
Publ. Math. Debrecen
68/3-4 (2006), 433–449

Criterions of supersolubility for products
of supersoluble groups

By WENBIN GUO (Xuzhou), K. P. SHUM (Hong Kong)
and ALEXANDER SKIBA (Gomel)

Abstract. Let H and T be subgroups of a group G. Then we call H con-
ditionally permutable (or in brevity, c-permutable) with T in G if there exists an
element x ∈ G such that HT x = T xH . If H is c-permutable with T in 〈H, T 〉,
then we call H completely c-permutable with T in G. By using the above con-
cepts, we will give some new criterions for the supersolubility of a finite group
G = AB, where A and B are both supersoluble groups. In particular, we prove
that a finite group G is supersoluble if and only if G = AB, where both A, B are
nilpotent subgroups of the group G and B is completely c-permutable in G with
every term in some chief series of A. We will also give some applications of our
new criterions.

1. Introduction

Throughout this paper, all groups are finite. A well-known theorem
of Fitting says that any group G which is the product of normal nilpotent
subgroups of G is nilpotent. However, the above property does not hold
for supersoluble groups, as can be seen in Asaad and Shaalan [3], and
also Huppert [15]. It is natural to ask under what additional conditions
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the product of two supersoluble groups is supersoluble? In the literature,
we know, for example, that the product G = AB of two normal super-
soluble subgroups A and B is supersoluble if either G′ is nilpotent (see
[4]) or the subgroups A and B have coprime indices in G ([10]). An inter-
esting approach for solving the supersolubility problem was proposed by
Asaad and Shaalan in 1989 ([3]). They have obtained the following nice
result: Assume that G= AB is the product of two supersoluble subgroups
A and B. If every subgroup of A is permutable with every subgroup of B,
then G is supersoluble. In addition, they have also generalized the above
mentioned result of Baer by replacing the condition of normality of A, B in
G and using the following weaker condition: A permutes with all subgroups
of B and B permutes with all subgroups of A. Their results in [3] were
further developed and applied by many authors (see, for example, [1] [5]–
[8], [14], [19]). We also notice that O. H. Kegel has also obtained many
elegant results for soluble groups and supersoluble groups by considering
the products of their subgroups (see [16]–[18]).

Our results in this paper are based on c-permutability condition on
subgroups of a group. In fact, our concept of c-permutability of subgroups
is weaker than the concept of permutability of subgroups. Some new crite-
rions for the supersolubility of products of supersoluble groups are obtained
in this paper.

We first recall some definitions. Let H and T be subgroups of a
group G. Then, H is said to be permutable with T (or also H and T

are permutable) if HT = TH.
We note that two subgroups H and T may possibly be not permutable

in G but G could have an element x such that HT x = T xH. For instance,
we have the following examples:

a) If G = AB is a finite group, Ap and Bp are Sylow p-subgroups of A

and of B respectively, then in general ApBp �= BpAp but G has an
element x such that ApB

x
p = Bx

pAp;

b) If P and Q are Sylow subgroups of a finite soluble group G. Then for
some x ∈ G, we have PQx = QxP ;

c) If M is a maximal subgroup of the group PSL(2, 7), then for every
Sylow subgroup P of G there exists an element x such that MP x =
P xM . It is clear also that in general M is not permutable with P .
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The above examples motivate the following definition [11].

Definition 1.1. Let H and T be subgroups of the group G. Then

1) H and T are said to be conditionally permutable (or in brevity, c-
permutable) in G if for some x ∈ G we have HT x = T xH (In this case,
we also say that H is c-permutable with T in G.)

2) H and T are said to be completely c-permutable in G if H and T are
c-permutable in 〈H,T 〉.
By using the above definition, it is not difficult to note that a group G

is soluble if and only if its any two Hall subgroups (associated with different
set of primes) are c-permutable in G. We can also prove (see [11, Theo-
rem 3.8]) that a group G is supersoluble if and only if every maximal sub-
group of G is c-permutable with all subgroups of G. On the other hand, ev-
ery group in which any two Hall subgroups or any two maximal subgroups
are permutable is always nilpotent. For c-permutability of subgroups, we
consider the following elementary example: Let G = Gp × S3 × Gq, where
|Gp| = p, |Gq| = q, p �= q and 2, 3 /∈ {p, q}. If A = GpS3, B = GqS3,
then S3 ≤ A ∩ B and so G = AB is a factorization of G in which some
subgroups of A are not permutable with some subgroups of B, however,
one can easily check that every subgroup of A is completely c-permutable
with every subgroup of B. Thus the condition of permutability is gen-
erally stronger than the condition of c-permutability. Motivated by the
above observation, we are now able to give the following three criterions
of supersolubility for products of supersoluble groups.

Theorem A. Let G = AB be the product of supersoluble groups A

and B. If every subgroup of A is completely c-permutable in G with every

subgroup of B, then G is supersoluble.

By the well known Kegel’s theorem, we know that a group G is soluble
if G is a product of two nilpotent groups. However, such product of nilpo-
tent groups may not be supersoluble in general. The following theorem
gives some additional conditions under which the product of two nilpotent
groups is supersoluble.

Theorem B. A finite group G is supersoluble if and only if G = AB,

where A,B are nilpotent subgroups of G and A has a chief series

1 = A0 ≤ A1 ≤ · · · ≤ At−1 ≤ At = A (1)
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such that every Ai is completely c-permutable (permutable) with all sub-

groups of B, for all i = 1, . . . , t.

Theorem C. Assume that G = AB, where A, B are supersoluble

subgroups of a group G. Assume further that either G′ is nilpotent or A

and B have coprime orders. If A is completely c-permutable with every

subgroup of B and B is completely c-permutable with every subgroup of A,

then G is supersoluble.

For notation and terminology not given in this paper, the reader is
referred to the monograph of W. Guo [12].

2. Preliminaries

We first cite here some properties of factorizations of groups. Some
useful properties of p-supersoluble and p-soluble groups are also included.

The following three lemmas are well known.

Lemma 2.1. Let A, B be subgroups of a group G. If G = AB, then

G = ABx for every x ∈ G.

Lemma 2.2. Let H be a proper subgroup of a group G. Then

HHx �= G for all x ∈ G.

Lemma 2.3. Let G = AB and Ap, Bp and Gp be Sylow p-subgroups

of A,B and G, respectively. Then there are elements x, y ∈ G such that

Gx
p = ApB

y
p .

Lemma 2.4 ([9]). Let G = AB be the product of the subgroups A

and B. If L is a normal subgroup of A and L ≤ B, then L ≤ BG.

Lemma 2.5 ([12, 1.7.11]). If H/K is a chief factor of a group G and

p is a prime divisor of |H/K|, then Op(G/CG(H/K)) = 1.

A group G is said to be dispersive if G has a chain of normal subgroups

1 = G0 ⊂ G1 ⊂ · · · ⊂ Gt = G, t ≥ 0,

where Gi/Gi−1 is a Sylow pi-subgroup of G/Gi and p1 > p2 > · · · > pt.
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Lemma 2.6. Let G be a group. Then the following statements hold:

(i) if G is supersoluble, then G′ ⊆ F (G) and G is dispersive (see [12,
1.9.9]);

(ii) if L � G and G/Φ(L) is supersoluble (dispersive) , then G is super-

soluble (respectively, G is dispersive) (see [12, 1.8.1]);

(iii) G is supersoluble if and only if |G : M | is a prime for every maximal

subgroup M of G (B. Huppert, 1954).

Lemma 2.7 ([12, 2.4.3]). Let M1,M2 be maximal subgroups of a sol-

uble group G such that (M1)G = (M2)G. Then M1 and M2 are conjugate.

Lemma 2.8. Let p be a prime number and G a p-soluble group. If

Op′(G) = 1, then the following statements are equivalent:

(i) G is p-supersoluble;

(ii) G is supersoluble;

(iii) G/Op(G) is an abelian group of exponent dividing p − 1.

Proof. (i) =⇒ (ii). Since G is p-supersoluble, for every chief p-factor
H/K of G, we have |H/K| = p and so by [20, 1,1.4], G/CG(H/K) is an
abelian group of exponent dividing p−1. Since Op′(G) = 1, the intersection
of the centralizers of all such factors is Op′,p(G) = Op(G). Hence G is
supersoluble by [20, 1,1.9]. By using the same arguments, we can also
prove that (ii) =⇒ (iii) and (iii) =⇒ (i). �

3. The proof of Theorems A, B and C

A group G = AB is said to be a totally permutable product of the
groups A and B if every subgroup of A is permutable with every subgroup
of B. By analogy, we call G = AB a totally (completely) c-permutable
product of the groups A and B if every subgroup of A is (completely) c-
permutable with every subgroup of B. Equipped with the above concepts,
we now prove the Theorems stated in section 1.

Proof of Theorem A. Since every subgroup of a supersoluble group
is also supersoluble, we only need to show that G is supersoluble if G = AB

is a totally completely c-permutable product of supersoluble groups A
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and B. Assume that the assertion is not true and let G be a counterex-
ample of minimal order. Then A and B are proper subgroups of G. We
proceed the proof via the following steps.

(a) If M is a maximal subgroup of G and either A ⊆ M or B ⊆ M ,
then M is supersoluble.

Indeed, by using the Dedekind Law, we have M = M ∩AB = A(M ∩
B). Hence M is a totally completely c-permutable product of the groups
A and M ∩ B. This shows that M is supersoluble since |M | < |G|.

(b) For every a ∈ A, the group G is a totally completely c-permutable
product of the subgroups A and Ba.

By Lemma 2.1 we have G = ABa. Now let H ≤ A, T ≤ Ba and H,
T ≤ D ≤ G. Then Ha−1 ≤ A, T a−1 ≤ B and Ha−1

, T a−1 ≤ Da−1
. By

hypothesis, for some d ∈ D, we have Ha−1
(T a−1

)d
a−1

= (T a−1
)d

a−1

H
a−1

.
Then (aHa−1)(ad−1a−1)(aTa−1)(ada−1) = aHd−1Tda−1 = ad−1TdHa−1.
This implies that HT d = T dH.

(c) G has an abelian minimal normal subgroup.

Let L be a minimal normal subgroup of A. Then, by hypothesis, G

has an element x such that LBx = BxL. Assume that L ⊆ Bx. Since
by Lemma 2.1, G = ABx, we see from Lemma 2.3 that LG ⊆ Bx. But
Bx is a supersoluble group, and so any minimal normal subgroup of G

contained in LG ⊆ Bx must be abelian. Hence, we may suppose that L is
not contained in Bx. In this case,we may assume that LBx �= G and let
M be a maximal subgroup of G such that LBx ⊆ M . Let x = ba, where
a ∈ A, b ∈ B. Then Bx = Ba. By Lemma 2.1 again, we have G = ABa.
In view of (b), we can see that M is a supersoluble group. However,since
L ⊆ A∩M , and so by Lemma 2.3, we have LG ⊆ M . This shows that any
minimal normal subgroup of G contained in LG is still abelian. Finally, we
let G = LBa. Since L ⊆ A, we see from (b) that G is a totally completely
c-permutable product of the groups L and Ba. Let R be a minimal normal
subgroup of Ba. Using the same argument as above, we come to the case
that G = LR. Since L and R are abelian groups, we conclude that G has
an abelian minimal normal subgroup.

(d) G/L is a supersoluble group for any non-identity normal subgroup
L of G.
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Obviously, G/L = (AL/L)(BL/L). Let H/L ≤ AL/L and T/L ≤
BL/L, and let D = 〈H,T 〉. Then,by our hypothesis,we have (H ∩A)(H ∩
B)x = (H ∩ B)x(H ∩ A), for some x ∈ D. Thus, we have

(H/L)(T/L)xL = (L(A ∩ H)/L)(L(T ∩ B)/L)xL

= L(A ∩ H)(T ∩ B)x/L = ((T ∩ B)xL/L)(L(A ∩ H)/L)

= ((T ∩ B)L/L)xL(L(A ∩ H)/L) = (T/L)xL(H/L),

where xL ∈ D/L. This shows that G/L is the totally completely c-
permutable product of the supersoluble groups AL/L � A/A ∩ L and
BL/L � B/B ∩ L. Since |G/L| < |G|, we conclude that G/L is supersol-
uble.

(e) G has only one minimal normal subgroup L = Op(G) = CG(L),
for some prime p, and G = [L]M , where M is a maximal subgroup of G

with Op(M) = 1 and |L| �= p.

Since the class of all supersoluble groups is closed under subdirect
products, in view of (d), L is the only minimal normal subgroup of G. By
Lemma 2.6, we also have L � Φ(G). Let M be a maximal subgroup of
G not containing L and C = CG(L). Then by Dedekind Law, we have
C = C ∩ LM = L(C ∩ M). Since L is abelian, C ∩ M � G and so
C ∩ M = 1. This shows that L = Op(G) = CG(L) and M � G/L is a
supersoluble group with Op(M) = 1 by Lemma 2.4. Now, by (d) and the
choice of G, we have |L| �= p.

(f) p is the largest prime divisor of the order of the group G.

Assume that q is the largest prime divisor of the order of G with
q �= p. Let T1 and T2 be maximal subgroups of G such that A ≤ T1,
B ≤ T2. Then T1T2 = G. By Lemma 2.2, T1 and T2 are not conjugate
in G. Since by Lemma 2.7 all maximal subgroups of G not containing L

are conjugate in G, we have either T1 contains L or T2 contains L. Let
L ⊆ T1 and let Gq be a Sylow q-subgroup of G. Assume that |Gq| �= q.
Since by (d), G/L is supersoluble and T1/L is maximal in G/L, we obtain
that |G/L : T1/L| = |G : T1| is a prime by Lemma 2.6. Hence, T1 contains
a non-trivial Sylow q-subgroup Q. In view of Lemma 2.6, we have Q �
T1, and consequently, Q ⊆ CG(L) = L. This contradiction shows that
|Gq| = q. Clearly q � |A|. Hence q | |B|. Assume that LB �= G and let
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M3 be a maximal subgroup of G containing LB. From (a), we know that
M3 is supersoluble. Hence we have L �= CG(L) again. This contradicts
(e), so LB = G. Thus, by applying Dedekind Law again,we have T2 =
T2 ∩ LB = B(T2 ∩ L) = B and clearly B ∩ L = 1. Let x be an element
of G such that (L ∩ A)xB = B(L ∩ A)x. Assume that L ∩ A �= 1. Then
(L ∩ A)x �= 1, and clearly (L ∩ A)x � B. This leads to B(L ∩ A)x = G.
Thus,we have |G : B| ≤ |L ∩ A|. Evidently, |G : B| = |L|, and thereby
L ⊆ A. If L1 is a maximal subgroup of L,then for some x ∈ G, we have
Lx

1B = BLx
1 . Since G is not a supersoluble group, from (d) we see that

L1 �= 1. But then, we can derive that |L| = |G : B| = |L1|, a contradiction.
Thus L ∩ A = 1. Let Bq be a Sylow q-subgroup of B and x an element
of G such that ABx

q = Bx
q A. Suppose that LABx

q �= G. Then, there
exists a maximal subgroup M of G containing LABx

q . Thus by (a), M is
supersoluble. This leads to Bx

q ⊆ CG(L) = L, a contradiction. Hence, we
have shown that G = LABx

q . Now, we assume that G = ABx
q . In this

case, we have p � |G : A|, and so any Sylow p-subgroup of A must be a
Sylow p-subgroup of G. Thus, L ≤ A∩L = 1. However,this contradiction
shows that ABx

q �= G, and consequently, we know that ABx
q is a maximal

subgroup of G. Now in view of Lemma 2.7, we have ABx
q = By, for some

y ∈ G. This contradiction shows that p is the largest prime divisor of |G|.
(g) L is a Sylow p-subgroup of G.

Assume that the assertion is not true. Then, we have p | |G : L|. This
means that p | |M |, and so by (f) and also by Lemma 2.6, we see that
Op(M) �= 1. This contradicts (e). Hence, L is a Sylow p-subgroup of G.

(h) To complete the proof.

Without loss of generality, we may assume that p | |A|. Since A is
supersoluble, by (f) we know that A has a normal subgroup Zp of order p.
Clearly Zp ⊆ L. Let Bp′ be a Hall p′-subgroup of B and x an element of
G such that ZpB

x
p′ = Bx

p′Zp. Since evidently Zp = L ∩ ZpB
x
p′ � ZpB

x
p′ ,

we see that Bx
p′ ⊆ NG(Zp). In view of (g), the Sylow p-subgroup of B is

contained in NG(Zp). Hence Zp � G, and so Zp = L, which contradicts
(e). Thus the proof is completed. �

Proof of Theorem B. Assume that G is a supersoluble group.
Then, by Lemma 2.6, we see that G′ ⊆ F (G). Let A = F (G) and B be
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a subgroup of G such that AB = G and AB1 �= G, for every proper sub-
group B1 of B. Then, evidently, A∩B ⊆ Φ(B). Since AB/A � B/A∩B,
B/A ∩ B is nilpotent and so B is a nilpotent group. Now considering a
chief series of G below F (G), say

1 = A0 ≤ A1 ≤ · · · ≤ At−1 ≤ At = A = F (G)

Then we can see immediately that this series is also a chief series of A

(since |Ai/Ai−1| is a prime for all i = 1, . . . , t) and that Ai is permutable
with all subgroups of B for all i = 1, . . . , t.

Now we assume that G = AB, where A, B are nilpotent subgroups
of G and A has a chief series 1 = A0 ≤ A1 ≤ · · · ≤ At−1 ≤ At = A such
that every term of which is completely c-permutable with all subgroups
of B. We claim that G is a supersoluble group. Suppose that G is not
a supersoluble group and let G be a counterexample of minimal order.
Without loss of generality, we may assume that At−1B �= G and G �= AB1

for every proper subgroup B1 of B. First of all, we note that by the well
known Theorem of Kegel in [16], G is a soluble group since it is a product
of two nilpotent groups. We now divide our proof into the following steps:

(a) G/N is supersoluble for every normal subgroup N �= 1 of G.

Clearly, G/N = (AN/N)/(BN/N), where AN/N � A/A ∩ N and
BN/N � B/B ∩ N are nilpotent groups. Consider the series

1 = A0N/N ≤ A1N/N ≤ · · · ≤ At−1N/N ≤ AtN/N = AN/N (2)

of AN/N . Without loss of generality, we may assume that all terms of
this series are distinct. Obviously, every term of series (2) is completely
c-permutable with all subgroups of the group BN/N (see the proof of
Theorem A). Since A ⊆ NG(AiN), AiN/N � AN/N . Since |Ai/Ai−1| is a
prime, |AiN/N : Ai−1N/N | is also a prime. Hence the series (2) is a chief
series of AN/N . Thus our hypothesis is true for G/N . But |G/N | < |G|,
and so G/N is supersoluble.

(b) G has only one minimal normal subgroup H such that H =
CG(H) = Op(G), for some prime p, and |H| �= p.

Let H be a minimal normal subgroup of G. Because the group G is
soluble, we know that H is an elementary abelian p-group for some prime p.
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Since G/H is supersoluble, |H| �= p. Since the class of all supersoluble
groups is closed under subdirect products, we know that H is the only
minimal normal subgroup of G. Now, by Lemma 2.6, we have H � Φ(G).
Hence, it follows that H = CG(H) = Op(G).

(c) The orders of A and B are not prime.

Indeed, if |A| = q for some prime q, then G is a totally completely
c-permutable product of two supersoluble groups A and B. By Theorem
A, we see that G is supersoluble, however, this contradicts to the choice
of G, and hence |A| is not a prime. Next, we assume that |B| = q is a
prime. Suppose if possible that q �= p. Then H ⊆ A. Since A is nilpotent,
by (b), we see that A is a p-group. We now claim that H = A. Assume
that p > q. Then A/H = Gp/H � G/H since G/H is supersoluble.
But H = CG(H), by Lemma 2.5, we have Op(G/CG(H)) = 1, and so
H = A. On the other hand, suppose that q > p. In this case, let x ∈ G

such that T = At−1B
x = BxAt−1. Since At−1 � A, by Lemma 2.4,

At−1 ⊆ (At−1B
x)G. Hence H ⊆ T . It is clear that the hypothesis still

holds for T . This means that the group T is supersoluble, and hence
Bx � T . It follows that Bx ⊆ CG(H) = H, a contradiction. Therefore
A = H and our claim is established. Consequently, H must be a Sylow
p-subgroup of G and so B must be a maximal subgroup of G. Now,by
our hypothesis, there exists some x ∈ G such that BAx

1 = Ax
1B. Since

B is a maximal subgroup of G and Ax
1 � B, G = BAx

1 . This contradicts
our assumption on G. Hence q = p. By our hypothesis again, we have
A1B

x = BxA1, for some x ∈ G. Hence G = ABx = A(A1B
x). By using

Lemma 2.4, we see that H ⊆ A1B
x and so H = A1B

x since the order of
H is not a prime. Hence, it follows that A1 � A(A1B

x) = G, contrary to
(b). Thus (c) is proved.

(d) For every x ∈ G and all i = 1, . . . , t, the subgroup Ai is completely

c-permutable with all subgroups of Bx (see the proof of Theorem A).

(e) H is a Sylow p-subgroup of G.

Assume that the assertion is not true and let q be the largest prime
divisor of |G|. Then, we see that p �= q, and by (b), we have
Op(G/CG(H)) = 1. Let B1 be a maximal subgroup of B and let x, y ∈ G

so that At−1B
x = BxAt−1 and ABy

1 = By
1A. Then, in view of (d), we see

that our hypothesis also holds for the groups At−1B
x and ABy

1 . By (c),
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At−1 and By
1 are non-identity groups. Since A, B are nilpotent, At−1 � A

and By
1 � By. Now, by Lemma 2.4, we have At−1 ⊆ (At−1B

x)G and
By

1 ⊆ (ABy
1 )G. It follows that H ⊆ At−1B

x ∩ ABy
1 . It is clear that either

q | |At−1B
x| or q | |ABy

1 |. Suppose that the first case holds and let Q be a
Sylow q-subgroup of At−1B

x. Then, by Lemma 2.6, we have Q � At−1B
x,

and so Q ⊆ CG(H) = H, a contradiction. The second case can be similarly
proved. Thus (e) holds.

(f) H � A and H � B.

Assume that H ⊆ A. Because A is nilpotent, A is a p-group, and
so by (e), A = H is a Sylow p-subgroup of G. Clearly, H � B and
H ∩ B � G. Hence H ∩ B = 1. Let x ∈ G such that Ax

1B = BAx
1 . It is

clear that 1 �= Ax
1 = H ∩ Ax

1B � Ax
1B. But then we have Ax

1 � G and so
Ax

1 = H = A1. This contradicts (b). Hence H � A. Analogously, we can
show that H � B.

(h) The final step.

Let Bp′ be a Hall p′-subgroup of B. Then we can easily see that
Bp′ �= 1. Now, let x be an element of G such that T = ABx

p′ = Bx
p′A.

Since Bx
p′ � Bx, Bx

p′ ⊆ (Bx
p′)

G ⊆ ABx
p′ . Hence H ⊆ ABx

p′ , and so H ⊆ A,
this contradicts (f). Thus,the proof is completed. �

Proof of Theorem C. We first prove that G is supersoluble when-
ever G′ ⊆ F (G). Assume that the assertion is not true and let G be a
counterexample of minimal order. Since G′ ⊆ F (G), G is soluble. By
using the same arguments as in the proof of Theorem A, one can show
that G = [H]M , where H is the only minimal normal subgroup of G.
Moreover, we can see that H = Op(G) = CG(H), for some prime p. Since
G′ ⊆ F (G), we know that G/H is abelian. But then G/H must be a cyclic
group because G/H is an irreducible automorphism group of H. Now, by
Lemma 2.5, H is a Sylow p-subgroup of G. It is also clear that |H| �= p.

Let Gq be a Sylow q-subgroup of G, where q �= p. Then Gq is a
cyclic group. Now, by Lemma 2.3, we have Gq = Ax

qBy
q , for some Sylow

q-subgroups Aq of A, Bq of B and some x, y ∈ G. Hence we have either
Gq = Ax

q or Gq = Bx
q . Assume that H ⊆ A and H ⊆ B, and let, for

example, Gq ⊆ A. Since Op′(A) = 1, we have H = Op(A) = F (A). Since A

is supersoluble by our hypothesis, we have exp(A/H)|(p−1) by Lemma 2.8.
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Hence |Gq| | (p−1). Thus, if H ⊆ A∩B, we can deduce that |G/H||(p−1).
This shows that G/H is an abelian group with exponent dividing p − 1,
and by Lemma 2.8, G is supersoluble, which is a contradiction. Hence we
have either H �⊆ A or H �⊆ B. Assume that H �⊆ B. Then, H ∩ A �= 1.
Since A is supersoluble, A has a minimal normal subgroup L ⊆ H with
|L| = p.

Assume that p | |B|. Let Ap′ be a Hall p′-subgroup of A. Then, by
hypothesis, for some x ∈ G, we have T = (Ap′)xB = B(Ap′)x. Since
we have already known from above that if Q is a Sylow q-subgroup of G

with q �= p, then either Qy ⊆ A or Qy ⊆ B for some y ∈ G, we have
|G : T | = pα, for some α ∈ N and so G = TH. Let Bp = B ∩H. Then, we
have 1 �= Bp �= H and Bp = H∩T � G, which is impossible. Consequently,
B ∩ H = 1.

Let D = LAp′ and F = BDx = DBx for some x ∈ G. In this case,by
using the same arguments as above, we can prove that L = H ∩ F � G.
This contradiction completes the proof of the first case.

Now we will prove that G is supersoluble whenever A and B have
coprime indices in G. Assume that the assertion is not true and let G be
a counterexample with minimal order. Without loss of generality, we may
suppose that A1B �= G �= AB1 for all proper subgroups A1 of A and B1

of B. We proceed the proof as follows:

(a) Every supgroup of A is completely c-permutable in G with all

subgroups of Ba for all a ∈ A (see the proof of Theorem A).

(b) G has an abelian minimal normal subgroup.

Let L be a minimal normal subgroup of the supersoluble subgroup A.
Then, we have |L| = p, for some prime p. By hypothesis, T = LBa = BaL

for some a ∈ A. In view of (a), every subgroup of Ba is completely c-
permutable in T with all subgroups of L. Hence by Theorem A, T is
supersoluble, and so by the choice of G we have T �= G. Using Lemma 2.4,
we see that L ⊆ TG. Therefore (b) holds.

(c) G has a unique minimal normal subgroup H such that G/H is

supersoluble, moreover, H = Op(G) = CG(H), for some prime p and

|H| �= p (see the proof of Theorem A).

(d) The final step.
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Since (|A|, |B|) = 1, we have either H ⊆ A or H ⊆ B. Without loss
of generality, we may assume that H ⊆ A. Let L be a minimal normal
subgroup of A contained in H. Let x ∈ G such that T = LxB = BLx.
Then by hypothesis, p � |B|, Lx = H∩T � T , and so Lx � AxB = G. Thus
H = Lx is a group of order p, which contradicts (c). This contradiction
completes the proof. �

4. Some applications

In this section, we give some applications of our main results.
We first prove the following extension theorem of Theorem A.

Theorem 4.1. Let p be a prime number and G = AB a totally

completely c-permutable product of two p-supersoluble groups A and B.

Then G is p-supersoluble.

Proof. Assume that the assertion is false and let G be a counterex-
ample of minimal order. Since the hypothesis of the theorem holds for
every factor group of G, we may put Op′(G) = 1. Also, we assume that
for every proper subgroup A1 of A and every proper subgroup B1 of B,
we have A1B �= G and G �= AB1. We proceed the proof as follows:

(a) G has a non-trivial normal subgroup which is p-soluble.

By using the same arguments as in the proof of Theorem A, we obtain
that both subgroups A and B are simple groups.

It is clear that if both subgroups A,B are either p′-groups or p-groups,
then G is p-supersoluble, which contradicts the choice of G. Suppose that
A is a p′-group and B a p-group. Assume that G is simple group. Since G

has a Hall p′-subgroup A, by Corollary 5.3 in [2], we know that G belongs
to one of the following types:

(i) Ap with p ≥ 5 and A � Ap−1;

(ii) M11 with p = 11;

(iii) M23 with p = 23 and A = M22;

(iv) PSL(2, q), where either p = q and A � A5 or A is soluble.

By hypothesis, G has a Hall {q, p}-subgroup containing B for each
prime q �= p. Hence by [13], the case (i) is impossible. It is not difficult
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to see that the cases (ii)–(iv) are also impossible, for example, we just
check case (iii). Recall that the order of the Mathieu group M23 � G is
27325 ·7 ·11 ·23. Let D be a Hall {3, p}-subgroup of G containing B. Then
B � D. Indeed, it is clear that |D : ND(B)| ∈ {1, 3}. Since |D : NG(B)| ≡
1 (mod 23), |D : ND(B)| = 3 is clearly impossible. Hence,we conclude
that 3 � |G : NG(B)|. Analogously, one can also see that 5, 7, 11, 23 �
|G : NG(B)|. So |G : NG(B)| = 2α, where 1 < α < 7. But this is also
impossible, by Theorem 5.8 in [2].

Thus, we have already shown that G is not a simple group. Let H be
a minimal normal subgroup of G. If p � |H|, then H is p-soluble. Assume
that p | |H|. Then H is a simple group since if otherwise we will have
H = H1 × · · · × Ht, where t > 1 and H1 � · · · � Ht are isomorphic
groups.This is clearly impossible. Since A is a Hall p′-subgroup of H, we
have A∩H is a Hall p′-subgroup of H and so H = (A∩H)B is the totally
completely c-permutable product of the groups A ∩ H and B. But as we
have shown above, H is not a simple group. This contradiction shows that
G has a p-soluble minimal normal subgroup, say L. Thus (a) is proved.

(b) For every non-identity normal subgroup D in G, the quotient G/D

is p-supersoluble (see the proof of Theorem A).

(c) L = Op(G) = CG(L).

Since the class of all p-supersoluble groups is closed under subdirect
products, by (b) we see that L is the unique minimal normal subgroup of
G. Moreover, since Op′(G) = 1, we have L ⊆ Op(G). Now using the same
argument as in the proof of Theorem A, we see that L = CG(L) = Op(G).

(d) If L ≤ A, then L ≤ B and conversely.

Assume that L ≤ A. Since L � A and A is p-supersoluble, A has
a minimal normal subgroup L1 such that L1 ⊆ L and |L1| = p. There
exists x ∈ G such that Lx

1B = BLx
1 . Then by Dedekind Law, we have

L = L ∩ Lx
1B = Lx

1(L ∩ B). Since |L| �= p, it follows that L ∩ B �= 1. Let
L2 be a minimal normal subgroup of B such that L2 ⊆ L∩B. Then since
L2 = Lab

1 = Lb
1, for some a ∈ A, b ∈ B, we have L1 ⊆ B. Now, by using

Lemma 2.4, we obtain that H = (L1)G ⊆ B.

(e) Op′(A) = 1 = Op′(B).

Assume that Op′(A) �= 1. Then L � A and so by (d) L � B. But by
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Lemma 2.4, L ⊆ Op′(A)Bx for some x ∈ G, and so L ⊆ Bx. It follows
that L ⊆ B, a contradiction. Hence (e) is proved.

(f) A and B are supersoluble. (This part follows directly from (e) and
Lemma 2.8.)

Thus, we have proved that G is a totally completely c-permutable
product of supersoluble groups A and B. Hence G is supersoluble by
Theorem A. The proof is completed. �

Corollary 4.2 ([8]). Let p be a prime number. Assume that G = AB

is a totally permutable product of p-supersoluble groups A and B. Then

G is p-supersoluble.

Now, we apply Theorem B to prove the following characterization
theorem for p-supersoluble groups. This theorem can be regarded as a
generalized theorem of O. H. Kegel [16].

Theorem 4.3. Let p be a prime and G a soluble group. Then G is p-

supersoluble if and only if G = AB, where A is p-nilpotent, B is nilpotent

and A has a chief series

1 = A0 ≤ A1 ≤ · · · ≤ An = Op′(A) ≤ An+1 ≤ · · · ≤ At−1 ≤ At = A

such that Ai is completely c-permutable (permutable) with all subgroups

of B, for all i = n, . . . , t.

Proof. First, we assume that G is p-supersoluble. Then by Lem-
ma 2.8, G/Op′(G) is supersoluble and G/Op′,p(G) is an abelian group.
Let A = Op′,p(G) and B be a subgroup of G such that AB = G and
B1A �= G for all proper subgroups B1 of B. Then B is nilpotent. Since
Op′(A)charA � G, we have Op′(A) � G. Hence the group G below A has a
chief series

1 = A0 ≤ A1 ≤ · · · ≤ An = Op′(A) ≤ An+1 ≤ · · · ≤ At−1 ≤ At = A

passing through Op′(A). This proves the necessity part of the theorem.
The sufficiency part can be proved by using Theorem B and the arguments
adopted in the proof of Theorem 4.1. We omit the details. �

Using Theorem C and applying the same arguments in the proof of
Theorem 4.1, we can prove the following theorem for p-supersoluble groups.
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Theorem 4.4. Let p be a prime and G = AB the product of p-super-

soluble groups A and B. Assume that A is completely c-permutable will

all subgroups of B and B is completely c-permutable with all subgroups

of A. If either G′ ⊆ Op′,p(G) or A and B have coprime orders, then G is

p-supersoluble.
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