorem 2.2 the set S of

all pseudo-solutions of the Cauchy problem (1.1) on J is compact and

connected in (C(J,E), ω).

Proof. As S = Fx(S), by repeating the above argument, with V = S

we can show that S is relatively compact in (C(J,E), ω). Since F is weakly
continuous on S(J)ω, S is weakly closed and consequently weakly compact.

For any η > 0 denotes by Sη the set of all functions u : J → E

satisfying the following conditions:

(i) u(0) = 0, u′(0) = η1, . . . , u
(m−1)(0) = ηm−1,

‖u(t)−u(s)‖ ≤ K|t−s|, for t, s ∈ J, where K =
m−1∑
j=1

‖ηj‖dj−1

j!
+

Mdm−1

(m − 1)!
,

(ii) sup
t∈J

∥∥∥u(t)−p(t)−(R)
t∫
0

(R)
t1∫
0

. . . (P )
tm−1∫
0

f(tm, x(tm))dtm . . . dt2dt1

∥∥∥ <η.

The set Sη is nonempty as S ⊂ Sη.



304 Ireneusz Kubiaczyk and Aneta Sikorska-Nowak

Let ρ = min(a, η/K). For any ε ∈ (0, ρ) let v(·, ε) : J → E be defined
by the formula:

v(t, ε) =


p(t), for 0 ≤ t ≤ ε

p(t) + (R)
∫ t

0
(R)

∫ t1

0
. . .

(P )
∫ tm−1−ε

0
f(tm, x(tm))dtm . . . dt2dt1, for ε < t ≤ d

Clearly v(·, ε) satisfies (i).
Furthermore we have:

∥∥∥∥v(t, ε) − p(t) − (R)

t∫
0

(R)
∫ t1

0
. . . (P )

tm−1∫
0

f(tm, x(tm))dtm . . . dt2dt1

∥∥∥∥

=



∥∥∥∥(R)

t∫
0

(R)
∫ t1

0
. . . (P )

tm−1∫
0

f(tm, x(tm))dtm . . . dt2dt1

∥∥∥∥, for 0 ≤ t ≤ ε

∥∥∥∥(R)

t∫
0

(R)
∫ t1

0
. . . (P )

tm−1∫
tm−1−ε

f(tm, x(tm))dtm . . . dt2dt1

∥∥∥∥, for ε < t ≤ d

≤ M · ε · dm−1

(m − 1)!
< η

thus v(·, ε) satisfies (ii).
Now, we will prove that Sη is connected. Define

vε(t) =

{
p(t), for 0 ≤ t ≤ ε

Fx(vε)(t − ε), for ε < t ≤ d

where vε = v(·, ε). We will show that the mapping ε → vε(·) is sequentially
continuous from (0, ρ) into (C(J,E), ω).

Let 0 < ε < δ ≤ d (when δ ≤ ε the argument is similar).
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For t ∈ 〈0, ε〉
|x∗(vε(t) − vδ(t))| = 0. (3.1)

For t ∈ (ε, δ〉
|x∗(vε(t) − vδ(t))|

=
∣∣∣∣x∗

[
(R)

t∫
0

(R)

t1∫
0

. . . (P )

tm−1−ε∫
0

f(tm, vε(tm))dtm . . . dt2dt1

− (R)

t∫
0

(R)

t1∫
0

. . . (P )

tm−1−δ∫
0

f(tm, vε(tm))dtm . . . dt2dt1

]∣∣∣∣
≤ ‖x∗‖

∥∥∥∥(R)

t∫
0

(R)

t1∫
0

. . . (P )

tm−1−ε∫
tm−1−δ

f(tm, vε(tm))dtm . . . dt2dt1

∥∥∥∥
≤ ‖x∗‖ · |δ − ε| · M dm−1

(m − 1)!
. (3.2)

For t ∈ (δ, 2δ〉
|x∗(vε(t) − vδ(t))| = |x∗(Fx(vε)(t − ε) − Fx(vδ)(t − δ))|

≤ |x∗[Fx(vε)(t − ε) − Fx(vε)(t − δ)]|
+ |x∗[Fx(vε)(t − δ) − Fx(vδ)(t − δ)]|

≤ |x∗[Fx(vε)(t − δ) − Fx(vδ)(t − δ)]|

+ ‖x∗‖ · M · dm−1

(m − 1)!
|t − ε − tδ|

= |x∗(Fx(vε)(t − δ) − Fx(vδ)(t − δ)]|

+ ‖x∗‖ · M · dm−1

(m − 1)!
|δ − ε|. (3.3)

Let (δn) be a sequence such that δn → ε (δn ≥ ε).

By (3.1) and (3.2), it follows that vδn(t) converges weakly to vε(t),
uniformly for t ∈ 〈0, δ〉. So Fx(vδn)(t) → Fx(vε)(t) weakly on 〈0, δ〉. Now,
by (3.3) vδn(t) tends to vε(t) weakly for each t ∈ 〈0, 2δ〉.
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By repeating the above argument and using induction, we obtain that
the map ε → vε(t) from (0, d) into (C(J,E), ω) is sequentially continuous.
Therefore, by Lemma 2.2, the set {vε(·) : 0 < ε < d} is connected in
(C(J,E), ω).

Let x ∈ Sη. Choose ε > 0 such that 0 < ε < d and

sup
t∈J

∥∥∥∥x(t) − p(t) − (R)

t∫
0

(R)

t1∫
0

. . . (P )

tm−1∫
0

f(tm, x(tm))dtm . . . dt2dt1

∥∥∥∥
+ Mε · dm−1

(m − 1)!
< η.

For any q, 0 ≤ q ≤ d let y(·, q) : J → E be defined by the formula:

y(t, q) =



x(t), for 0 ≤ t ≤ q

x(q) +
p(t) − x(q)

ε
(t − q), for q < t ≤ min(d, q + ε)

p(t) + (R)

t∫
0

(R)

t1∫
0

. . .

(P )

tm−1−ε∫
q

f(tm, y(tm, q))dtm . . . dt2dt1, for min(d, q + ε)< t < d

By repeating the above consideration, with y(·, q) in the place of v(·, ε),
one can show that y(·, q) ∈ Sη for each q ∈ 〈0, d〉 and the mapping
q → y(·, q) from J into (C(J,E), ω) is sequentially continuous. Conse-
quently, by Lemma 2.2, the set Tx = {y(·, q) : 0 ≤ q ≤ d} is connected in
(C(J,E), ω).

As y(·, 0) = v(·, ε) ∈ V ∩Tx, the set V ∪Tx is connected, and therefore
the set W =

⋃
x∈Sη

Tx ∪ V is connected in (C(J,E), ω).

Moreover Sη ⊂ W , because x = y(·, d) ∈ Tx for each x ∈ Sη. On the
other hand W ⊂ Sη, since Tx ⊂ Sη and V ⊂ Sη. Finally Sη ⊂ W is a
connected subset of (C(J,E), ω).

Suppose that the set S is not connected. As S weakly compact, there
exist nonempty weakly compact sets W1 and W2 such that S = W1 ∪ W2
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and W1∩W2 = ∅. Consequently there exists two disjoint weakly open sets
U1, U2 such that W1 ⊂ U1, W2 ⊂ U2. Suppose that for every n ∈ N , there
exists a un ∈ Vn \ U , where Vn = Sω

1/n and U = U1 ∪ U2.

Put H = {un : n ∈ N}ω. Since un − Fx(un) → 0 in C(J,E) as n →
∞ and H(t) ⊂ {un(t) − Fx(un)(t) : un ∈ H} + Fx(H)(t) repeating the
argument from Theorem 2.2, one can show that there exists u0 ∈ H such
that u0 = Fx(u0), i.e. u0 ∈ S \U . Furthermore, S ⊂ (C(J,E), ω)\U , since
U is weakly open and hence u0 ∈ S, a contradiction.

Therefore, there is m ∈ N such that Vm ⊂ U . Since U1 ∩ Vm �= ∅ �=
U2 ∩ Vm, Vm is not connected, a contradiction with the connectedness of
each Vn. Consequently, S is connected in (C(J,E), ω). �
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