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Colombeau generalized functions on quasi-regular sets

By JORGE ARAGONA (São Paulo)

Abstract. We present some basic facts concerning the Colombeau algebra
G(X) where X is a set of the type Ω ∪ F , with Ω a non-void open subset of Rn

and F is a subset of ∂Ω.

Introduction

The origin of the Colombeau’s theory of generalized functions is the
well known incapacity of the theory of distributions to solve, generally
speaking, non-linear (partial and ordinary) differential equations. So we
can say that Colombeau’s theory was created with the aim of producing a
lot of “generalized solutions” for partial and ordinary differential equations
in the non-linear case, but without excluding the linear case. With this in
mind, it seems natural to build an appropriate context, into Colombeau’s
theory, for certain boundary problems. This had led us to define general-
ized functions in subsets X of R

n of the type Ω∪F , where Ω is a non-void
open subset of R

n and F ⊂ ∂Ω, in such a way that, in the case F = ∅, we
have the usual generalized functions on Ω. These sets X are called here
quasi-regular. The origin of this paper was, on the one hand, the paper
[C-L] (see Example 3.8) and, on the other hand the study of holomorphic
generalized functions in closures of open sets of C

n. For this, it becomes
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necessary to present previously a minimum of facts about G(Ω), where
Ω is an open subset of R

n. At the same cost, the paper was developed
in the direction of studying generalized functions over quasi-regular sets.
Basic facts concerning Colombeau’s algebra G(Ω) of generalized functions
on an open subset Ω of R

n, which are necessary for reading this paper, are
contained in [A-B] and [B] (see also [O, Ch. III]). Notations not explained
here are taken from [A-B, Not. 1.1].

This research has been initiated in 1991 and its exposition has been
changed several times before reaching the present format. Consequently,
despite some small points, the content of the paper is already twelve years
old, and thus we omit references to the more recent developments of the
theory.

In what follows I := ]0, 1] and Iη := ]0, η [, ∀η ∈ I.

1. The algebra G(X)

In the sequel the interior of a set X ⊂ R
n will be denoted by int(X)

or
◦
X. Here we are particularly interested in non-void subsets X of R

n for
which there is an open set Ω ⊂ R

n verifying the condition Ω ⊂ X ⊂ Ω, so
it is suitable to give an intrinsic characterization for them:

Definition 1.1. A subset X of R
n is said to be quasi-regular (in R

n) if
it verifies the condition ∅ �= X ⊂ int(X).

If W ⊂ R
n is a non-void open set, then W , W and any set X such

that W ⊂ X ⊂ W , are quasi-regular sets. If X ⊂ R
n and Y ⊂ R

m are
quasi-regular sets, then X × Y ⊂ R

n × R
m is a quasi-regular set and, in

particular, if U ⊂ R
n and V ⊂ R

m are non-void open sets then U ×V and
U × V are quasi-regular sets in R

n × R
m. If X,Y ⊂ R

n are quasi-regular
sets then X ∪ Y is a quasi-regular set. If X is a quasi-regular set then X

is a quasi-regular set.
All the functions in this paper are assumed taking values in K which

as usual denotes indistinctly R or C. In the remainder of this section we
are going to fix a quasi-regular set X ⊂ R

n and an open set Ω ⊂ R
n such

that
Ω ⊂ X ⊂ Ω. [1.1]
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Let C∞(X) denote the K-vector space of all functions f ∈ C∞(Ω) such
that ∂αf has a continuous extension to X for all α ∈ N

n and, from now
onwards, ∂αf denotes this extensions to X for all α ∈ N

n. Clearly, C∞(X)
does not depend on the open set verifying [1.1]. It is easily seen that the
Leibnitz formula holds in C∞(X), that is, if f, g ∈ C∞(X) then

∂α(fg)(x) =
∑
β≤α

(
α

β

)
∂βf(x)∂α−βg(x), ∀x ∈ X, [1.2]

which implies that C∞(X) is a K-algebra.
In what follows we abbreviate Aq(n,K) to Aq (q ∈ N, see [A-B,

Not. 1.8]) and then, the set

E [X] = E [X; K] := {u : A0 ×X → K | u(ϕ, ·) ∈ C∞(X), ∀ϕ ∈ A0}

endowed with the usual pointwise operations is a K-algebra. For given u ∈
E [X] and α ∈ N

n, the above definitions show that the number ∂αu(ϕ, x) :=
∂αu(ϕ, ·)(x) ∈ K is well defined and that the function

∂αu : (ϕ, x) ∈ A0 ×X �→ ∂αu(ϕ, x) ∈ K

belongs to E [X]. Clearly, ∂α defines a K-linear map (still denoted by ∂α):

∂α : u ∈ E [X] �→ ∂αu ∈ E [X]. [1.3]

In the sequel, the notation K ⊂⊂ X means that K is a non-void compact
set and K ⊂ X.

The set of the moderate functions on X:

EM [X] = EM [X; K] := {u ∈ E [X] | for each K ⊂⊂ X and each α ∈ N
n

there is N ∈ N such that for each ϕ ∈ AN there are c = c(ϕ) > 0
and η = η(ϕ) ∈ I satisfying |∂αu(ϕε, x)| ≤ cε−N for all x ∈ K and all
ε ∈ Iη},

is in view of [1.2] a sub-K-algebra of E [X].
The aim of the definition below, which is an improvement of [A1,

Definition 6], is to give more flexibility to certain aspects of the theory.
As usual, Γ denotes the set of all strictly increasing divergent sequences
in R+ (see [A-B, Not. 2.1.1(c)]).
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Definition 1.2. Let K ⊂⊂ X and p ∈ N.

(a) A given u ∈ EM [X] is said to be p-null on K and we denote by

u|K ≡ 0〈p〉
if the following condition is fulfilled: for every α ∈ N

n with |α| ≤ p there
are N ∈ N and γ ∈ Γ such that, for all q ≥ N and all ϕ ∈ Aq we can find
c = c(ϕ) > 0 and η = η(ϕ) ∈ I satisfying |∂αu(ϕε, x)| ≤ cεγ(q)−N whenever
x ∈ K and ε ∈ Iη .

(b) A given u ∈ EM [X] is said to be null on K (and we denote by
u|K ≡ 0 or u|K ≡ 0〈∞〉), if u|K ≡ 0〈p〉 for all p ∈ N.

(c) The set of the null functions on X is defined by:

N [X] = N [X; K] := {u ∈ EM [X] | u|K ≡ 0 for all K ⊂⊂ X},
therefore, u ∈ N [X] if and only if for every α ∈ N

n and every K ⊂⊂ X

there are N ∈ N and γ ∈ Γ such that, for all, q ≥ N and all ϕ ∈ Aq we
can find c = c(ϕ) > 0 and η = η(ϕ) ∈ I satisfying |∂αu(ϕε, x)| ≤ cεγ(q)−N

whenever x ∈ K and ε ∈ Iη.

The concept just introduced in Definition 1.2(a) will become interest-
ing when we deal with a special type of holomorphic generalized functions
defined later. Let us give an example of such functions. Let Ω be an open
subset of R

n, p ∈ N, G a closed subset of Ω and f ∈ C∞(Ω) such that f is
p-flat in G (i.e., ∂αf(x) = 0 for all x ∈ G and all α with |α| ≤ p) but f is
not (p+ 1)-flat in G (it is easy to give examples of this situation by using
the Borel’s theorem or, more generally, the Whitney’s extension theorem).
Fix u0 ∈ N (K) = N (K; Rn) (see [A-B, Sect. 3.1]). Then it is clear that
the function

u : (ϕ, x) ∈ A0(n) × Ω �→ f(x) + u0(ϕ) ∈ K

belongs to EM [Ω] and that u|K ≡ 0〈p〉 for each K ⊂⊂ G but there exists
K0 ⊂⊂ G such that u|K0 �≡ 0〈p+ 1〉. Notice that the map

RΩ : v ∈ EM (K) �→ [(ϕ, x) ∈ A0(n) × Ω �→ v(ϕ) ∈ K] ∈ EM [Ω]

is an injective homomorphism of K-algebras and RΩ(N (K)) = N [Ω] ∩
Im(RΩ). Hence we can write u = f̃ + RΩ(u0), where f̃(ϕ, x) := f(x) for
all (ϕ, x) ∈ A0 ×Ω, which shows that the class of u in G(Ω) is f (see [A-B,
2.2(c)]).
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Lemma 1.3. (a) The set EM [X] endowed with the obvious pointwise

operations is an associative and commutative K-algebra with a unit ele-

ment (which coincides with the one induced by the K-algebra structure

of E [X]).

(b) N [X] is an ideal of EM [X].

(c) Let u, v ∈ EM [X] and assume that u − v ∈ N [X]. If K ⊂⊂ X, p ∈ N

and u|K ≡ 0〈p〉, then v|K ≡ 0〈p〉.
Proof. Follows immediately from the definitions. �

Remark 1.4. (a) Fix a quasi-regular set X ⊂ R
n, K ⊂⊂ X and p ∈

N ∪ {∞}. Clearly, the set NK,p[X] := {u ∈ EM [X] | u|K ≡ 0〈p〉} is an
ideal of EM [X] and, from [1.2], it follows that NK,p[X] is a C∞(X)-module.
The Definition 1.2(c) shows that

N [X] =
⋂

K⊂⊂X
NK,∞[X] =

⋂
K⊂⊂X
q∈N

NK,q[X]. (1.4.1)

(b) Let X ⊂ R
n be a quasi-regular set, K ⊂⊂ X, p ∈ N, u ∈ EM [X] and

consider the following statements: (I) u ∈ NK,p[X]. (II) There is q ∈ N

such that, for every ϕ ∈ Aq(n), the family (∂αu(ϕε, ·))ε>0 converges uni-
formly on K to the null function for ε→ 0+, whenever |α| ≤ p. (III) There
is q ∈ N such that, for every ϕ ∈ Aq(n), we have limε→0+ ∂αu(ϕε, x) = 0
whenever x ∈ K and |α| ≤ p.

Then, it is clear that (I) ⇒ (II) ⇒ (III). Sometimes, these facts to-
gether with (1.4.1) are used to prove that a given u ∈ EM [X] does not
belong to N [X].

Definition 1.5. A generalized function on X with values in K is an
element of the quotient algebra

G(X) = G(X; K) := EM [X]/N [X].

We denote by ΘX = ΘX,K : EM [X] → G(X) the quotient map. Let
K ⊂⊂ X and p ∈ N. A given f ∈ G(X) is said to be p-null on K if there is
a representative f̂ ∈ EM [X] of f such that f̂ |K ≡ 0〈p〉 and in this case we
write f |K ≡ 0〈p〉. A given f ∈ G(X) is said to be null on K if f |K ≡ 0〈q〉
for all q ∈ N and in this case we write f |K ≡ 0 (or f |K ≡ 0〈∞〉).
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Clearly, in the particular case when X is an open set we get the usual
algebra of generalized functions (see [A-B, Definition 2.1.2]). In view of
Lemma 1.3(c), it is clear that f |K ≡ 0〈p〉 (resp. f |K ≡ 0) means that
f̂ |K ≡ 0〈p〉 (resp. f̂ |K ≡ 0) for every representative f̂ of f . Conditions (a)
and (b) of Lemma 1.3 show that G(X) is a K-algebra with a unit element
which is both commutative and associative. For a given f ∈ C∞(X) it is
clear that the function f̃ : (ϕ, x) ∈ A0 ×X �→ f(x) ∈ K belongs to EM [X]
and it is easy to verify that the map

jX : f ∈ C∞(X) �→ ΘX(f̃) ∈ G(X)

is a natural injective homomorphism of K-algebras which canonically iden-
tifies C∞(X) with a subalgebra of G(X). Hence in what follows we consider
C∞(X) ⊂ G(X). If ∂α is the operator [1.3], the image of EM [X] (respec-
tively N [X]), by ∂α is contained in EM [X] (respectively N [X]) which in-
duces a K-linear map of G(X) into itself, still denoted by ∂α, such that
∂α ◦ΘX = ΘX ◦∂α. For every f ∈ G(X) the element ∂αf of G(X) is called
the derivative of order α of f .

Proposition 1.6. If α ∈ Nn then ∂α(fg) =
∑

β≤α
(α
β

)
∂βf∂α−βg for

all f, g ∈ G(X).

Proof. Choose arbitrary representatives f̂ and ĝ of f and g respec-
tively and apply [1.2] to the functions f̂(ϕ, ·) and ĝ(ϕ, ·) (ϕ ∈ A0) by using
the relation ∂α ◦ ΘX = ΘX ◦ ∂α. �

Note that there exists a natural injective homomorphism of K-algebras
(analogous to the usual case, see [A-B, 3.3.2(b)]):

i : Z ∈ EM (K) → [(ϕ, x) ∈ A0 ×X → Z(ϕ) ∈ K] ∈ EM [X]

such that i(N (K)) = N [X]∩Im(i). Therefore, i induces a natural injective
homomorphism of K-algebras i∗ : K → G(X) which allows to write K ⊂
G(X), hence we have a structure of K-algebra on G(X).
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2. Composition with C∞-maps and restrictions

Definition 2.1. Let X ⊂ R
n and Y ⊂ R

m be two quasi-regular sets. A
C∞-map of X into Y is a mapping

µ = (µ1, . . . , µm) : int(X) → int(Y )

verifying the following conditions: (I) µ is a C∞-map. (II) ∂αµj has a con-
tinuous extension to X for all α ∈ N

n and all j ∈ N such that 1 ≤ j ≤ m.
(III) If µ is the extension of µ to X (resulting from (II) in the case when
α = 0 ∈ Nn) then µ(X) ⊂ Y .

In what follows we will denote also by ∂αµj the extension to X (α ∈
N
n, 1 ≤ j ≤ m), and we write accordingly µ(X) ⊂ Y (instead of µ(X) ⊂

Y ) the above inclusion in (III). The result below shows that the C∞-maps
are adequate to define composition:

Lemma 2.2. Let X,Y and µ as in Definition 2.1, u ∈ EM [Y ] and

consider the mapping (see [A-B, Not. 1.8]):

µ∗u : (ϕ, x) ∈ A0(n) ×X �→ u(Inm(ϕ), µ(x)) ∈ K

then: (a) µ∗u ∈ EM [X]; (b) If u− v ∈ N [Y ], then µ∗u− µ∗v ∈ N [X].

Proof. Follows easily from Definition 2.1 and [Fr, Formula (B)]. �

The above result leads up to the following:

Definition 2.3. Let X,Y and µ be as in Definition 2.1. For a given
f ∈ G(Y ) the composition µ∗f is defined by

µ∗f := ΘX(µ∗f̂) ∈ G(X)

where f̂ is an arbitrary representative of f .

If X,Y and µ are as in Definition 2.1 it is clear that µ induces an
homomorphism of K-algebras

µ∗ : f ∈ G(Y ) → µ∗f ∈ G(X).

Next, we give a name for the good subsets Y of a quasi-regular X such
that G(Y ) is defined:
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Definition 2.4. Let X ⊂ R
n be a quasi-regular set. A distinguished

subset of X is any quasi-regular set Y ⊂ R
n such that Y ⊂ X.

In the example below, the set {z ∈ C | P (z)} is abbreviated by {P (z)}.
Example 2.5. Let n = 2, Ω := {|z| < 1} ⊂ C = R

2 and X := Ω ∪ F
where F := {|z| = 1 and Im(z) > 0}. Clearly, X is quasi-regular and each
of the following sets are distinguished subsets of X: Y1 := {|z| < 1

2}, Y2 :=
{|z| ≤ 1

2}, Y3 := Y1∪{|z| = 1
2 and Im(z) ≤ 0}, Y4 := Ω∩{Im(z) ≥ |Re(z)|},

Y5 := Y4 ∪ (Ω ∩ {Im(z) > |Re(z)|}). The sets Y6 := {|z| < 1
2} ∪ {3

4} and
Y7 := {|z| < 1

2}∪ {i} are not distinguished subsets of X since they are not
quasi-regular.

Fix a distinguished subset Y of a quasi-regular set X ⊂ R
n. The

image of N [X] by the restriction map (which is clearly a homomorphism
of K-algebras):

RXY : u ∈ EM [X] �→ u | A0 × Y ∈ EM [Y ] [2.1]

is contained in N [Y ], and hence RXY induces a homomorphism of K-
algebras

rXY : f ∈ G(X) �→ ΘY (RXY (f̂)) ∈ G(Y ) [2.2]

where f̂ is an arbitrary representative of f . This gives a meaning to the
following:

Definition 2.6. Let Y be a distinguished subset of a quasi-regular set
X ⊂ R

n. For each f ∈ G(X) the restriction of f to Y is defined by
f |Y := rXY (f) ∈ G(Y ) and rXY is called the restriction map of G(X) into
G(Y ).

Clearly, with the notations used in Definition 2.6 and Definition 2.3, if
we denote by ι the inclusion Y ⊂ X then we have rXY = ι∗ since RXY (u) =
ι∗u for each u ∈ EM [X].

IfX ⊂ R
n is a quasi-regular set and Ω is an open set verifying condition

[1.1], since Ω is a distinguished subset of X, we have the restriction maps

rXΩ : f ∈ G(X) �→ f |Ω ∈ G(Ω)
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and, in the particular case when X = Ω:

rΩΩ : f ∈ G(Ω) �→ f |Ω ∈ G(Ω).

These maps are in general neither injective nor surjective as is shown by
the following examples.

Example 2.7. (a) Let n = 1, Ω = ]0, 1[ and X = [0, 1[. Clearly, X
is a distinguished subset of R and therefore the element f := δ|X ∈
G(X) is well-defined, where δ denotes the Dirac measure (see [A-B, Ex-
ample 2.5.3(b) and 5.1.4]). We are going to show that f |Ω = 0 in spite of
f �= 0. In order to prove that f �= 0 (see Remark 1.4(b)), it is enough to
show that there is a representative f̂ of f such that, for every q ∈ N there
exists ϕ ∈ Aq(1) for which it is false that limε→0+ f̂(ϕε, 0) = 0. But this is
trivial taking f̂(ϕ, x) := ϕ(x)((ϕ, x) ∈ A0(1) × X) since by [A-B, Propo-
sition 1.7(d)], for every q ∈ N there is ϕ ∈ A1(1) verifying ϕ(0) = 1 and
then limε→0+ f̂(ϕε, 0) = limε→0+ ε−1ϕ(0) = +∞. Since supp(δ) = {0}, we
have f |Ω = δ|Ω = 0, hence neither rXY nor rΩΩ are injective.

(b) This example is rather close to [A2, Example 1.4] and just slightly
more involved. Let us begin by introducing a subalgebra of G(Ω) which
will be useful later. We recall that if Ω is a non-void open subset of C

n,
we denote by HG(Ω) (resp. H(Ω)) the subalgebra of G(Ω) (resp. C∞(Ω))
of all holomorphic generalized (resp. holomorphic) functions on Ω. Next,
we set

HG(Ω) := {f ∈ G(Ω) | f |Ω ∈ HG(Ω)}

and we denote by ρΩ
Ω the restriction of rΩΩ to HG(Ω); i.e.,

ρΩ
Ω : f ∈ HG(Ω) �→ f |Ω ∈ HG(Ω).

Since the surjectivity of rΩΩ implies the surjectivity of ρΩ
Ω, it is enough to

exhibit an open set Ω ⊂ C
n such that ρΩ

Ω is not surjective. For this, we
take n = 1 and, for each r > 0 we set

Dr := {x ∈ C | |x| < r}, D∗
r := Dr\{0} and Ω := D∗

1.

Clearly, the function

f̂ : (ϕ, z) ∈ A0(2) × Ω �→ z−1 ∈ C
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is moderate in Ω and therefore f := ΘΩ(f̂) ∈ HG(Ω). We are going to
show that there does not exist g ∈ HG(Ω) such that g|Ω = f . Otherwise,
we have

∃g ∈ HG(Ω) such that rΩΩ(g) = g|Ω = f. (2.7.1)

Fix an arbitrary r ∈ ] 0, 1 [ and let ω := D∗
r , ω0 := ω ∪ {0} = Dr and

Ω0 := Ω ∪ {0} = D1, then

g1 := g|ω ∈ HG(ω) and f1 := f |ω ∈ HG(ω).

From (2.7.1) it follows that

g1|ω − f1 = 0. (2.7.2)

Since g|Ω0 ∈ HG(Ω0) and ω is a compact disc contained in Ω0, there is (see
[C-G, 1]) a representative ĝ ∈ EM [ω0] of g|ω0 such that ĝ(ϕ, ·) ∈ H(ω0) for
each ϕ ∈ A0(2) and therefore, by defining

u : (ϕ, x) ∈ A0(2) × ω0 �→ zĝ(ϕ, z) − 1 ∈ C,

from (2.7.2) we can conclude that u|A0(2) × ω ∈ N [ω]. Hence, h|ω = 0,
where h := Θω0(u) and, moreover, from the definition of ĝ it follows that
h ∈ HG(ω0). As a consequence, the principle of analytic continuation (see
[C-G, 2]) implies h = 0, hence u ∈ N [ω0]. But this is clearly false as
it is easily seen by applying the definition of N [ω0] with K := {0} and
α = (0, 0) ∈ N

2.

3. Generalized functions
on the boundary of an open set

In this section we will assume that Ω is an open subset of R
n with

n ≥ 1. If u ∈ EM [Ω] (resp. u ∈ N [Ω]) and we consider the restriction
u|A0×∂Ω, then the definition of EM [Ω] (resp. N [Ω]) shows that u|A0×∂Ω
satisfies a condition of moderateness (resp. nullity) which motivates the
definition below.
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Definition 3.1. (a) A function u : A0 × ∂Ω → K is said to be 0-
moderated if for each K ⊂⊂ ∂Ω there is N ∈ N such that for every ϕ ∈ AN
we can find c > 0 and η ∈ I verifying

|u(ϕε, x)| ≤ cε−N , ∀x ∈ K and ∀ε ∈ Iη.

(b) A function u : A0 × ∂Ω → K is said to be 0-null if for each K ⊂⊂ ∂Ω
there are γ ∈ Γ and N ∈ N such that for every q ≥ N and every ϕ ∈ Aq
we can find c > 0 and η ∈ I verifying

|u(ϕε, x)| ≤ cεγ(q)−N , ∀x ∈ K and ∀ε ∈ Iη.

Clearly the set
Em[∂Ω] = Em | ∂Ω; K] := {u : A0×∂Ω → K | u is 0-moderated and u(ϕ, ·) ∈
C(∂Ω; K), ∀ϕ ∈ A0}, endowed with the obvious pointwise operations, is a
K-algebra and the set

N [∂Ω] = N [∂Ω; K] := {u ∈ Em[∂Ω] | u is 0-null}
is an ideal of Em[∂Ω]. Therefore, the next definition is meaningful.

Definition 3.2. Gb(∂Ω) := Em[∂Ω]
N [∂Ω] is the K-algebra of the generalized

functions on the boundary ∂Ω of the open set Ω. We denote by

π∂Ω = π∂Ω;K : Em[∂Ω] → Gb(∂Ω)

the quotient map.

Here the notation G(X) is used for the algebra of generalized functions
in a quasi-regular set X ⊂ R

n. In the literature, the symbol G(X) has
been used to denote an algebra of generalized functions in X, a non-void
arbitrary subset of R

n. In the above definition we use the notation Gb for
our algebra on ∂Ω, to avoid confusion with this earlier notation.

Fix any f ∈ G(Ω). If f̂i ∈ EM [Ω] (i = 1, 2) are two representatives of
f then f̂i|A0 × ∂Ω ∈ Em[∂Ω] (i = 1, 2) and from f̂1 − f̂2 ∈ N [Ω] it follows
that (f̂1 − f̂2)|A0 × ∂Ω ∈ N [∂Ω], therefore we have a natural restriction
map

rΩ∂Ω : f ∈ G(Ω) �→ π∂Ω(f̂ |A0 × ∂Ω) ∈ Gb(∂Ω),

where f̂ is an arbitrary representative of f . If no confusion arises, we
denote rΩ∂Ω(f) simply by f |∂Ω.
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Example 3.3. (a) The map f ∈ C(∂Ω) �→ π∂Ω(f̃) ∈ Gb(∂Ω), where
f̃(ϕ, x) := f(x), ∀(ϕ, x) ∈ A0 × ∂Ω, is a natural injective homomorphism
of K-algebras which identifies canonically C(∂Ω) with its image in Gb(∂Ω)
and allows to write C(∂Ω) ⊂ Gb(∂Ω).

(b) If V is an open set containing ∂Ω and ĝ ∈ EM [V ] is a representative
of a given g ∈ G(V ), then ĥ := ĝ|A0×∂Ω ∈ Em[∂Ω] and its image in Gb(∂Ω)
is independent of the representative ĝ of g, which gives a natural restriction
map

rV,∂Ω : g ∈ G(V ) �→ π∂Ω(ĝ|A0 × ∂Ω) ∈ Gb(∂Ω),

where ĝ is an arbitrary representative of g. If no confusion arises, we
denote rV,∂Ω(g) simply by g|∂Ω.

Here the following question arises: given any f ∈ G(Ω) and g ∈
Gb(∂Ω), find sufficient conditions for the existence of F ∈ G(Ω) such that
F |Ω = f and F |∂Ω = g.

In order to give an answer to the above question we start from the
following well-known classical result.

Lemma 3.4. For given f ∈ C∞(Ω) and g ∈ C(∂Ω) assume that: (I)
limx→ξ f(x)= g(ξ) for every ξ ∈ ∂Ω; (II) There exists gαξ := limx→ξ ∂

αf(x),
whenever ξ ∈ ∂Ω and α ∈ N

n. Then there exists F ∈ C∞(Ω) such that

F |Ω = f and F |∂Ω = g. �

Next we will extend the above lemma to the framework of generalized
functions.

Proposition 3.5. For given f ∈ G(Ω) and g ∈ Gb(∂Ω) assume that

there are representatives f̂ and ĝ of f and g respectively, verifying the

following four conditions: (I) limx→ξ f̂(ϕ, x) = ĝ(ϕ, ξ), whenever ξ ∈ ∂Ω
and ϕ ∈ A0; (II) There exists gαϕ,ξ := limx→ξ ∂

αf̂(ϕ, x), whenever ξ ∈ ∂Ω,

ϕ ∈ A0, and α ∈ N
n; (III) [gα : (ϕ, x) ∈ A0×∂Ω �→ gαϕ,x ∈ K] ∈ Em[∂Ω], for

every α ∈ N
n; (IV) For every K ⊂⊂ Ω with K∩Ω �= ∅, for every α ∈ N

n,

for each sequence (ϕν)ν∈N, where ϕν ∈ Aν for all ν ∈ N, for every sequence

(xν)ν∈N in Ω∩K and for each sequence (εν)ν∈N in I with εν ↓ 0, there are

C > 0, M ∈ N and σ ∈ I verifying

sup
ν∈N

|∂αf̂(ϕνεν
, xν)| ≤ Cε−M , ∀ε ∈ Iσ.
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Then, there exists F ∈ G(Ω) such that F |Ω = f and F |∂Ω = g. More

precisely, the function F̂ : A0 × Ω → K defined by

F̂ (ϕ, x) :=



f̂(ϕ, x), ∀(ϕ, x) ∈ A0 × Ω,

ĝ(ϕ, x), ∀(ϕ, x) ∈ A0 × ∂Ω,
(3.5.1)

is a representative of F and, for each α ∈ N
n we have

∂αF̂ (ϕ, x) =



∂αf̂(ϕ, x), ∀(ϕ, x) ∈ A0 × Ω,

gαϕ,x, ∀(ϕ, x) ∈ A0 × ∂Ω.
(3.5.2)

Proof. It is an easy generalization of Lemma 3.4. �

Corollary 3.6. Let f̂ and Ĝ be arbitrary representatives of given f ∈
G(Ω) and g ∈ Gb(∂Ω) respectively. Assume that the following conditions

hold:

(a) There exists gαϕ,ξ := limx→ξ ∂
αf̂(ϕ, x), whenever ξ ∈ ∂Ω, ϕ ∈ A0 and

α ∈ N;

(b) [gα : (ϕ, x) ∈ A0 × ∂Ω �→ gαϕ,x ∈ K] ∈ Em[∂Ω], for each α ∈ N
n;

(c) g0 − Ĝ ∈ N [∂Ω], where g0 = gα of (b) when α = 0 ∈ N
n.

(d) It is the condition (IV) of Proposition 3.5.

Then, there exists F ∈ G(Ω) such that F |Ω = f and F |∂Ω = g.

Proof. By defining ĝ(ϕ, x) := g0
ϕ,x, ∀(ϕ, x) ∈ A0 × ∂Ω, it follows

from the assumption (c) that ĝ is a representative of g. Therefore, the
assumption (I) of Proposition 3.5 holds since (a) for α = 0 shows that
limx→ξ f̂(ϕ, x) = g0

ϕ,ξ = ĝ(ϕ, ξ). Since the assumptions (II), (III) and (IV)
of Proposition 3.5 are (a), (b) and (d) respectively, the result follows. �

Let X be a quasi regular set in R
n and Ω an open set in R

m, we can
define G(∂Ω ×X) (see [C-L, Th. 1]) in the following way. First introduce
the ring of moderate functions on ∂Ω ×X, that is
EM [∂Ω ×X] := {u : A0 × ∂Ω ×X → K | for each K ⊂⊂ X, α ∈ N

n and
H ⊂⊂ ∂Ω there exists N ∈ N such that, for every ϕ ∈ AN we can find
c = c(ϕ) > 0 and η = η(ϕ) ∈ I satisfying |∂αxu(ϕε, ξ, x)| ≤ cε−N for every
x ∈ K, ξ ∈ H and ε ∈ Iη}.
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Next we consider the ideal of EM [∂Ω ×X] defined by
N [∂Ω × X] := {u ∈ EM [∂Ω × X] | for every K ⊂⊂ X, α ∈ N

n and
H ⊂⊂ ∂Ω there are N ∈ N and γ ∈ Γ such that, for every q ≥ N

and all ϕ ∈ Aq we can find c = c(ϕ) > 0 and η = η(ϕ) ∈ I satisfying
|∂αxu(ϕε, ξ, x)| ≤ cεγ(q)−N for each x ∈ K, ξ ∈ H and ε ∈ Iη}.

Definition 3.7. Let X be a quasi regular set in R
n and Ω an open set

in R
m. The algebra of generalized functions on ∂Ω ×X is

G(∂Ω ×X) := EM [∂Ω ×X]/N [∂Ω ×X].

Example 3.8. Algebras of generalized functions on quasi regular sets
and related concepts appears in [C-L].

As a first application of these ideas we present here a very weak (almost
trivial) form of Dirichlet problem. To this end, let us introduce the follow-
ing notation and facts. Assume that Ω is a bounded open set in R

n such

that Ω =
◦
Ω and ∂Ω ∈ C∞, and f̂ ∈ Em[∂Ω]. Then we can define the function

f̂+ : A0 × Ω → K by f̂+(ϕ, x) := f̂(ϕ, x) (resp.
∫
∂Ω f̂(ϕ, y)P (x, y) d σ(y)),

whenever (ϕ, x) ∈ A0×∂Ω (resp. (ϕ, x) ∈ A0×Ω), where P and dσ denote
the Poisson kernel for Ω and the volume element of ∂Ω. Since Ω is bounded,
we have ∂Ω ⊂⊂ ∂Ω hence there exists N ∈ N such that for each ϕ ∈ AN
we can find c > 0 and η ∈ I satisfying |f̂(ϕε, y)| ≤ cε−N whenever y ∈ ∂Ω
and ε ∈ Iη. The assumption ∂Ω ∈ C∞ implies that P ∈ C∞(Ω × Ω\d(Ω))
where, for any set A �= ∅, we define d(A) := {(a, a) | a ∈ A}. Hence, for
arbitrary α ∈ N

n and K ⊂⊂ Ω we get

|∂αf̂+(ϕε, x)| ≤ sup
x∈K
y∈∂Ω

|∂αxP (x, y)|cε−N
(∫

∂Ω
dσ(y)

)
, ∀x ∈ K, ε ∈ Iη,

which shows that f̂+ ∈ EM [Ω]. Since by the definition of f̂+ we have
f̂+(ϕ, ·) ∈ C(Ω), ∀ϕ ∈ A0 and f̂+|A0 × ∂Ω = f̂ ∈ Em[∂Ω]. Note that it is
not clear (nor true probably) that f̂+ ∈ EM [Ω], so the following definition
is meaningful.

Definition 3.9. Let Ω be a bounded open subset of R
n such that ∂Ω ∈

C∞. A given f ∈ Gb(∂Ω) is said to be regular if there exists a representative
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f̂ ∈ Em[∂Ω] of f such that the function f̂+ : A0 × Ω → K defined by

f̂+(ϕ, x) :=



f̂(ϕ, x), ∀(ϕ, x) ∈ A0 × ∂Ω,∫
∂Ω f̂(ϕ, y)P (x, y) d σ(y), ∀(ϕ, x) ∈ A0 × Ω,

(3.9.1)

to belongs to EM [Ω] (P and dσ to denote the Poisson Kernel for Ω and
the volume element of ∂Ω).

Proposition 3.10. Let Ω be a bounded open subset of R
n such that

Ω =
◦
Ω and ∂Ω ∈ C∞ (for n ≥ 2). Assume that f ∈ Gb(∂Ω) is regular.

Then, there exists u ∈ G(Ω) such that ∆u = 0 in Ω and u|∂Ω = f .

Proof. Since the case n = 1 is trivial we can assume that n ≥ 2. From
the regularity of f it follows that there is a representative f̂ ∈ Em[∂Ω] of f
such that the function f̂+ defined by (3.9.1) belongs to EM [Ω] and, clearly
from the definition of f̂+, we have

f̂+|A0 × ∂Ω = f̂ ∈ Em[∂Ω]. (3.10.1)

Let u := cl(f̂+) ∈ G(Ω) then, since ∆xP (x, y) = 0 for each (x, y) ∈ Ω×∂Ω,
it follows that

∆f̂+(ϕ, x) =
∫
∂Ω
f̂(ϕ, y)∆xP (x, y) d σ(y) = 0, ∀(ϕ, x) ∈ A0 × Ω

and therefore ∆f̂+(ϕ, ·) | Ω ≡ 0, ∀ϕ ∈ A0, hence 0 = (∆u)|Ω = ∆(u|Ω),
i.e., ∆u = 0 in Ω. From (3.10.1) we can conclude that u|∂Ω = f . �

Example 3.11. Let Ω be an open subset of R
n as in Definition 3.9, V

an open subset of R
n such that Ω ⊂ V , ĝ ∈ EM [V ] such that ∆ĝ(ϕ, ·) = 0

in V for each ϕ ∈ A0 [for instance, define ĝ(ϕ, x) := i(ϕ)u(x), ∀(ϕ, x) ∈
A0 × V , where u is harmonic on V and i(ϕ) := diam supp(ϕ)]. Now, set
f̂ := ĝ|A0 × ∂Ω ∈ Em[∂Ω] and since f̂(ϕ, ·) ∈ C(∂Ω) for each ϕ ∈ A0, there
exists a unique harmonic extension of f̂(ϕ, ·) to Ω which is the function f̂+

defined by (3.9.1). On the other hand, the definition of f̂ shows that the
function x ∈ Ω �→ ĝ(ϕ, x) ∈ K is an extension of f̂(ϕ, ·) to Ω and since, by
hypothesis, ĝ(ϕ, ·) is harmonic in Ω, we can conclude (by the unicity of the
harmonic extension) that f̂+(ϕ, ·) = ĝ(ϕ, ·) in Ω for every ϕ ∈ A0. From
the definition of ĝ it follows that ĝ|A0 ×Ω ∈ EM [Ω] and then f̂+ ∈ EM [Ω],
which shows that f := cl(f̂+) ∈ Gb(∂Ω) is regular.
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Now, by defining

Gb
R(∂Ω) := {f ∈ Gb(∂Ω) | f is regular},

it is clear that Gb
R(∂Ω) is a sub-K-module of Gb(∂Ω) which, in general, is

not trivial by virtue of Example 3.11. From the point of view of Proposi-
tion 3.10 it would be interesting the study of the K-module Gb

R(∂Ω).

Open question: Let Ω be a non-void open subset of R
n, f ∈ G(Ω)

and assume that f |Ω = 0 and f |∂Ω = 0. Can we conclude that f = 0? In
other words, is the linear map rΩΩ x rΩ∂Ω : f ∈ G(Ω) �−→ (f |Ω, f |∂Ω) ∈ G(Ω)
x Gb(∂Ω) injective?

4. Some results
on holomorphic generalized function

In the remainder of this paper, unless stated otherwise, se shall adhere
to the following conventions. Ω denotes a non-void open subset of C

n

and the notation G(Ω) and G(Ω) means G(Ω; C) and G(Ω; C) respectively.
We denote as usual by HG(Ω) the complex algebra of the holomorphic
generalized functions of Ω, which is the set of those elements of G(Ω)
belonging to Ker (∂). We will need also the set (see Example 2.7(b)) of all
holomorphic generalized functions on Ω

HG(Ω) := {f ∈ G(Ω) | f |Ω ∈ HG(Ω)}.
The complex algebra of all holomorphic functions on Ω is denoted by

H(Ω) and we set

A∞(Ω) := {f ∈ C∞(Ω) | f |Ω ∈ H(Ω)},
where C∞(Ω) is a special case of the algebras C∞(X) presented in Section 1.
In the definition below we need the concept introduced in Definition 1.2(a).

Definition 4.1. A proper holomorphic generalized function on Ω is any
element of the set

HG(Ω) :=

{
f ∈HG(Ω)

∣∣∣∣ ∂f∂zj
∣∣∣∣K ≡ 0〈0〉 whenever K ⊂⊂ Ω and 1 ≤ j ≤ n

}
.
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There are several easy statements about the sets HG(Ω) and HG(Ω)
which we encompasses in the remark below, where the proofs are in general
omitted.

Remark 4.2. (a) HG(Ω) and HG(Ω) are sub-C-algebras of G(Ω). The
inclusion HG(Ω) ⊂ HG(Ω) is, in general, proper (see Example 4.3(a) be-
low) and the restriction map (see Example 2.7(b)):

ρΩ
Ω : f ∈ HG(Ω) �→ f |Ω ∈ HG(Ω)

is a homomorphism of C-algebras which is not injective (see Example 4.3(b)
below) nor surjective (see Example 2.7(b)). Clearly, we have A∞(Ω) ⊂
HG(Ω).

(b) For a given f ∈ G(Ω) the following statements are equivalent: (i)
f ∈ HG(Ω); (ii) f |U ∈ HG(U ) for all open set U such that ∅ �= U ⊂⊂ Ω;
(iii) f |U ∈ HG(U ) for all open set U such that ∅ �= U ⊂⊂ Ω; (iv) f |U ∈
HG(U) for all open set U such that ∅ �= U ⊂⊂ Ω.

(c) If V is a connected open set containing Ω, then for every f ∈
HG(V ) we have f |Ω ∈ HG(Ω) and the restriction map

rV
Ω

: f ∈ HG(V ) �→ f |Ω ∈ HG(Ω)

is injective by the Principle of Analytic Continuation (see [C-G,2]).

Example 4.3. (a) In general we have HG(Ω) �= HG(Ω). Indeed, let
Ω := {z ∈ C

∣∣ |z − 1| < 1} ⊂ C = R
2 and (see [A-B, Ex. 2.5.3(b)]):

δ̂ : (ϕ, z) ∈ A0(2,C) × C �→ ϕ(z) ∈ C.

Then δ = ΘC(δ̂) ∈ G(C) and if we define f̂ := δ̂|A0(2,C) × Ω it is clear
that f := ΘΩ(f̂) = δ|Ω ∈ G(Ω). Since supp(δ) = {0} and 0 �∈ Ω we have
f |Ω = 0, hence f ∈ HG(Ω). In order to show that f /∈ HG(Ω) it is enough
to exhibit a set K ⊂⊂ Ω such that ∂f

∂z

∣∣K �≡ 0〈0〉. Assume for a moment
that the following statement holds:

∣∣∣∣ There exists a ∈ Ω such that, for each q ∈ N we can find
ψq ∈ Aq(2,C) satisfying ∂ψq

∂z (a) �= 0.
(4.3.1)
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Now let ρ and θ denote the module and the argument of a ∈ Ω which
occurs in (4.3.1), that is, a = ρeiθ

(
ρ > 0 and −π

2 < θ < π
2

)
, and consider

a sequence (am)m∈N in Ω defined by am := ρme
iθ where ρ0 := ρ and

(ρm)m∈N is a strictly decreasing sequence in R
∗
+ such that ρm → 0 when

m → +∞. Clearly, we have K := {am | m ∈ N} ∪ {0} ⊂⊂ Ω. Let us show
now that

∂f

∂z

∣∣∣K �≡ 0〈0〉.

In view of Remark 1.4(b) it is enough to show that (the symbol
K→→ denotes

uniform convergence on K):∣∣∣∣∣
For every q ∈ N there is ϕ ∈ Aq(2,C) such that it is false

that ∂f̂
∂z (ϕε, ·)

K→→ 0 for ε→ 0+.
(4.3.2)

We can claim that (4.3.1) ⇒ (4.3.2). Indeed, for each q ∈ N we take
ϕ := ψq ∈ Aq(2,C) then, since

∂f̂

∂z
(ϕε, am) = ε−3 ∂ϕ

∂z
(ε−1am) (m ∈ N, ε > 0),

we have ∂f̂
∂z (ϕε, ·)

K
�⇒ 0 for ε → 0+. Otherwise, for an arbitrary τ > 0 we

can find σ(τ) > 0 such that

0 < ε ≤ σ(τ) ⇒
∣∣∣∣∂f̂∂z (ϕε, ζ)

∣∣∣∣ ≤ τ, ∀ζ ∈ K .

Now, fix τ > 0 arbitrary and consider σ(τ) as above then, since εm :=
ρ−1.ρm → 0 if m → +∞, we have εm ≤ σ(τ) for m large enough and
therefore (4.3.1) implies

τ ≥
∣∣∣∣∂f̂∂z (ϕεm , am)

∣∣∣∣ = ε−3
m

∣∣∣∣∂ψq∂z
(a)
∣∣∣∣→ +∞, if m→ +∞

which is a contradiction. So the proof will rest on the following:

Verification of (4.3.1). Let us firstly introduce the following nota-
tion. Given a non-void open set U ⊂ R

n and a function ϕ : R
n → K the

symbol:
ϕ|U �= const.(S)
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means that ϕ|V �= const. for each non-void open subset V of U (we
say that ϕ is strongly non-constant in U). On the other hand, since
Aq(2,R) ⊂ A2(2,C) for all q ∈ N, it is enough to prove (4.3.1) with Aq(2,R)
instead of Aq(2,C). Now, note that in the proof of [A-B, Proposition 1.3]
we begin by fixing a function α0 (denoted by ψ0 in [A-B, Proposition 1.3])
with a number of properties and, in the sequel, it is proved that for each
q ∈ N we can find real numbers x1, . . . , xp+1 and functions α1,q, . . . , αp+1,q

(denoted by ψ1, . . . , ψp+1 in [A-B, Proposition 1.3]) such that the func-
tion with the required properties is given by (and denoted by ϕ1 in [A-B,
Proposition 1.3]):

ϕq := α0 + x1α1,q + · · · + xp+1αp+1,q ∈ Aq(1,R) (q ∈ N).

Here, the important remark is that the function α0 works for all the func-
tions ϕq (q ∈ N). Still following the proof of [A-B, Proposition 1.3], we
may assume that α0 ∈ C∞(R+; R), α0 is constant in a neighborhood of 0,
α0(1) = 1, supp(α0) ⊂ [0, ξ[ where ξ > 1 and, moreover, that the sets
supp(α0) and supp(αj,q) (1 ≤ j ≤ p+1) are mutually disjoint. From these
remarks it follows at once that there are c ∈ ] 0, ξ[ and r > 0 such that
Br(c) := ] c − r, c + r [ ⊂ ] 0, ξ[ and α0 | Br(c) �= const.(S), which implies
that

ϕq|Br(c) �= const.(S), ∀q ∈ N.

Therefore, if we set θq := (ϕq)c−1 ∈ Aq(1; R) (q ∈ N), we have

θq|Bs(1) �= const.(S), ∀q ∈ N

where we may clearly assume that s := rc−1 < 1. Next, for each q ∈ N,
we define (see [A-B, Definition 1.5]):

ψq := I1
2 (θq) = c2(θq ◦ | · |2) ∈ Aq(2,R) ⊂ Aq(2,C)

and W := {z ∈ Ω | 1 − s < |z|2 < 1 + s}. Clearly, ψq|W �= const.(S) for
every q ∈ N and since ψq is a real function, we can conclude that ψq is not
holomorphic in any open subset of W . Hence, for each q ∈ N, the set

Fq :=
{
w ∈W ∣∣ ∂ψq

∂z
(w) = 0

}
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is closed in W and
◦
F q= ∅. So, the statement (4.3.1) follows from Baire’s

theorem.

(b) The restriction map ρΩ
Ω in Remark 4.2(a) is not injective. Indeed,

with the notation of the above example we have rΩΩ(f) = f | Ω = δ|Ω = 0
but, since f �∈ HG(Ω), it follows that f �= 0.

In the remainder of this section we restrict attention to the algebra
HG(Ω) and we return to the algebra HG(Ω) only in the next section.

The definition below is the holomorphic analog to Definition 2.1.

Definition 4.4. Let U ⊂ C
n and V ⊂ C

m be two non-void open sets.
An O-map of U into V is a mapping

µ = (µ1, . . . , µm) : U → V

verifying the following conditions: (I) µ is holomorphic. (II) ∂αµj has
a continuous extension to U whenever α ∈ N

2n and 1 ≤ j ≤ m. (III)

µ(
◦
U) ⊂

◦
V , where µ denotes the extension of µ to U resulting from (ii).

In the sequel we will denote by ∂αµj the extension of ∂αµj to U (α ∈
N

2n, 1 ≤ j ≤ m) and, in particular, µ will denote the extension to U

and we write the inclusion in (III) above in the form µ(
◦
U) ⊂

◦
V (instead

of µ(
◦
U) ⊂

◦
V ). With the assumptions of Definition 4.4 it is clear that µ

is a C∞-map of U into V (see Definition 2.1) since condition (III) above

shows that µ extends to a C∞-map of
◦
U into

◦
V and furthermore, the

continuity of µ in U shows that µ(U) ⊂ µ(U), hence µ(U) ⊂ V . So, the
conditions (I) and (III) of Definition 2.1 holds and clearly, condition (II)
implies condition (II) of Definition 2.1 when X = U .

Example 4.5. If U and V are two bounded weakly pseudoconvex do-
mains in C

n such that ∂U and ∂V are real analytic manifolds, then each
biholomorphic mapping µ of U onto V extends to an O-map of U into
V . Indeed, this follows from [B-J-T, Corollary 7.2] and moreover, µ−1 is
a O-map of V into U and µ|∂U : ∂U → ∂V is a C∞-diffeomorphism of ∂U
into ∂V .
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The following result is the holomorphic analog to Lemma 2.2.

Lemma 4.6. Let U, V and µ be as in Definition 4.4, u ∈ EM [V ] and

consider the mapping (see [A-B, Not. 1.8] ):

µ∗u : (ϕ, z) ∈ A0(2n) × U �→ u
(
I2n
2m(ϕ), µ(z)

) ∈ C.

Then we have: (a) µ∗u ∈ EM [U ]; (b) If u − v ∈ N [V ], then µ∗u − µ∗v ∈
N [U ]; (c) If ΘV (u) ∈ HG(V ), then ΘU(µ∗u) ∈ HG(U).

Proof. Since every O-map of U into V is a C∞-map of U into V ,
the statements (a) and (b) are particular cases of Lemma 2.2. In order
to prove (c), let f := ΘV (u) ∈ HG(V ) and g := ΘU (µ∗u), then from (a)
we get g ∈ G(U ). Since ĝ := µ∗u is a representative of g, every µj is
holomorphic and the partial derivatives of µj extends continuously to U ,
from the complex chain rule it follows that (setting ψ := I2n

2m(ϕ) for each
ϕ ∈ A0(2n)):

∂ĝ

∂zj
(ϕ, z) =

m∑
k=1

∂u

∂wk
(ψ, µ(z))

∂µk
∂zj

(z)

((ϕ, z) ∈ A0(2n) × U, 1 ≤ j ≤ n).

(4.6.1)

The assumption f |V ∈ HG(V ) implies that

∂u

∂wk

∣∣ A0(2m) × V ∈ N [V ] (1 ≤ k ≤ m)

and therefore, by (4.6.1) and [A-B, Proposition 1.7(e), (III)] we can con-
clude that g|U ∈ HG(U). If L ⊂⊂ U , from the inclusion µ(U) ⊂ V we get
K := µ(L) ⊂⊂ V and since

∂u

∂wk

∣∣ K ≡ 0〈0〉 (1 ≤ k ≤ m)

the identities (4.6.1) imply ∂ĝ
∂zj

| L ≡ 0〈0〉 (1 ≤ j ≤ n). �

The preceding result give a meaning to the following:

Definition 4.7. Let U, V and µ be as in Definition 4.4. For a given
f ∈ HG(V ) the composition µ∗f is defined by

µ∗f := ΘU (µ∗f̂) ∈ HG(U ),

where f̂ is an arbitrary representative of f .
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Let U, V and µ be as in Definition 4.4. Clearly, µ induces an homo-
morphism of C-algebras

µ∗ : f ∈ HG(V ) �→ µ∗f ∈ HG(U ). [4.1]

If W is an open set of C
p and π is an O-map of V into W then

(π ◦ µ)∗ = µ∗ ◦ π∗. In the particular case when U and V are two bounded
weakly pseudoconvex domains in C

n such that ∂U and ∂V are real analytic
manifolds and µ is a biholomorphic map from U to V (see Exemple 4.5),
the map [4.1] is an isomorphism of C-algebras and clearly µ∗−1 = µ−1∗.

We will need a result of the same type of [A1, Theorem 2] for elements
of HG(Ω) which is of independent interest. In its statemente, we shall use
the Ramirez–Henkin differential form Ωn0(ζ, z) (see [L], [A1]).

Theorem 4.8. Let Ω ⊂ C
n be a C∞-strictly pseudoconvex domain

and f ∈ HG(Ω). If ĝ ∈ EM [Ω] is an arbitrary representative of f , then the

function f∗ : A0(2n) × Ω → C defined by

f∗(ϕ, z) := a

∫
∂Ω
ĝ(ϕ, ζ)Ωn0(ζ, z), ∀(ϕ, z) ∈ A0(2n) × Ω

where a := (2πi)−n(−1)
1
2
n(n−1) is a representative of f |Ω such that

f∗(ϕ, ·) ∈ H(Ω) for each ϕ ∈ A0(2n).

Proof. The argument is a minor modification of the proof of [A1,
Theorem 2] noting that ∂Ω ⊂⊂ Ω and hence ∂ĝ

∂zν
| ∂Ω ≡ 0〈0〉 for each

ν = 1, 2, . . . , n. �

Next we will use Theorem 4.8 together with [Be] to obtain a result
of Morera’s type for our holomorphic generalized functions. Let U be an
open subset of C

n, f ∈ G(U ) and V a bounded open set such that ∂V
is a piecewise C1-manifold and ∂V ⊂ U . If f̂ is any representative of f ,
consider the following functions (1 ≤ ν ≤ n):

Iν(f̂ , ∂V ) : ϕ ∈ A0(2n) �→
∫
∂V
f̂(ϕ, ζ)ω(ζ) ∧ ων(ζ) ∈ C

where, as usual, ω(ζ) = dζ1 ∧ · · · ∧ dζn and ων(ζ) :=
∧
λ�=ν dζλ. Denoting

by dσ(ζ) the volume element of ∂V , we can write

|Iν(f̂ , ∂V )(ϕε)| ≤ sup
ζ∈∂V

|f̂(ϕε, ζ)|
∫
∂V
dσ(ζ)

(ϕ ∈ A0(2n), ε > 0, 1 ≤ ν ≤ n).
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Therefore, Iν(f̂ , ∂V ) ∈ EM(C) (see [A-B, Definition 3.1.2]) and, if ĝ is
another representative of f then

Iν(f̂ , ∂V ) − Iν(ĝ, ∂V ) = Iν(f̂ − ĝ, ∂V ) ∈ N (C).

It follows that we can define the ν-integral of f on ∂V as the general-
ized complex number∫

∂V, (ν)
f =

∫
∂V
f(ζ)ω(ζ) ∧ ων(ζ) := class of Iν(f̂ , ∂V ) in C,

where f̂ is an arbitrary representative of f . For our next result, we will
need a more precise concept, introduced in the definition below where we
denote by MU the group of all biholomorphic mappings of U .

Definition 4.9. Let U be an open subset of C
n, f ∈ G(U ) and V a

bounded open subset of C
n such that ∂V is a piecewise C1-manifold and

∂V ⊂ U . We say that f has U -integral null on ∂V and we write∫
∂V
f ≡ 0 (U)

if there exists a representative f∗ ∈ EM [U ] of f |U such that

Iν(f∗, σ(∂V ))(ϕ) =
∫
σ(∂V )

f∗(ϕ, ζ)ω(ζ) ∧ ων(ζ) = 0

whenever ϕ ∈ A0(2n), σ ∈ MU and 1 ≤ ν ≤ n.

Theorem 4.10. Let B be the unit open euclidean ball in Cn, V an

open set such that V ⊂⊂ B, B\V is connected, ∂V is a piecewise C1-

manifold and assume that ∂V is not a real analytic manifold. Then, for

every f ∈ G(B) the following statements are equivalent: (i) f ∈ HG(B);
(ii)

∫
∂V f ≡ 0 (B) and ∂f

∂zj
| K ≡ 0〈0〉 whenever K ⊂⊂ B and 1 ≤ j ≤ n.

Proof. (i) ⇒ (ii): It is enough to show that
∫
∂V f ≡ 0 (B). By

Theorem 4.8 there exists a representative f∗ of f |B such that

f∗(ϕ, ·) ∈ H(B), ∀ϕ ∈ A0(2n), (4.10.1)
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and hence (see [Be]) we get

Iν(f∗, σ(∂V ))(ϕ) = 0 whenever ϕ ∈ A0(2n),

σ ∈ MB and 1 ≤ ν ≤ n.
(4.10.2)

(ii) ⇒ (i): The first statement of (ii) means that there exists a repre-
sentative f∗ of f |B such that (4.10.2) holds, which implies (see [Be]) that
(4.10.1) holds, hence f ∈ HG(B) which together with the second statement
of (ii) implies f ∈ HG(B). �

5. Some results on extension from the boundary
for holomorphic generalized functions

Our next result is concerned with the problem of extension of holo-
morphic generalized functions from the boundary and was suggested by
the results in [W] and [H-Ch]. Assume that Ω is a bounded open subset
of C

n with ∂Ω ∈ C∞ and the function

u : Ω × Ω\d(Ω) → C,

where d(Ω) := {(z, z) | z ∈ Ω}, satisfies the following conditions: (A)
u(ζ, ·) ∈ C∞(Ω), ∀ζ ∈ ∂Ω. (B) [ζ ∈ ∂Ω �→ ∂αz u(ζ, z) ∈ C] ∈ L1(∂Ω),
∀α ∈ N

2n and ∀z ∈ Ω (here ∂αz denotes the derivation operator of order
α = (α1, . . . , α2n) with respect to the variable z ∈ C

n = R
2n). (C) For

every K ⊂⊂ Ω and α ∈ N
2n the restriction ∂αz u|∂Ω × K is a continuous

function. (D) u(·, z) ∈ C∞(Ω), ∀z ∈ Ω.
Then the set

C∞(Ω•) := {u : Ω × Ω\d(Ω) → C | u satisfies the conditions

(A), (B), (C) and (D)}
is a C-vector space. Hence we can consider the vector space of all (n, n−1)-
differential forms in the variable ζ with coefficients in C∞(Ω•) which we
denote by C∞

(n,n−1)(Ω•). So, every element u ∈ C∞
(n,n−1)(Ω•) is written in

the form

u(ζ, z) =
n∑
ν=1

uν(ζ, z)ω(ζ) ∧ ων(ζ)
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with uν ∈ C∞(Ω•) (1 ≤ ν ≤ n). Fix a representative f̂ ∈ Em[∂Ω] of a
given f ∈ Gb(∂Ω) then we can construct, from f̂ and u ∈ C∞

(n,n−1)(Ω•), the
following function

µ = µf̂ ,u : (ϕ, z) ∈ A0 × Ω �→
∫
∂Ω
f̂(ϕ, ζ)u(ζ, z) ∈ C.

From the conditions (A), (B), (C) and (D), satisfied by the coefficients
uν of u, and using derivation under the integral sign it follows that µ ∈
EM [Ω]. Also, if ĝ ∈ Em[∂Ω] is another representative of f we have (∂Ω ⊂⊂
∂Ω since Ω is bounded) µf̂ ,u − µĝ,u ∈ N [Ω], which gives a meaning to the
following:

Definition 5.1. The class of µ = µf̂ ,u in G(Ω) is denoted by∫
∂Ω
f(ζ)u(ζ, z).

We shall also need the two definitions below.
Let us recall here Definition 3.9: if Ω is a bounded open subset of C

n

with ∂Ω ∈ C∞, a given f ∈ Gb(∂Ω) is said to be regular if there exists a
representative f̂ of f such that the function f̂+ defined by

f̂+(ϕ, z) :=


f̂(ϕ, z), ∀(ϕ, z) ∈ A0 × ∂Ω,∫

∂Ω f̂(ϕ, ζ)P (ζ, z)dσ(ζ), ∀(ϕ, z) ∈ A0 × Ω,
[5.1]

to belongs to EM [Ω].

Remark 5.2. With the notations above, it is easy to see that the follow-
ing statements hold: (a) f̂+(ϕ, ·) ∈ C(Ω), ∀ϕ ∈ A0; (b) f̂+|A0×Ω ∈ EM [Ω],
and (c) f̂+|A0 × ∂Ω = f̂ ∈ Em[∂Ω]. So the concept of regularity in-
troduced in Definition 3.9 is stronger that (a), (b) and (c). In fact, for
the regularity we need that f̂+ ∈ EM [Ω] (a necessary condition for this
is f̂+(ϕ, ·) ∈ C∞(Ω), ∀ϕ ∈ A0) and this means to show moderateness on
compact sets K ⊂ Ω such that K ∩ Ω �= ∅ and K ∩ ∂Ω �= ∅.

Definition 5.3. For a given non-void open subset Ω of C
n we set

HG∗(Ω) := {f ∈ HG(Ω) | there is a representative f̂ ∈ EM [Ω]

of f such that f̂(ϕ, ·) | Ω ∈ H(Ω), ∀ϕ ∈ A0}.
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Theorem 5.4. Let Ω be a bounded open subset of C
n such that

Ω =
◦
Ω and ∂Ω ∈ C∞. Assume that f ∈ Gb(∂Ω) is regular and consider the

following conditions: (a) There exists F ∈ HG∗(Ω) such that F |∂Ω = f ;

(b)
∫
∂Ω f(ζ)u(ζ, z) = 0 for all u ∈ C∞

(n,n−1)(Ω•) such that ∂u(·, z) = 0 in Ω
for every z ∈ Ω; (c) There exists F ∈ HG(Ω) such that F |∂Ω = f .

Then, (a) ⇒ (b) ⇒ (c).

Proof. (a) ⇒ (b): From the first statement of (a) it follows that F
has a representative F̂ ∈ EM [Ω] such that

F̂ (ϕ, ·) | Ω ∈ H(Ω), ∀ϕ ∈ A0. (5.4.1)

Let f̂ be an arbitrary representative of f and fix u as in condition (b).
Since from (a) we have F |∂Ω = f it follows that F̂ |A0 × ∂Ω − f̂ ∈ N [∂Ω]
hence the function

µ : (ϕ, z) ∈ A0 × Ω �→
∫
∂Ω
F̂ (ϕ, ζ)u(ζ, z) ∈ C

is a representative of
∫
∂Ω f(ζ)u(ζ, z). Therefore, Stokes theorem allows us

to write

µ(ϕ, z) =
∫
∂Ω
F̂ (ϕ, ζ)u(ζ, z) =

∫
Ω
∂[F̂ (ϕ, ζ)u(ζ, z)] = S(ϕ, z) + T (ϕ, z)

where
S(ϕ, z) :=

∫
Ω
∂F̂ (ϕ, ζ) ∧ u(ζ, z) ≡ 0

from (5.4.1) and

T (ϕ, z) :=
∫

Ω
F̂ (ϕ, ζ)∂u(ζ, z) ≡ 0,

from the assumption on ∂u(·, z).
(b) ⇒ (c): The regularity of f shows that there exists a representative

f̂ of f such that the function f̂+ in [5.1] belongs to EM [Ω]. Therefore
F := cl(f̂+) ∈ G(Ω) and clearly F |∂Ω = f , hence the proof of (c) will rest
on the following statement

F |Ω ∈ HG(Ω). (5.4.2)
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Since f̂+(ϕ, ·) is (by definition) the unique harmonic extension of f̂(ϕ, ·) ∈
C(∂Ω) (ϕ ∈ A0), we know (see [W, Formula 12]) that we have

f̂+(ϕ, z) = α(n)
∫
∂Ω
f̂(ϕ, ζ)

n∑
j=1

ζj − zj

|ζ − z|2n dζj ∧ λj

+ β(n)
∫
∂Ω
f̂(ϕ, ζ) ∗ζ ∂H(ζ, z)

(5.4.3)

where α(n) := −(n− 1)!(2πi)−n, β(n) := −(n− 2)!π−n, λν :=
∧
k �=ν dζk ∧

dζk, H(ζ, z) := G(ζ, z) − |ζ − z|2−2n, G is the Green function for Ω and ∗
denotes the Hodge star operator. Since ∗∂H(·, z) ∈ C∞

(n,n−1)(Ω•), ∀z ∈ Ω
and

∂(∗∂H(·, z)) = 0 in Ω for each z ∈ Ω,

the orthogonality assumption in (b) implies

[
r : (ϕ, z)∈A0 ×Ω �→ β(n)

∫
∂Ω
f̂(ϕ, ζ) ∗ζ ∂H(ζ, z)∈C

]
∈ N [Ω]. (5.4.4)

Next, in order to prove (5.4.2), we compute ∂f̂+
∂zν

(1 ≤ ν ≤ n) by using
(5.4.3). In view of (5.4.4), it is enough to show that rν ∈ N [Ω] for all
ν = 1, 2, . . . , n, where for every (ϕ, z) ∈ A0 × Ω,

rν(ϕ, z) := α(n)
∫
∂Ω
f̂(ϕ, ζ)

n∑
j=1

∂

∂zν

(
ζj − zj

|ζ − z|2n
)
dζj ∧ λj .

Let λjk :=
∧
l �=j,k dζ l ∧ dζl and consider the differential forms

Γ(ζ, z) :=
n∑
j=1

ζj − zj

|ζ − z|2n dζj ∧ λj

and, for all ν = 1, 2, . . . , n:

Γν(ζ, z) =
n∑
j=1

ζj − zj

|ζ − z|2n dζj ∧ dζν ∧ λjν .
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It is well known that ∂ζΓν(ζ, z) = ∂
∂zν

Γ(ζ, z) (1 ≤ ν ≤ n) and therefore
we can write the function rν (1 ≤ ν ≤ n) in the following way:

rν(ϕ, z) = α(n)
∫
∂Ω
f̂(ϕ, ζ)∂ζΓν(ζ, z) ((ϕ, z) ∈ A0 × Ω).

Fix any z ∈ Ω and consider the function ψz ∈ C∞(Cn) such that ψz ≡
0 in an open neighborhood Wz of z with W z ⊂⊂ Ω and ψz ≡ 1 in a
neighborhood of ∂Ω. Since Γν(·, z) ∈ C∞

(n,n−2)(C
n\{z}), we have

Γ′
ν(·, z) ∈ C∞

(n,n−2)(C
n), ∀z ∈ Ω,

where Γ′
ν(ζ, z) := ψz(ζ)Γν(ζ, z) for every (ζ, z) ∈ C

n×Ω. We then conclude
that

rν(ϕ, z) = α(n)
∫
∂Ω
f̂(ϕ, ζ)∂ζΓ′

ν(ζ, z).

Clearly uν := ∂ζΓ′
ν ∈ C∞

(n,n−1)(C
n × Ω) ⊂ C∞

(n,n−1)(Ω•) and obviously
∂uν(·, z) = 0 in Ω for all z ∈ Ω. The orthogonality assumption in (b)
shows that rν ∈ N [Ω] (1 ≤ ν ≤ n). �
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