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Some conditions implying the continuity
of t-Wright convex functions

By ANDRZEJ OLBRYŚ, (Katowice)

Abstract. In the present paper we investigate sufficient conditions for the
continuity of t-Wright-convex functions. The main result of this paper says, that
every t-Wright-convex function, such that the restriction to a subset of positive
Lebesgue measure, or to the second category set with the Baire property, is lower
semicontinuous, has to be continuous and convex.

1. Introduction and terminology

In the theory of functional equations and inequalities the problem of
continuity of solutions is very important. We ask what, possibly week,
conditions assure the continuity of arbitrary function satisfying a given
functional equation or inequality. In this paper we give an answer to this
problem for t-Wright-convex functions.

Let X be a real linear space, D be a convex and non-empty subset
of X. A function f : D → R is called Wright-convex if the following
condition

f(tx + (1 − t)y) + f((1 − t)x + ty) ≤ f(x) + f(y); x, y ∈ D (1)

is fulfilled for each t ∈ (0, 1). If condition (1) is satisfied for a given
t ∈ (0, 1) then f is called a t-Wright-convex function.

Mathematics Subject Classification: 26A15, 26A51, 39B62.
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Remark 1. Let X be a real linear space and D ⊂ X be a convex set.
If f : D → R is a t-Wright-convex function with t �= 1

2 then f satisfies the
following conditional inequality
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In [7] Gy. Maksa, K. Nikodem and Zs. Páles have constructed, a
bounded above on the whole real line, t-Wright-convex function which is
not convex in the sense of Jensen. Thus we know that the condition of
upper boundedness on the interval of a t-Wright-convex function does not
imply its continuity (contrary to convex function in the sense of Jensen).
Moreover, in [7] it is proved that if f : D → R is a t-Wright-convex function
then the set

Wf := {s ∈ (0, 1) : f is s-Wright-convex} (2)

is dense in the interval (0, 1), and also, that every t-Wright-convex function
with a rational t is Jensen-convex.

By density of the set Wf in the interval (0, 1) we have the following
evident result.

Lemma 1. Let X be a real linear topological space and D ⊂ X be

an open and convex set. If f : D → R is a continuous t-Wright-convex

function then it is convex.

We already know some conditions sufficient for the continuity of a t-
Wright-convex functions. In [8] J. Matkowski proved that every lower
semicontinuous t-Wright-convex function f : D → R (where D is an open
and convex subset of a real linear topological space) is Jensen-convex.
Consequently if, moreover X is a Baire space then f is continuous and
convex [5]. For a t-Wright-convex functions defined on an open interval
Z. Kominek in [9] proved that the continuity at one point implies the
continuity at each point and in [10] we proved that the measurability also
implies the continuity of such functions.
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In this paper we extend the result of Z. Kominek for functions defined
on an open and convex subset of an arbitrary real linear topological space,
and also, we prove some theorems concerning the continuity of restrictions
of t-Wright-convex functions.

2. Preliminary results

Let (X, τ) be a topological space, T �= ∅ be a subset of X and let
f : T → R be a function. By τx we denote the family of all open subsets
of X containing x.

We recall that the lower hull of f , i.e. the function mf : T → [−∞,∞)
defined by the formula

mf (x) := sup
U∈τx

inf
z∈U∩T

f(z), x ∈ T. (3)

The upper hull Mf : T → (−∞,+∞] is defined by the formula

Mf (x) := inf
U∈τx

sup
z∈U∩T

f(z), x ∈ T. (4)

According to (3) and (4) we obtain

mf (x) ≤ f(x) ≤ Mf (x), x ∈ T.

Moreover, if for some U ∈ τx f is bounded below (above) on T ∩ U then
mf (x) > −∞ (Mf (x) < +∞).

The following Theorem 1 was originally formulated in [5, Theorem 4.4]
for open set T but its proof in our case runs without any essential changes.

Theorem 1. Let (X, τ) be a topological space, T ⊂ X be arbitrary

set, and let f : T → [−∞,+∞] (f : T → (−∞,+∞)) be a function.

Then the function mf given by (3) (Mf given by (4)) is lower semicon-

tinuous (upper semicontinuous) in T . Moreover, the function f is lower

semicontinuous (upper semicontinuous) at a point x ∈ T if and only if

f(x) = mf (x) (f(x) = Mf (x)).

We start with the following theorem.
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Theorem 2. Let X be a locally convex, real linear topological space,

D ⊂ X be an open and convex set and let f : D → R be a t-Wright-convex

function. If f is locally bounded below at a point x0 ∈ D, then it is locally

bounded below at every point x ∈ D.

Proof. By our assumption there exists a neighbourhood Ux0 of x0,
and a real number α such that∧

x∈Ux0

α ≤ f(x). (5)

Since X is locally convex space then without loss of generality we may
assume that Ux0 is a convex set. For an arbitrary number n ∈ N0 := N∪{0}
we put

Vn :=
[
x0 +

(
3
2

)n

· (Ux0 − x0)
]
∩ D.

Note that Vn is a convex neighbourhood of x0, for all n ∈ N0. By induction
we will prove that∧

n∈N0

∧
x∈Vn

[2n · α − (2n − 1) · f(x0) ≤ f(x)]. (6)

If n = 0 the above condition coincides with (5). Assume (6) for a nonneg-
ative integer n.

Fix an arbitrary point y ∈ Vn+1. Then there exists a z ∈ Ux0 such
that

y = x0 +
(

3
2

)n+1

· z −
(

3
2

)n+1

· x0.

It follows from the convexity of Vn that

x0 + y

2
=

1
2

[
x0 + x0 +

(
3
2

)n+1

· z −
(

3
2

)n+1

· x0

]

=
1
2

[
x0 +

(
3
2

)n

· (z − x0) + x0 +
1
2
·
(

3
2

)n

· (z − x0)
]

=

=
1
2

[
x0 +

(
3
2

)n

· (z − x0) +
x0 + x0 +

(
3
2

)n · (z − x0)
2

]
∈ Vn.
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The function ϕ : R → X given by the formula

ϕ(λ) := λx0 + (1 − λ)y

is continuous and ϕ(1
2 ) = 1

2x0 + 1
2y ∈ Vn, whence there exists an ε > 0

such that

ϕ(λ) ∈ Vn for all λ ∈
(

1
2
− ε,

1
2

+ ε

)
.

Take an s ∈ (1
2 − ε, 1

2 + ε) ∩ Wf . By virtue of s-Wright-convexity of f we
have

f(sx0 + (1 − s)y) + f((1 − s)x0 + sy) − f(x0) ≤ f(y)

which together with the induction assumption implies that

2n · α − (2n − 1) · f(x0) + 2n · α − (2n − 1) · f(x0) − f(x0) ≤ f(y).

Thus
2n+1 · α − (2n+1 − 1) · f(x0) ≤ f(y)

and the proof of (6) is complete. This means that the function f is bounded
below on every sets Vn, n ∈ N0, and since

∞⋃
n=0

Vn = D

the proof of Theorem 2 is finished. �

Theorem 3. Let X be a real locally convex linear topological space,

let D ⊂ X be an open and convex set and let f : D → R be a t-Wright-

convex function. Then the function mf given by (3) is convex in D. If,

moreover, X is a Baire space then mf is continuous in D.

Proof. By Theorem 2 either mf = −∞ in D, or mf : D → R is a
finite function. In the former case clearly mf is convex and continuous. In
the second part of the proof we may assume that mf (x) > −∞, x ∈ D.

First we will show that mf is a t-Wright-convex function. Take arbi-
trary x, y ∈ D and arbitrary ε > 0. Put

z := tx + (1 − t)y, w := (1 − t)x + ty.
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By definition of mf there exists a convex neighbourhood U of zero such
that 


Uv := v + U ⊂ D, v ∈ {x, y, z, w}
and

f(v) ≥ inf
u∈Uv

f(u) ≥ mf (v) − ε, v ∈ {x, y, z, w}
(7)

Moreover, there exist the points r ∈ Ux and s ∈ Uy such that

f(r) ≤ mf (x) + ε and f(s) ≤ mf (y) + ε. (8)

By convexity of U , we get

tr + (1 − t)s ∈ tUx + (1 − t)Uy ⊂ tx + (1 − t)y + U = z + U = Uz

and similarly

(1 − t)r + ts ∈ (1 − t)Ux + tUy ⊂ (1 − t)x + ty + U = w + U = Uw

whence by (7), (8) and t-Wright-convexity of f we have

mf (tx + (1 − t)y) + mf ((1 − t)x + ty) − 2ε ≤ f(tr + (1 − t)s)

+f((1 − t)r + ts) ≤ f(r) + f(s) ≤ mf (x) + mf (y) + 2ε.

Letting ε → 0 we obtain hence the t-Wright-convexity of mf . By Theo-
rem 1 we infer that the function mf is lower semicontinuous in D. It follows
from Theorem 2 [8] that mf is also Jensen-convex. Consequently, mf is
convex in D [5]. If, moreover X is a Baire space then mf is continuous
and convex. [5, Theorem 4.2] �

It is an open problem whether every t-Wright-convex function locally
bounded above at a point, is locally bounded above at every point. Thus,
up to now, we do not have a full analogue of the Theorem 3 for the upper
hull Mf . However, the following theorems holds true.

Lemma 2. Let f : (a, b) → R be a locally bounded above, t-Wright-

convex function. Then the function Mf given by (4) is continuous and

convex.
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Proof. We will show that Mf is Jensen-convex in (a, b). Take arbi-
trary x, y ∈ (a, b), x �= y and put z := x+y

2 . Let ε > 0 be arbitrary fixed.
By definition of Mf there exists an r0 > 0 such that∧

r∈(0,r0)

∧
u∈(w−r,w+r)

f(u) ≤ Mf (w) + ε, w ∈ {x, y, z}.

We may assume that (w− r0, w + r0) ⊂ (a, b), for w ∈ {x, y, z}. Moreover,∨
α,β∈(z−r0,z+r0)

α�=β

Mf (z) − ε < f(α) and Mf (z) − ε < f(β).

It follows from the density of Wf in (0, 1) that there exists s ∈ Wf ,
c ∈ (x − r0, x + r0) and d ∈ (y − r0, y + r0) such that

α = sc + (1 − s)d, β = (1 − s)c + sd.

By s-Wright-convexity of f we get

2Mf (z) − 2ε < f(α) + f(β) = f(sc + (1 − s)d) + f((1 − s)c + sd)

≤ f(c) + f(d) ≤ Mf (x) + Mf (y) + 2ε.

Letting ε → 0 we obtain the Jensen-convexity of Mf . Mf being a Jensen-
convex function,and locally bounded above it is continuous and convex.
[1], [5], [6]. �

Theorem 4. Let X be a real linear topological space, D ⊂ X be an

open and convex set, and let f : D → R be a t-Wright-convex function. If

f is upper semicontinuous in D then it is continuous and convex.

Proof. By assumption f is locally bounded above at every point
x ∈ D then Mf is finite. We will show that Mf is Jensen-convex function.
Take an x, y ∈ D, x �= y. Since D is open set then∨

δ>0

∧
α∈(−δ,1+δ)

αx + (1 − α)y ∈ D.

Let us define a function F : (−δ, 1 + δ) → R by the formula

F (α) := f(αx + (1 − α)y).
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It is easy to check, that F is a t-Wright-convex function. By Lemma 2
we infer that MF : (−δ, 1 + δ) → R is a continuous and convex function.
Moreover,

MF (α) ≤ Mf (αx + (1 − α)y), α ∈ (−δ, 1 + δ),

whence using also upper semicontinuity of f (Theorem 1) we obtain

2Mf

(
x + y

2

)
= 2f

(
x + y

2

)
= 2F

(
1
2

)
≤ 2MF

(
1
2

)

≤ MF (0) + MF (1) ≤ Mf (x) + Mf (y).

Since Mf is Jensen-convex function and locally bounded above then by the
generalized version theorem of Berenstein–Doetsch [5, Theorem 5.1] Mf is
continuous and convex, which together with equality (Theorem 1)

f(x) = Mf (x), x ∈ D

proves that f is also continuous and convex. �

The following theorem is an immediate consequence of Theorems 1
and 4.

Theorem 5. Let X be a real linear topological space, D ⊂ X be an

open and convex set and let f : D → R be a t-Wright-convex function. If

f is locally bounded above at every point x ∈ D, then the function Mf

given by (4) is continuous and convex.

Now, for an arbitrary set T ⊂ X and a number a ∈ R\{0, 1} we define
a set

Ha(T ) :=
{
x ∈ X :

∨
y∈T

ax + (1 − a)y, (1 − a)x + ay ∈ T
}

The idea of investigating such sets has been suggested by R. Ger [2] and
Z. Kominek [5].

The following two lemmas show an important feature of operation Ha.

Lemma 3. If T ⊂ Rn is a measurable in the Lebesgue sense and it

has a positive Lebesgue measure then int Ha(T ) �= Φ.
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Proof. Let x0 be a density point of T and we put T0 := T − x0.
Note that 0 is a density point of T0. Let us fix an arbitrary α ∈ (0, 1

2) and
choose a δ0 > 0 such that for every δ, 0 < δ < δ0 we have

m(T0 ∩ K(0, δ)) > 2α · m(K(0, δ)) (9)

(here m-denotes the n-dimensional Lebesgue measure and K(0, δ) the open
ball in Rn centered at 0 and with the radius δ).

Put A := 1
aT0 ∩ 1

1−aT0. Note that 0 is a density point of A. Take a
positive number δ1, δ1 < δ0 such that

m(A ∩ K(0, δ1)) > (1 − α) · m(K(0, δ1)). (10)

There exists a positive r, r < δ1 such that

x ∈ K(0, r) ⇒ m([A ∩ K(0, δ1)] \ [A ∩ K(0, δ1) − x])

<
1
2
α · m(K(0, δ1)). (11)

For arbitrary x1, x2 ∈ K(0, r) we have

(1 − α) · m(K(0, δ1)) < m(K(0, δ1) ∩ A)

= m

(
K(0, δ1) ∩ A \

2⋂
i=1

[K(0, δ1) ∩ A − xi]
)

+ m

(
K(0, δ1) ∩ A ∩

2⋂
i=1

[K(0, δ1) ∩ A − xi]
)

≤ m

( 2⋃
i=1

([K(0, δ1) ∩ A] \ [K(0, δ1) ∩ A − xi])
)

+ m

(
K(0, δ1) ∩ A ∩

2⋂
i=1

[K(0, δ1) ∩ A − xi]
)

≤
2∑

i=1

m([K(0, δ1) ∩ A] \ [K(0, δ1) ∩ A − xi])

+ m

(
K(0, δ1) ∩ A ∩

2⋂
i=1

[K(0, δ1) ∩ A − xi]
)
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< m

(
K(0, δ1) ∩ A ∩

2⋂
i=1

[K(0, δ1) ∩ A − xi]
)

+ α · m(K(0, δ1)).

We have shown that

(1 − 2α) · m(K(0, δ1)) < m

(
K(0, δ1) ∩ A ∩

2⋂
i=1

[K(0, δ1) ∩ A − xi]
)

.

This together with (9) (with δ1 instead of δ) implies that

T0 ∩
2⋂

i=1

(A − xi) �= ∅.

Take a positive number r1 < r such that∧
x∈K(0,r1)

1 − a

a
x,

a

1 − a
x ∈ K(0, r).

For an arbitrary x ∈ K(0, r1) we have

T ∩
(

A − 1 − a

a
x

)
∩

(
A − a

1 − a
x

)
�= ∅

and hence there exists a y such that

y+x0 ∈ T, a(y+x0)+(1−a)(x+x0) ∈ T, (1−a)(y+x0)+a(x+x0) ∈ T,

so x + x0 ∈ Ha(T ). We have shown that, for an arbitrary x ∈ K(0, r1) a
point x+x0 ∈ Ha(T ). This means that x0 +K(0, r1) ⊂ Ha(T ) and finishes
the proof of our lemma. �

Lemma 4. Let X a real linear topological space. If T ⊂ X is a second

category set with the Baire property then int Ha(T ) �= ∅.
Proof. By our assumption

T = (G \ P ) ∪ S,

where G is a non-empty open set and P and S are of the first category.
Take a g ∈ G. The set

U :=
1

1 − a
(G − g) ∩ 1

a
(G − g) ∩ (G − g)
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is a neighbourhood of zero and, moreover,

1
1 − a

(T − g) ∩ 1
a
(T − g) ∩ (T − g)

is residual in U . In particular there exists an x such that

x ∈ 1
1 − a

(T − g) ∩ 1
a
(T − g) ∩ (T − g).

This means that

x + g ∈ T, (1 − a)(x + g) + ag ∈ T, a(x + g) + (1 − a)g ∈ T

whence g ∈ Ha(T ). Due to arbitrariness of g ∈ G this means that

G ⊂ Ha(T )

and the proof of Lemma 4 is finished. �

3. Main results

The following theorem corresponds to a theorem of Z. Kominek [3]

Theorem 6. Let X be a real linear topological space, D ⊂ X be an

open and convex set, and let f : D → R be a t-Wright-convex function. If

f is continuous at least at one point then it is continuous and convex.

Proof. Let x0 ∈ D be a continuity point of f , and fix arbitrarily a
point y ∈ D, y �= x0. We will show that f is continuous at y.

Given an ε > 0, there exists Ux0 a neighbourhood of x0 such that

∧
x∈Ux0

|f(x) − f(x0)| <
1
3
ε. (12)

Since X is linear topological space then the function ϕ : R → X given by
the formula

ϕ(α) = (1 − α)x0 + αy
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is continuous, moreover, ϕ(0) = x0, ϕ(1) = y. Since D is open then there
exists a number δ > 0 such that

ϕ(α) ∈ D, α ∈ (−δ, 1 + δ). (13)

The function Φ : R × X × X → X given by the formula

Φ(α, x,w) := (1 − α)x + αw

is continuous (as function of three variables) and Φ(0, x0, y) = x0. Then
there exists δ1 ∈ (0,min{δ, 1}), a neighbourhood Vx0 of x0, Vx0 ⊂ Ux0 and
a neighbourhood Vy of y such that

(1 − α)Vx0 + αVy ⊂ Ux0, α ∈ (−δ1, δ1). (14)

Let us define a function F : (−δ, 1 + δ) → R by the formula

F (α) := f(ϕ(α)).

It is easy to check that F is t-Wright-convex function. Since F is continu-
ous at 0 then on account of a theorem of Z. Kominek [3] F is continuous
everywhere, whence there exists a δ2 ∈ (0, δ1) such that

∧
α∈[1−δ2,1+δ2]

|f(ϕ(α)) − f(y)| <
1
3
ε ∧ ϕ(α) ∈ Vy. (15)

Put

y1 :=
δ2

2
x0 +

(
1 − δ2

2

)
y, y2 := −δ2

2
x0 +

(
1 +

δ2

2

)
y. (16)

Clearly y1, y2 ∈ Vy and by (15) we have

|f(yi) − f(y)| <
1
3
ε, i = 1, 2. (17)

Let us define the sets C1, C2 in the following manner

C1 :=
−δ2

2 − δ2
Vx0 +

2
2 − δ2

y1, C2 :=
δ2

2 + δ2
Vx0 +

2
2 + δ2

y2.
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It is easily seen that C1, C2 are open sets and y ∈ C1 ∩ C2. Therefore the
set C := C1 ∩ C2 ∩ Vy is a neighbourhood of y. We will show that∧

z∈C

|f(z) − f(y)| < ε, z ∈ C.

Fix an arbitrary point z ∈ C. Since z ∈ C1, then

y1 =
2 − δ2

2
z +

δ2

2
v1, where v1 ∈ Vx0.

Put
u1 :=

δ2

2
z +

2 − δ2

2
v1.

According to (14), because z ∈ Vy and δ2
2 < δ1, we get u1 ∈ Ux0.

Since the set Wf is dense in the interval (0, 1) and Ux0 is open set then
there exists a number s ∈ Wf and the points u1, v1 ∈ Ux0 such that

y1 = sz + (1 − s)v1, u1 = (1 − s)z + sv1.

By s-Wright-convexity of f we have

f(y1) + f(u1) ≤ f(z) + f(v1).

It follows from (12) that

f(z) − f(y1) ≥ f(u1) − f(x0) + f(x0) − f(v1) ≥ −2
3
ε

and by (17) we get

f(z) − f(y) = f(z) − f(y1) + f(y1) − f(y) ≥ −2
3
ε − 1

3
ε = −ε. (18)

On the other hand since z ∈ C2, then

z =
δ2

2 + δ2
v2 +

2
2 + δ2

y2, where v2 ∈ Vx0.

Let us put

u2 :=
2

2 + δ2
v2 +

δ2

2 + δ2
y2.
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Since y2 ∈ Vy and 0 < δ2
2+δ2

< δ2 < δ1, then by (14) u2 ∈ Ux0 .
It follows from density of the set Wf and the openity of Ux0 that there

exists u2, v2 ∈ Ux0 and a number s′ ∈ Wf such that

u2 = s′v2 + (1 − s′)y2, z = (1 − s′)v2 + s′y2.

By s′-Wright-convexity of f we have

f(z) − f(y2) ≤ f(v2) − f(u2).

Hence, in view of (12) and (17) we get

f(z) − f(y) ≤ f(z) − f(y2) + f(y2) − f(y)

≤ f(v2) − f(x0) + f(x0) − f(u2) + f(y2) − f(y)

<
1
3
ε +

1
3
ε +

1
3
ε = ε.

(19)

This together with (18) implies that

|f(z) − f(y)| < ε, z ∈ C,

and ends the proof. �

Theorem 7. Let X be a real linear topological space, D ⊂ X be an

open and convex set, and let f : D → R be a t-Wright-convex function.

If there exists a second category set with the Baire property T ⊂ D such

that the restriction f |T is continuous, then f is continuous and convex.

Proof. If f is 1
2 -Wright-convex then it is, of course, Jensen-convex,

and the above theorem is true [5, Lemma 5.2]. So, we may restrict ourselves
to the case, where t �= 1

2 . By assumption

T = (G \ P ) ∪ S,

where G is non-empty open set and P and S are of the first category. Put
A := G\P . Note that, A is a second category set with the Baire property,
and the restriction f |A is continuous. Take an arbitrary point x ∈ A.
We will show that f is continuous at x. Fix arbitrarily ε > 0. Since the
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restriction f |A is continuous and x ∈ A then there exists Ux-neighbourhood
of x such that ∧

z∈Ux∩A

|f(z) − f(x)| <
1
3
ε. (20)

Now we put
Vx := Ht(A ∩ Ux) ∩ H t

2t−1
(A ∩ Ux).

Since A ∩ Ux is a set of second category with the Baire property, then by
Lemma 4 we infer that Vx is a neighbourhood of x. We will prove that∧

z∈Vx

|f(z) − f(x)| < ε. (21)

Take an arbitrary point z ∈ Vx. Since z ∈ Ht(A ∩ Ux) then, there
exists a point y ∈ A ∩ Ux such that

tz + (1 − t)y, (1 − t)z + ty ∈ A ∩ Ux.

By virtue of (1) we obtain

f(tz + (1 − t)y) + f((1 − t)z + ty) − f(y) ≤ f(z),

whence

f(tz +(1− t)y)−f(x)+f((1− t)z + ty)−f(x)+f(x)−f(y) ≤ f(z)−f(x)

and in view of (20) we get

−ε < f(z) − f(x). (22)

On the other hand, since z ∈ H t
2t−1

(A∩Ux), then there exists a point
u ∈ A ∩ Ux such that

t

2t − 1
u +

t − 1
2t − 1

z,
t − 1
2t − 1

u +
t

2t − 1
z ∈ A ∩ Ux.

On account of Remark 1 we obtain

f(z) ≤ f

(
t

2t − 1
u +

t − 1
2t − 1

z

)
+ f

(
t − 1
2t − 1

u +
t

2t − 1
z

)
− f(u)



416 Andrzej Olbryś

whence

f(z) − f(x) ≤ f

(
t

2t − 1
u +

t − 1
2t − 1

z

)
− f(x)

+ f

(
t − 1
2t − 1

u +
t

2t − 1
z

)
− f(x) + f(x) − f(u)

and in view of (20) we have

f(z) − f(x) < ε,

which together with (22) implies (21). This means that f is continuous at
the point x. The continuity of f in D follows from Theorem 6. �

Using similar a argumentation with Lemma 3 instead of Lemma 4 we
can prove the following theorem.

Theorem 8. Let D ⊂ Rn be an open and convex set, let f : D → R

be a t-Wright-convex function, and let T ⊂ D be Lebesgue measurable set

of positive Lebesgue measure. If the restriction f |T is continuous, then f

is continuous and convex.

The following theorem is an immediate consequence of Theorems 7, 8
and Theorems of Luzin [11].

Theorem 9. Let X be a real linear topological space (X = Rn),

D ⊂ X be an open and convex set and let f : D → R be a t-Wright-convex

function. If there exists a second category set with the Baire property

(Lebesgue measurable set of positive Lebesgue measure) T ⊂ D, such that

f |T is Baire measurable (Lebesgue measurable) then f is continuous.

Theorem 10. Let X be a locally convex real linear topological space

(X = Rn), D ⊂ X be an open and convex set, and let f : D → R be a

t-Wright-convex function. If there exists a second category Baire set (of

positive Lebesgue measure) T ⊂ D such that, the restriction f |T is lower

semicontinuous, then f is continuous and convex.

Proof. Assume that, the restriction f |T is lower semicontinuous,
where T ⊂ D is a second category Baire set (In the case, when T is a
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set of positive Lebesgue measure, the proof runs in a similar way). There
exist a non-empty open set G and first category sets P and S such that

T = (G \ P ) ∪ S.

It follows from the proof of Theorem 7, and by Theorem 1, that∧
x∈G\P

m(f |T )(x) = (f |T )(x)

and, consequently, mf |G\P = f |G\P . Observe that X is a Baire space since
it contains a second category subset. By Theorem 3 mf is continuous and
hence f |G\P is continuous, too. Now, our Theorem 10 is a consequence of
Theorem 7. �

The following example show, that the set T in Theorems 7–10 has to
be a sufficiently “large”.

Example 1. Let H be a Hamel basis of R over Q. Consider a discon-
tinuous additive function a : R → R

a(h) =

{
0, for h ∈ H \ {h0}
1, for h = h0

where h0 ∈ H is fixed. Then the function f : R → [0,+∞) given by
formula

f(x) := |a(x)|, x ∈ R;

is a discontinuous t-Wright-convex function (for t ∈ (0, 1) ∩ Q) such that
f |T = 0, where T is the space spaned by the set H \ {h0}.

On the other hand, it is known that, the set T is saturated non-
measurable and second category without the Baire property, hence, in
particular, is dense in R.

Observe that, moreover, from the above example it follows that the
condition of lower boundedness on the interval does not imply the conti-
nuity of a t-Wright-convex function.
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