An estimate for the length of an arithmetic progression the product of whose terms is almost square

By SHANTA LAISHRAM (Mumbai)

$$
\begin{align*}
& \text { Abstract. Erdős conjectured that } \\
& \qquad n(n+d) \ldots(n+(k-1) d)=y^{2} \tag{1}
\end{align*}
$$

in positive integers $n, k \geq 3, d>1, y$ with $\operatorname{gcd}(n, d)=1$, implies that k is bounded by an absolute constant. Shorey and Tijdeman [16] showed that (1) implies that k is bounded by an effectively computable number depending only on $\omega(d)$, the number of distinct prime divisors of d. In this paper, an explicit bound for k in terms of $\omega(d)$ is presented.

1. Introduction

For an integer $x>1$, we denote by $P(x)$ and $\omega(x)$ the greatest prime factor of x and the number of distinct prime divisors of x, respectively. Further we put $P(1)=1$ and $\omega(1)=0$. Let n, d, k, b, y be positive integers such that b is square free, $d \geq 1, k \geq 3, P(b) \leq k$ and $\operatorname{gcd}(n, d)=1$. We consider the equation

$$
\begin{equation*}
n(n+d) \ldots(n+(k-1) d)=b y^{2} \quad \text { in } n, d, k, b, y \quad \text { with } P(b) \leq k \tag{2}
\end{equation*}
$$

Mathematics Subject Classification: Primary: 11D61.
Key words and phrases: arithmetic progressions, diophantine equations, squarefree integers, congruences.
The research partially supported by TIFR Endowment Fund.

For a survey of results on (2), see [16], [4], [14] and [15]. Equation (2) with $d=1$ has been solved completely in [3] with $P(b)<k$ and in [11] with $P(b)=k$. Therefore we assume from now onwards that $d>1$. MARSZALEK [7] proved that (2) implies k is bounded by an effectively computable number k_{0} depending only on d. In fact the above assertion holds with k_{0} depending only on $\omega(d)$. This is due to Shorey and Tijdeman [16], who proved that $2^{\omega(d)}>c \frac{k}{\log k}$ where c is an effectively computable absolute constant. However the bound k_{0} is very large. Further (2) with $\omega(d)=1$ and $k \notin\{3,5\}$ has been solved completely in [12] and [8]. Therefore we shall always assume that $\omega(d) \geq 2$. In this paper, we give an explicit bound for k in terms of $\omega(d)$ whenever (2) holds.

For $2 \leq \omega(d) \leq 11$, we define $\kappa_{0}=\kappa_{0}(\omega(d))$ as in the table below.

$\omega(d)$	$\kappa_{0}(d$ even $)$	$\kappa_{0}(d$ odd $)$			$\omega(d)$	$\kappa_{0}(d$ even $)$
	500	800		$\kappa_{0}(d$ odd $)$		
2	500	3400		2.643×10^{5}	1.376×10^{6}	
3	700		8	1.172×10^{6}	6.061×10^{6}	
4	2900	15300		9	5.151×10^{6}	2.649×10^{7}
5	13100	69000		10	2.247×10^{7}	1.149×10^{8}
6	59000	3.096×10^{5}		11	9.73×10^{7}	4.95×10^{8}

For $\omega(d) \geq 12$, we define $\kappa_{0}=\kappa_{0}(\omega(d))$ as

$$
\kappa_{0}(\omega(d))= \begin{cases}2.25 \omega(d) 4^{\omega(d)} & \text { if } d \text { is even }, \\ 11 \omega(d) 4^{\omega(d)} & \text { if } d \text { is odd. }\end{cases}
$$

We prove
Theorem 1. Equation (2) implies that

$$
\begin{equation*}
k<\kappa_{0} . \tag{3}
\end{equation*}
$$

Theorem 1 is a direct consequence of the following two propositions.
Proposition 2. Let $k \geq \kappa_{0}$. Then (2) implies that

$$
\begin{align*}
& d<4 c_{1}(k-1)^{2}, \tag{4}\\
& n<c_{1}(k-1)^{3} \tag{5}
\end{align*}
$$

and hence

$$
\begin{equation*}
n+(k-1) d<5 c_{1}(k-1)^{3} \tag{6}
\end{equation*}
$$

where

$$
c_{1}= \begin{cases}\frac{1}{16} & \text { if } d \text { is odd } \\ \frac{1}{8} & \text { if } \operatorname{ord}_{2}(d)=1 \\ \frac{1}{4} & \text { if } \operatorname{ord}_{2}(d) \geq 2\end{cases}
$$

Proposition 3. Let $k \geq \kappa_{0}$. Then (2) implies that

$$
\begin{equation*}
n+(k-1) d \geq 2^{\delta} \frac{5}{16} k^{3} \tag{7}
\end{equation*}
$$

where

$$
\delta=\min \left\{\operatorname{ord}_{2}(d), 3\right\} .
$$

2. Notation and preliminaries

From (2), we have

$$
\begin{equation*}
n+\mathrm{id}=A_{i} X_{i}^{2} \tag{8}
\end{equation*}
$$

for $0 \leq i<k$ with $P\left(A_{i}\right) \leq k$ and $\left(X_{i}, \prod_{p \leq k} p\right)=1$. Also we have

$$
\begin{equation*}
n+\mathrm{id}=a_{i} x_{i}^{2} \tag{9}
\end{equation*}
$$

for $0 \leq i<k$ with a_{i} squarefree. Since $\operatorname{gcd}(n, d)=1$, we see that

$$
\begin{equation*}
\left(A_{i}, d\right)=\left(a_{i}, d\right)=\left(X_{i}, d\right)=\left(x_{i}, d\right)=1 \quad \text { for } 0 \leq i<k . \tag{10}
\end{equation*}
$$

Let

$$
T=\left\{i \mid 0 \leq i<k, X_{i}=1\right\}, \quad T_{1}=\left\{i \mid 0 \leq i<k, X_{i} \neq 1\right\} .
$$

Note that $X_{i}>k$ for $i \in T_{1}$. For $0 \leq i<k$, let

$$
\begin{equation*}
\nu\left(A_{i}\right)=\left|\left\{j \in T_{1}, A_{j}=A_{i}\right\}\right| . \tag{11}
\end{equation*}
$$

We always suppose that there exist $i_{0}>i_{1}>\cdots>i_{\nu\left(A_{i}\right)-1}$ such that $A_{i_{0}}=A_{i_{1}}=\cdots=A_{i_{\nu\left(A_{i}\right)}-1}$. Similarly we define

$$
R=\left\{a_{i} \mid 0 \leq i<k\right\}
$$

and

$$
\begin{equation*}
\nu\left(a_{i}\right)=\left|\left\{j \mid 0 \leq j<k, a_{i}=a_{j}\right\}\right| . \tag{12}
\end{equation*}
$$

Define

$$
\rho:=\rho(d)= \begin{cases}1 & \text { if } 3 \nmid d, \tag{13}\\ 3 & \text { if } 3 \mid d .\end{cases}
$$

The letter p always denotes a prime number and p_{i} the i-th prime number. Let $P_{1}<P_{2}<\ldots$ be odd prime divisors of d. Let $r:=r(d) \geq 0$ be the unique integer such that

$$
\begin{equation*}
P_{1} P_{2} \ldots P_{r}<\left(4 c_{1}\right)^{\frac{1}{3}}(k-1)^{\frac{2}{3}} \text { but } P_{1} P_{2} \ldots P_{r+1} \geq\left(4 c_{1}\right)^{\frac{1}{3}}(k-1)^{\frac{2}{3}} \tag{14}
\end{equation*}
$$

If $r=0$, we understand that the product $P_{1} \ldots P_{r}=1$.
Let $d^{\prime} \mid d$ and $d^{\prime \prime}=\frac{d}{d^{\prime}}$ be such that $\operatorname{gcd}\left(d^{\prime}, d^{\prime \prime}\right)=1$. We write

$$
d^{\prime \prime}=d_{1} d_{2}, \operatorname{gcd}\left(d_{1}, d_{2}\right)= \begin{cases}1 & \text { if } \operatorname{ord}_{2}\left(d^{\prime \prime}\right) \leq 1 \\ 2 & \text { if } \operatorname{ord}_{2}\left(d^{\prime \prime}\right) \geq 2\end{cases}
$$

and we always suppose that d_{1} is odd if $\operatorname{ord}_{2}\left(d^{\prime \prime}\right)=1$. We call such pairs $\left(d_{1}, d_{2}\right)$ as partitions of $d^{\prime \prime}$.

We observe that the number of partitions of $d^{\prime \prime}$ is $2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}$ where

$$
\theta_{1}:=\theta_{1}\left(d^{\prime \prime}\right)= \begin{cases}1 & \text { if } \operatorname{ord}_{2}\left(d^{\prime \prime}\right)=1,2 \\ 0 & \text { otherwise }\end{cases}
$$

and we write θ for $\theta_{1}(d)$. In particular, by taking $d^{\prime}=1$ and $d^{\prime \prime}=d$, the number of partitions of d is $2^{\omega(d)-\theta}$.

Suppose that $A_{i}=A_{j}, i>j$. Then from (8) and (10), we have

$$
\begin{equation*}
(i-j) d=A_{i}\left(X_{i}^{2}-X_{j}^{2}\right)=A_{i}\left(X_{i}-X_{j}\right)\left(X_{i}+X_{j}\right) \tag{15}
\end{equation*}
$$

such that $\operatorname{gcd}\left(d, X_{i}-X_{j}, X_{i}+X_{j}\right)=1$ if d is odd and 2 if d is even. Hence for any divisor $d^{\prime \prime}$ of d, we have a partition (d_{1}, d_{2}) of $d^{\prime \prime}$ corresponding to $A_{i}=A_{j}$ such that $d_{1} \mid\left(X_{i}-X_{j}\right)$ and $d_{2} \mid\left(X_{i}+X_{j}\right)$ and it is the unique partition of $d^{\prime \prime}$ corresponding to the pair (i, j). Similarly, we have unique partition of $d^{\prime \prime}$ corresponding to every pair (i, j) whenever $a_{i}=a_{j}$.

As in Shorey and Tijdeman [16], the proof depends on comparing an upper bound and a lower bound for $n+(k-1) d$. The upper bound of $n+$ $(k-1) d$ given by Proposition 2 is a consequence of Lemmas $5,8,11,12,13$ which are refinements of results in [16], [1] and [12]. It is proved by counting the number of distinct a_{i} 's and looking at the number of partitions of d. The proof of Proposition 3 is by counting the number of X_{i} 's greater than k and calculating the maximal value of A_{i}. Proposition 3 is a consequence of Lemmas $4,6,7,9,10,14$. The new features of the paper are the refinement of the upper bound of the multiplicities of A_{i} with respect to partitions of d, counting the number of A_{i} 's with multiplicity greater than 1 and the use of r to improve the lower bounds of the maximum of A_{i} 's.

We shall follow the notation of this section throughout the paper. We use Mathematica for the computations in the paper. This is a part of my Master's thesis [6].

3. Lemmas

We begin with some estimates from Prime number theory.
Lemma 1. We have
(i) $\pi(\nu) \leq \frac{\nu}{\log \nu}\left(1+\frac{1.5}{\log \nu}\right)$ for $\nu>1$,
(ii) $\pi(\nu) \geq \frac{\nu}{\log \nu}\left(1+\frac{0.5}{\log \nu}\right)$ for $\nu \geq 59$,
(iii) $\quad p_{i} \geq i \log i$ for $i \geq 2$,
(iv) $\sum_{p \leq \nu} \log p<1.000081 \nu$ for $\nu>0$,
(v) $\quad \operatorname{ord}_{p}(k!) \geq \frac{k-p}{p-1}-\frac{\log (k-1)}{\log p}$ for $p<k$.

Proof. The estimates (i), (ii) and (iii) are due to Rosser and SchoenFELD [10]. For estimate (iv), see [13, p. 360] and [2, Prop. 1.7]. For a proof of (v), see [5, Lemma 2(i)].

The next result is Stirling's formula, see [9].
Lemma 2. For a positive integer ν, we have

$$
\sqrt{2 \pi \nu} e^{-\nu} \nu^{\nu} e^{\frac{1}{2 \nu+1}}<\nu!<\sqrt{2 \pi \nu} e^{-\nu} \nu^{\nu} e^{\frac{1}{12 \nu}}
$$

Lemma 3. Let $\pi_{d}(k) \leq \pi(k)-1$. Then

$$
\begin{equation*}
\left|T_{1}\right|>k-\frac{(k-1) \log (k-1)}{\log (n+(k-1) d)-\log 2}-\pi(k) \tag{16}
\end{equation*}
$$

Proof. We use [12, Lemma 3] with $t=k,-\log \prod_{p \mid d} p^{-\operatorname{ord}_{p}((k-1)!)} \geq 0$ and $\pi_{d}(k) \leq \pi(k)-\omega(d)+2$. Let $n \geq(k-1) d$. Then $\log n \geq \log (n+$ $(k-1) d)-\log 2$. This with [12, (4.2)] and Lemma 1 (i) gives (16). For $n<(k-1) d$, we have $\log (k-1)+\log d>\log (n+(k-1) d)-\log 2$. This with [12, (4.1)] and Lemma 1 (i) gives (16).

Lemma 4. Let $d=d^{\prime} d^{\prime \prime}$ with $\operatorname{gcd}\left(d^{\prime}, d^{\prime \prime}\right)=1$. Let $i_{0} \in T_{1}$ be such that $A_{i_{0}} \geq d^{\prime}$. Then

$$
\begin{equation*}
\nu\left(A_{i_{0}}\right) \leq 2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}\left(d^{\prime \prime}\right)} \tag{17}
\end{equation*}
$$

Proof. For simplicity, we write $\theta_{1}=\theta_{1}\left(d^{\prime \prime}\right)$. Assume that $\nu\left(A_{i_{0}}\right)>$ $2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}$. Then there exists a sequence of indices $i_{0}>i_{1}>\cdots>i_{2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}}$ such that $A_{i_{0}}=A_{i_{1}}=\ldots=A_{i_{2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}}}$. For each pair $\left(i_{0}, i_{r}\right), r=1,2, \ldots$, $2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}$, we have a unique partition corresponding to the pair. But there are at most $2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}$ partitions of $d^{\prime \prime}$. Since $\left(i_{0}-i_{r}\right) d=A_{i_{0}}\left(X_{i_{0}}-\right.$ $\left.X_{i_{r}}\right)\left(X_{i_{0}}+X_{i_{r}}\right)$ and $A_{i_{0}} \geq d^{\prime}$, we have

$$
\begin{aligned}
k>i_{0}-i_{r} & =\frac{A_{i_{0}}}{d^{\prime}}\left(\frac{X_{i_{0}}-X_{i_{r}}}{d_{1}}\right)\left(\frac{X_{i_{0}}+X_{i_{r}}}{d_{2}}\right) \\
& \geq\left(\frac{X_{i_{0}}-X_{i_{r}}}{d_{1}}\right)\left(\frac{X_{i_{0}}+X_{i_{r}}}{d_{2}}\right)
\end{aligned}
$$

where $\left(d_{1}, d_{2}\right)$ is the partition of $d^{\prime \prime}$ corresponding to pair $\left(i_{0}, i_{r}\right)$. This shows that we cannot have the partition $\left(\frac{d^{\prime \prime}}{2^{\theta_{1}}}, 2^{\theta_{1}}\right)$ corresponding to any
pair. Hence there can be at most $2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}-1$ partitions of $d^{\prime \prime}$ with respect to $2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}$ pairs of $\left(i_{0}, i_{r}\right), r=1, \ldots, 2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}$. Hence by Box Principle, there exist pairs $\left(i_{0}, i_{r}\right),\left(i_{0}, i_{s}\right)$ with $1 \leq r<s \leq 2^{\omega\left(d^{\prime \prime}\right)-\theta_{1}}$ and a partition $\left(d_{1}, d_{2}\right)$ of $d^{\prime \prime}$ corresponding to these pairs. Thus

$$
d_{1}\left|\left(X_{i_{0}}-X_{i_{r}}\right), d_{2}\right|\left(X_{i_{0}}+X_{i_{r}}\right) \text { and } d_{1}\left|\left(X_{i_{0}}-X_{i_{s}}\right), d_{2}\right|\left(X_{i_{0}}+X_{i_{s}}\right)
$$

so that $\operatorname{lcm}\left(d_{1}, d_{2}\right) \mid\left(X_{i_{r}}-X_{i_{s}}\right)$. Since $A_{i_{r}}=A_{i_{s}}=A_{i_{0}}$ and $\operatorname{gcd}\left(d_{1}, d_{2}\right) \leq 2$, we have

$$
k>\left(i_{r}-i_{s}\right) \frac{d^{\prime}}{A_{i_{0}}}=\frac{\left(X_{i_{r}}-X_{i_{s}}\right)}{\operatorname{lcm}\left(d_{1}, d_{2}\right)} \frac{\left(X_{i_{r}}+X_{i_{s}}\right)}{\operatorname{gcd}\left(d_{1}, d_{2}\right)}>\frac{\left(X_{i_{r}}+X_{i_{s}}\right)}{2}>\frac{2 k}{2}=k,
$$

a contradiction.
By taking $d^{\prime}=1$ and $d^{\prime \prime}=d$, the following result is immediate from Lemma 4 since $\theta_{1}(d)=\theta$.

Corollary 1. For $i_{0} \in T_{1}$, we have $\nu\left(A_{i_{0}}\right) \leq 2^{\omega(d)-\theta}$.
Lemma 5. Let $k \geq 17$. Suppose $n \geq c_{1}(k-1)^{3}$ or $d \geq 4 c_{1}(k-1)^{2}$. Then for $0 \leq i_{0}<k$, we have

$$
\begin{equation*}
\nu\left(a_{i_{0}}\right) \leq 2^{\omega(d)-\theta} . \tag{18}
\end{equation*}
$$

Proof. Suppose that $\nu\left(a_{i_{0}}\right)>2^{\omega(d)-\theta}$. We note that both $x_{i}+x_{j}$ and $x_{i}-x_{j}$ are even when d is even. Continuing as in the proof of (17) with $d^{\prime \prime}=d$, we see that there exists i, j with $i>j$ and

$$
k>\frac{a_{i_{0}}\left(x_{i}+x_{j}\right)}{2}
$$

where $\left.\frac{d}{2} \right\rvert\,\left(x_{i}-x_{0}\right)$ if d is even and $d \mid\left(x_{i}-x_{0}\right)$ if d is odd. We have $x_{i} \geq x_{j}+\frac{d}{2}$ so that $k>\frac{1}{2} a_{i_{0}}\left(x_{i}+x_{j}\right) \geq\left(a_{j} x_{j}^{2}\right)^{\frac{1}{2}}+\frac{d}{4} \geq n^{\frac{1}{2}}+\frac{d}{4}$ and hence

$$
k> \begin{cases}1+c_{1}(k-1)^{2} & \text { if } d \geq 4 c_{1}(k-1)^{2}, \\ \left(c_{1}\right)^{\frac{1}{2}}(k-1)^{\frac{3}{2}}+1 & \text { if } n \geq c_{1}(k-1)^{3}\end{cases}
$$

which is not true for $k \geq 17$.

Lemma 6. Equation (2) implies that either

$$
d \geq 4 c_{1}(k-1)^{2}
$$

or

$$
r \geq\left[\frac{\omega(d)}{3}\right]
$$

Proof. If $r+1 \leq\left[\frac{\omega(d)}{3}\right]$, then $\omega(d) \geq 3(r+1)$ giving $d \geq 4 c_{1}(k-1)^{2}$ by (14).

Lemma 7. Let $S \subseteq\left\{A_{i} \mid 0 \leq i<k\right\}$ and $\min _{A_{h} \in S} A_{h} \geq U$. Let $t \geq 1$. Assume that

$$
\begin{equation*}
|S|>Q_{t}\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t}-1}{2}\right) \tag{19}
\end{equation*}
$$

where $Q_{t} \geq 1$ is an integer. Then

$$
\begin{equation*}
\max _{A_{h} \in S} A_{h} \geq 2^{\delta} Q_{t} P_{1} \ldots P_{t}+U \tag{20}
\end{equation*}
$$

Proof. For an odd $p \mid d$, we have

$$
\left(\frac{A_{h}}{p}\right)=\left(\frac{A_{h} X_{h}^{2}}{p}\right)=\left(\frac{n}{p}\right)
$$

where ($:-)$ is Legendre symbol, so that A_{h} belongs to at most $\frac{p-1}{2}$ distinct residue classes modulo p for each $0 \leq h<k$. If d is even, then A_{h} also belongs to a unique residue class modulo 2^{δ} for each $0 \leq h<k$. Hence by Chinese remainder theorem, A_{h} belongs to at most $\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{j}-1}{2}\right)$ distinct residue classes modulo $2^{\delta} P_{1} \ldots P_{j}$ for each $j, 1 \leq j \leq t$. Assume that (20) does not hold. Then

$$
\max _{A_{h} \in S} A_{h}-(U-1) \leq 2^{\delta} Q_{t} P_{1} \ldots P_{t}
$$

Therefore

$$
|S| \leq \frac{2^{\delta} Q_{t} P_{1} \ldots P_{t}}{2^{\delta} P_{1} \ldots P_{t}}\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t}-1}{2}\right)
$$

contradicting (19).

Corollary 2. Let S and U be as in Lemma 7. Let $|S| \geq s>$ $\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t}-1}{2}\right)$, then

$$
\begin{equation*}
\max _{A_{h} \in S} A_{h} \geq \frac{3}{4} 2^{t+\delta} s+U \tag{21}
\end{equation*}
$$

Proof. Let $(f-1)\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t-1}-1}{2}\right)<s-Q_{t}\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t}-1}{2}\right) \leq$ $f\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t-1}-1}{2}\right)$ where $Q_{t} \geq 1$ and $1 \leq f \leq \frac{P_{t}-1}{2}$ is an integer. To see this, write $s=Q\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t}-1}{2}\right)+Q^{\prime}\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t-1}-1}{2}\right)+R$ where $0 \leq Q^{\prime}<\frac{P_{t}-1}{2}$ and $0 \leq R<\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t-1}-1}{2}\right)$. If $R>0$, then take $Q_{t}=Q, f-1=Q^{\prime}$; if $R=0$ and $Q^{\prime}>0$, then take $Q_{t}=Q, f=$ Q^{\prime}; and if $R=Q^{\prime}=0$, then take $Q_{t}=Q-1$ and $f=\frac{P_{t}-1}{2}$. We arrange the elements of S in increasing order and let $S^{\prime} \subseteq S$ be the first $(f-1)\left(\frac{P_{1}-1}{2}\right) \ldots\left(\frac{P_{t-1}-1}{2}\right)+1$ elements and $S^{\prime \prime}$ consist of the remaining set. Then we see from Lemma 7 with $t=t-1$ and $Q_{t}=f-1$ that

$$
\max _{A_{h} \in S^{\prime}} A_{h} \geq 2^{\delta}(f-1) P_{1} P_{2} \ldots P_{t-1}+U=U^{\prime}
$$

Now we apply Lemma 7 with $U=U^{\prime}$ in $S^{\prime \prime}$ to derive

$$
\max _{A_{h} \in S} A_{h} \geq 2^{\delta} Q_{t} P_{1} P_{2} \ldots P_{t}+2^{\delta}(f-1) P_{1} P_{2} \ldots P_{t-1}+U
$$

Hence to derive (21), it is enough to prove

$$
\begin{gathered}
Q_{t} P_{1} \ldots P_{t}+(f-1) P_{1} \ldots P_{t-1} \\
\geq \frac{3}{4}\left\{Q_{t}\left(P_{1}-1\right) \ldots\left(P_{t}-1\right)+2 f\left(P_{1}-1\right) \ldots\left(P_{t-1}-1\right)\right\} .
\end{gathered}
$$

By observing that

$$
\begin{aligned}
Q_{t}\left(P_{1}-1\right) \ldots\left(P_{t}-1\right) & \leq Q_{t} P_{1} \ldots P_{t}-Q_{t} P_{1} \ldots P_{t-1} \\
2 f\left(P_{1}-1\right) \ldots\left(P_{t-1}-1\right) & \leq 2 f P_{1} \ldots P_{t-1}-2 f P_{1} \ldots P_{t-2}
\end{aligned}
$$

it suffices to show that

$$
Q_{t}+\frac{3\left(Q_{t}-1\right)-(2 f+1)}{P_{t}}+\frac{6 f}{P_{t} P_{t-1}} \geq 0
$$

which is true since $Q_{t} \geq 1$ and $1 \leq f \leq \frac{P_{t}-1}{2}$.

Lemma 8. Let s_{i} denote the i-th squarefree positive integer. Then

$$
\begin{equation*}
s_{i} \geq 1.6 i \quad \text { for } \quad i \geq 78 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{i=1}^{l} s_{i} \geq(1.6)^{l} l!\quad \text { for } \quad l \geq 286 \tag{23}
\end{equation*}
$$

Further let t_{i} be i-th odd squarefree positive integer. Then

$$
\begin{equation*}
t_{i} \geq 2.4 i \quad \text { for } \quad i \geq 51 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{i=1}^{l} t_{i} \geq(2.4)^{l} l!\quad \text { for } \quad l \geq 200 \tag{25}
\end{equation*}
$$

Proof. The proof is similar to that of [12, (6.9)]. For (22) and (24), we check that $s_{i} \geq 1.6 i$ for $78 \leq i \leq 286$ and $t_{i} \geq 2.4 i$ for $51 \leq i \leq 132$, respectively. Further we observe that in a given set of 144 consecutive integers, there are at most 90 squarefree integers and at most 60 odd squarefree integers by deleting multiples of $4,9,25,49,121$ and $2,9,25,49$, respectively. Then we continue as in the proof of [12, (6.9)] to get (22) and (24). Further we check that (23) holds at $l=286$ and (25) holds at $l=200$. Then we use (22) and (24) to obtain (23) and (25), respectively.

Lemma 9. Let $X>1$ be a positive integer. Then

$$
\begin{equation*}
\sum_{i=1}^{X-1} 2^{\omega(i)} \leq \eta(X) X \log X \tag{26}
\end{equation*}
$$

where

$$
\eta:=\eta(X)= \begin{cases}1 & \text { if } X=1 \tag{27}\\ \frac{\sum_{i=1}^{X-1} 2^{\omega(i)}}{X \log X} & \text { if } 1<X<248 \\ 0.75 & \text { if } X \geq 248\end{cases}
$$

Proof. We check that (26) holds for $1<X<11500$. Thus we may assume $X \geq 11500$. Let s_{j} be the largest squarefree integer $\leq X$. Then by Lemma 8 , we have $1.6 j \leq s_{j} \leq X$ so that $j \leq\left[\frac{X}{1.6}\right]$. We have $2^{\omega(i)}=\sum_{e \mid i}|\mu(e)|$. Therefore

$$
\begin{gathered}
\sum_{i=1}^{X-1} 2^{\omega(i)}=\sum_{i=1}^{X-1} \sum_{e \mid i}|\mu(e)| \\
\leq \sum_{1 \leq e<X}\left[\frac{X-1}{e}\right]|\mu(e)| \leq(X-1) \sum_{1 \leq e<X} \frac{|\mu(e)|}{e} \leq X \sum_{i=1}^{\left[\frac{X}{1.6}\right]} \frac{1}{s_{i}}
\end{gathered}
$$

We check that there are 6990 squarefree integers upto 11500. By using (22), we have

$$
\begin{aligned}
\sum_{i=1}^{X-1} 2^{\omega(i)} & \leq X\left\{\sum_{i=1}^{6990} \frac{1}{s_{i}}-\frac{1}{1.6} \sum_{i=1}^{6990} \frac{1}{i}+\frac{1}{1.6} \sum_{i=1}^{\left[\frac{X}{1.6}\right]} \frac{1}{i}\right\} \\
& \leq X\left\{\sum_{i=1}^{6990} \frac{1}{s_{i}}-\frac{1}{1.6} \sum_{i=1}^{6990} \frac{1}{i}+\frac{1}{1.6}\left(1+\log \frac{X}{1.6}\right)\right\} \\
& \leq \frac{3}{4} X \log X\left\{\frac{4}{3} \frac{1.1658}{\log X}+\frac{4}{3} \frac{1}{1.6}\right\}
\end{aligned}
$$

implying (26).
Lemma 10. Let $c>0$ be such that $c 2^{\omega(d)-3}>1, \mu \geq 2$ and

$$
\mathfrak{C}_{\mu}=\left\{A_{i} \mid \nu\left(A_{i}\right)=\mu, A_{i}>\frac{\rho 2^{\delta} k}{3 c 2^{\omega(d)}}\right\} .
$$

Then

$$
\begin{align*}
\mathfrak{C} & :=\sum_{\mu \geq 2} \frac{\mu(\mu-1)}{2}\left|\mathfrak{C}_{\mu}\right| \tag{28}\\
& \leq \frac{c}{8} \eta\left(c 2^{\omega(d)-3}\right) 2^{\omega(d)}\left(2^{\omega(d)-\theta}-1\right)\left(\log c 2^{\omega(d)-3}\right) .
\end{align*}
$$

Proof. Let $i_{1}>i_{2}>\cdots>i_{\mu}$ be such that $A_{i_{1}}=A_{i_{2}}=\cdots=A_{i_{\mu}}$. These give rise to $\frac{\mu(\mu-1)}{2}$ pairs of $(i, j), i>j$ with $A_{i}=A_{j}$. Therefore the total number of pairs (i, j) with $i>j$ and $A_{i}=A_{j}$ is \mathfrak{C}.

We know that there is a unique partition of d corresponding to each pair $(i, j), i>j$ such that $A_{i}=A_{j}$. Hence by Box Principle, there exists at least $\frac{\left.\mathcal{C}^{(}\right)}{2^{\omega(d)-\theta}-1}$ pairs of $(i, j), i>j$ with $A_{i}=A_{j}$ and a partition $\left(d_{1}, d_{2}\right)$ of d corresponding to these pairs. For every such pair (i, j), we write $X_{i}-X_{j}=d_{1} r_{i j}, X_{i}+X_{j}=d_{2} s_{i j}$. Then $\operatorname{gcd}\left(X_{i}-X_{j}, X_{i}+X_{j}\right)=2$ and $24 \mid\left(X_{i}^{2}-X_{j}^{2}\right)$. Let $r_{i j}^{\prime}, s_{i j}^{\prime}$ be such that $r_{i j}^{\prime}\left|r_{i j}, s_{i j}^{\prime}\right| s_{i j}, \operatorname{gcd}\left(r_{i j}^{\prime}, s_{i j}^{\prime}\right)=1$ and $r_{i j} s_{i j}=\frac{24}{\rho^{2}} r_{i j}^{\prime} s_{i j}^{\prime}$. Then

$$
r_{i j}^{\prime} s_{i j}^{\prime}=\frac{\rho 2^{\delta}}{24} r_{i j} s_{i j}=\frac{\rho 2^{\delta}}{24} \frac{X_{i}^{2}-X_{j}^{2}}{d}=\frac{\rho 2^{\delta}}{24} \frac{i-j}{A_{i}}<\frac{\rho 2^{\delta}}{24} \frac{k}{A_{i}}<c 2^{\omega(d)-3}
$$

since $A_{i}>\frac{\rho^{\delta} k}{3 c^{\omega} k(d)}$. There are at most $\sum_{i=1}^{2^{\omega(d)-3}-1} 2^{\omega(i)}$ possible pairs of $\left(r_{i j}^{\prime}, s_{i j}^{\prime}\right)$, and hence an equal number of possible pairs of $\left(r_{i j}, s_{i j}\right)$. By Lemma 9, we estimate

$$
\sum_{i=1}^{c 2^{\omega(d)-3}-1} 2^{\omega(i)} \leq \eta\left(c 2^{\omega(d)-3}\right) c 2^{\omega(d)-3}\left(\log c 2^{\omega(d)-3}\right) .
$$

Thus if we have

$$
\frac{\mathfrak{C}}{2^{\omega(d)-\theta}-1}>\eta\left(c 2^{\omega(d)-3}\right) c 2^{\omega(d)-3}\left(\log c 2^{\omega(d)-3}\right)
$$

then there exist distinct pairs $(i, j) \neq(g, h), i>j, g>h$ with $A_{i}=A_{j}$, $A_{g}=A_{h}$ such that $r_{i j}=r_{g h}, s_{i j}=s_{g h}$ giving

$$
X_{i}-X_{j}=d_{1} r_{i j}=X_{g}-X_{h} \quad \text { and } \quad X_{i}+X_{j}=d_{2} s_{i j}=X_{g}+X_{h}
$$

Thus $X_{i}=X_{g}, X_{j}=X_{h}$ implying $(i, j)=(g, h)$, a contradiction. Hence

$$
\frac{\mathfrak{C}}{2^{\omega(d)-\theta}-1} \leq \eta\left(c 2^{\omega(d)-3}\right) c 2^{\omega(d)-3}\left(\log c 2^{\omega(d)-3}\right), s
$$

implying (28).
The following lemma is a refinement of [16, Lemma 2].
Lemma 11. Let $i>j, g>h, 0 \leq i, j, g, h<k$ be such that

$$
\begin{equation*}
a_{i}=a_{j}, \quad a_{g}=a_{h} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{i}-x_{j}=d_{1} r_{1}, \quad x_{i}+x_{j}=d_{2} r_{2}, \quad x_{g}-x_{h}=d_{1} s_{1}, \quad x_{g}+x_{h}=d_{2} s_{2} \tag{30}
\end{equation*}
$$

where $\left(d_{1}, d_{2}\right)$ is a partition of $d ; r_{1} \equiv s_{1}(\bmod 2), r_{2} \equiv s_{2}(\bmod 2)$ when d is even; and either $r_{1} \equiv s_{1}(\bmod 2)$ and $a_{i} \equiv a_{g}(\bmod 4)$ or $2 \mid \operatorname{gcd}\left(r_{1}, s_{1}\right)$ when d is odd. Then we have either

$$
\begin{equation*}
a_{i}=a_{g}, r_{1}=s_{1} \quad \text { or } \quad a_{i}=a_{g}, r_{2}=s_{2} \tag{31}
\end{equation*}
$$

or (4) and (5) hold.
Proof. We follow the proof of [16, Lemma 2]. Suppose that (31) does not hold. Then

$$
\begin{equation*}
a_{i} r_{1}^{2}-a_{g} s_{1}^{2} \neq 0, \quad a_{i} r_{2}^{2}-a_{g} s_{2}^{2} \neq 0 \tag{32}
\end{equation*}
$$

We proceed as in [16, Lemma 2] to conclude from $d \mid\left(a_{i} x_{i}^{2}-a_{g} x_{g}^{2}\right)$ that

$$
\begin{gather*}
d_{1} d_{2}=d \left\lvert\, \frac{1}{4}\left\{\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right) d_{1}^{2}+\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right) d_{2}^{2}\right.\right. \tag{33}\\
\left.+2 d\left(a_{i} r_{1} r_{2}-a_{g} s_{1} s_{2}\right)\right\}
\end{gather*}
$$

Thus we have

$$
\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right) d_{1}^{2}=a_{i}\left(x_{i}-x_{j}\right)^{2}-a_{g}\left(x_{g}-x_{h}\right)^{2} \neq 0
$$

and

$$
\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right) d_{2}^{2}=a_{i}\left(x_{i}+x_{j}\right)^{2}-a_{g}\left(x_{g}+x_{h}\right)^{2} \neq 0
$$

Since

$$
n \leq a_{j} x_{j}^{2}<a_{i} x_{i} x_{j}<a_{i} x_{i}^{2} \leq n+(k-1) d
$$

and

$$
n \leq a_{h} x_{h}^{2}<a_{g} x_{g} x_{h}<a_{g} x_{g}^{2} \leq n+(k-1) d
$$

we have

$$
\begin{equation*}
\left|a_{i} x_{i} x_{j}-a_{g} x_{g} x_{h}\right|<(k-1) d \tag{34}
\end{equation*}
$$

Also

$$
\begin{equation*}
\left|a_{i} x_{i}^{2}-a_{g} x_{g}^{2}\right|=|i-g| d \leq(k-1) d \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
\left|a_{j} x_{j}^{2}-a_{h} x_{h}^{2}\right|=|j-h| d \leq(k-1) d \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
n \leq \min \left\{\frac{1}{4} a_{i}\left(x_{i}+x_{j}\right)^{2}, \frac{1}{4} a_{g}\left(x_{g}+x_{h}\right)^{2}\right\} \tag{37}
\end{equation*}
$$

Hence we derive from (34), (35) and (37) that

$$
\begin{align*}
& \left|\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right) d_{2}^{2}\right|<4(k-1) d \tag{38}\\
& n\left|\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right) d_{1}^{2}\right|<\frac{1}{4}(k-1)^{2} d^{2} \tag{39}
\end{align*}
$$

and further considering the cases $\left\{a_{i} r_{1}^{2}>a_{g} s_{1}^{2}, a_{i} r_{2}^{2}>a_{g} s_{2}^{2}\right\},\left\{a_{i} r_{1}^{2}>\right.$ $\left.a_{g} s_{1}^{2}, a_{i} r_{2}^{2}<a_{g} s_{2}^{2}\right\},\left\{a_{i} r_{1}^{2}<a_{g} s_{1}^{2}, a_{i} r_{2}^{2}>a_{g} s_{2}^{2}\right\}$ and $\left\{a_{i} r_{1}^{2}<a_{g} s_{1}^{2}, a_{i} r_{2}^{2}<\right.$ $\left.a_{g} s_{2}^{2}\right\}$, we derive

$$
\begin{equation*}
G(i, g)=\left|a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right| d_{1}^{2}+\left|a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right| d_{2}^{2}<4(k-1) d \tag{40}
\end{equation*}
$$

Let $d=d_{1} d_{2}$ be odd, $\operatorname{gcd}\left(d_{1}, d_{2}\right)=1$. We have either r_{1}, s_{1} are even and hence $r_{1}, r_{2}, s_{1}, s_{2}$ are even, or $a_{i} \equiv a_{g}(\bmod 4)$ and $r_{1} \equiv s_{1}(\bmod 2)$ and hence $r_{2} \equiv s_{2}\left((\bmod 2)\right.$. Then reading modulo d_{1} and d_{2} separately in (33), we have

$$
\begin{equation*}
d_{1} \left\lvert\, \frac{1}{4}\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right) \quad\right. \text { and } \quad d_{2} \left\lvert\, \frac{1}{4}\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right)\right. \tag{41}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
4 d d_{2}=4 d_{1} d_{2}^{2} \leq\left|a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right| d_{2}^{2} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
4 d d_{1}=4 d_{1}^{2} d_{2} \leq\left|a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right| d_{1}^{2} \tag{43}
\end{equation*}
$$

From (40), we have

$$
4 d\left(d_{1}+d_{2}\right) \leq G(i, g)<4(k-1) d
$$

so that

$$
d=d_{1} d_{2} \leq\left(\frac{d_{1}+d_{2}}{2}\right)^{2}<\frac{(k-1)^{2}}{4}
$$

This gives (4). Again from (43) and (39), we see that $4 n d d_{1}<\frac{1}{4}(k-1)^{2} d^{2}$, i.e., $n<\frac{1}{16}(k-1)^{2} d_{2}$. From (42) and (38), we have $4 d d_{2}<4(k-1) d$, i.e., $d_{2}<(k-1)$. Thus (5) is also valid.

Let $d=d_{1} d_{2}$ be even with $\operatorname{ord}_{2}(d)=1$ and d_{1} odd. Then the x_{i} 's are odd and therefore both r_{1} and s_{1} is even. We see from (33) that

$$
\begin{equation*}
4 d_{1} \mid\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right) d_{2}^{2} \quad \text { and } \quad 4 d_{2} \mid\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right) d_{1}^{2} \tag{44}
\end{equation*}
$$

Since $r_{1} \equiv s_{1}(\bmod 2), r_{2} \equiv s_{2}(\bmod 2), \operatorname{gcd}\left(d_{1}, d_{2}\right)=1$ and d_{1} odd, we derive that

$$
2 d_{1}\left|\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right), \quad 4 d_{2}\right|\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right) .
$$

Therefore

$$
2 d d_{2}=2 d_{1} d_{2}^{2} \leq\left|a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right| d_{2}^{2}, \quad 4 d d_{1}=4 d_{1}^{2} d_{2} \leq\left|a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right| d_{1}^{2} .
$$

Now we argue as above to conclude (4) and (5).
Let $d=d_{1} d_{2}$ be even with $\operatorname{ord}_{2}(d) \geq 2, \operatorname{gcd}\left(d_{1}, d_{2}\right)=2$. Then we see from (33) that (44) holds. Since $\operatorname{gcd}\left(d_{1}, d_{2}\right)=2, r_{1} \equiv s_{1}(\bmod 2)$ and $r_{2} \equiv s_{2}(\bmod 2)$, we derive that

$$
2 d_{1}\left|\left(a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right), \quad 2 d_{2}\right|\left(a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right) .
$$

Therefore

$$
2 d d_{2}=2 d_{1} d_{2}^{2} \leq\left|a_{i} r_{2}^{2}-a_{g} s_{2}^{2}\right| d_{2}^{2}, \quad 2 d d_{1}=2 d_{1}^{2} d_{2} \leq\left|a_{i} r_{1}^{2}-a_{g} s_{1}^{2}\right| d_{1}^{2} .
$$

Now we argue as above to conclude (4) and (5).
Lemma 12. For a prime $p<k$, let

$$
\gamma_{p}=\operatorname{ord}_{p}\left(\prod_{a_{i} \in R} a_{i}\right), \quad \gamma_{p}^{\prime}=1+\operatorname{ord}_{p}((k-1)!) .
$$

Let $\mathfrak{m}>1$ by any real number. Then

$$
\begin{equation*}
\prod_{2 \leq p \leq \mathfrak{m}} p^{\gamma_{p}-\gamma_{p}^{\prime}} \leq k^{1.5 \pi(\mathfrak{m})}\left(z_{1} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2 p}{p^{2}-1}}\right)\left(z_{2} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2}{p^{2}-1}}\right)^{-k} \tag{45}
\end{equation*}
$$

where $\left(z_{1}, z_{2}\right)=\left(2^{\frac{4}{3}}, 2^{\frac{2}{3}}\right)$ if d is odd and $\left(z_{1}, z_{2}\right)=(4,2)$ if d is even.

Proof. The proof is the refinement of inequality [12, (6.4)]. Let $p^{h} \leq$ $k-1<p^{h+1}$ where h is a positive integer. Then

$$
\begin{equation*}
\gamma_{p}^{\prime}-1=\left[\frac{k-1}{p}\right]+\left[\frac{k-1}{p^{2}}\right]+\cdots+\left[\frac{k-1}{p^{h}}\right] . \tag{46}
\end{equation*}
$$

Let $p \nmid d$. Then we see that g_{p} is the number of terms in $\{n, n+d, \ldots, n+$ $(k-1) d\}$ divisible by p to an odd power. After removing a term to which p appears to a maximal power, the number of terms in the remaining set divisible by p to an odd power is at most

$$
\begin{aligned}
{\left[\frac{k-1}{p}\right]-\left(\left[\frac{k-1}{p^{2}}\right]-1\right)+\left[\frac{k-1}{p^{3}}\right]-} & \left(\left[\frac{k-1}{p^{4}}\right]-1\right)+\ldots \\
& +(-1)^{\epsilon}\left(\left[\frac{k-1}{p^{h}}\right]+(-1)^{\epsilon}\right)
\end{aligned}
$$

where $\epsilon=1$ or 0 according as h is even or odd, respectively. We note that the above expression is always positive. Combining this with (46) and $\left[\frac{k-1}{p^{2}}\right] \geq \frac{k-1}{p^{2}}-1+\frac{1}{p^{2}}=\frac{k}{p^{2}}-1$, we have

$$
\begin{aligned}
\gamma_{p}-\gamma_{p}^{\prime} & \leq-2\left\{\left[\frac{k-1}{p^{2}}\right]+\cdots+\left[\frac{k-1}{p^{h-1+\epsilon}}\right]\right\}+\frac{h-1+\epsilon}{2} \\
& \leq-2\left\{\frac{k}{p^{2}}+\cdots+\frac{k}{p^{h-1+\epsilon}}-\frac{h-1+\epsilon}{2}\right\}+\frac{h-1+\epsilon}{2} \\
& =-\frac{2 k}{p^{2}\left(1-\frac{1}{p^{2}}\right)}\left(1-\frac{1}{p^{h-1+\epsilon}}\right)+1.5(h-1+\epsilon) .
\end{aligned}
$$

Since $p^{h} \geq \frac{k}{p}$ and $h<\frac{\log k}{\log p}$, we get

$$
\begin{aligned}
\gamma_{p}-\gamma_{p}^{\prime} & <-\frac{2 k}{p^{2}-1}+\frac{1.5 \log k}{\log p}+\frac{2 p^{2-\epsilon}}{p^{2}-1}+1.5 \epsilon-1.5 \\
& \leq-\frac{2 k}{p^{2}-1}+\frac{1.5 \log k}{\log p}+\frac{2 p}{p^{2}-1}
\end{aligned}
$$

When d is even, we have $\gamma_{2}-\gamma_{2}^{\prime}=-1-\operatorname{ord}_{2}(k-1)<-k+\frac{\log k}{\log 2}+2$ by Lemma 1 (v). Now (45) follows immediately.

Lemma 13. Suppose that $n \geq c_{1}(k-1)^{3}$ or $d \geq 4 c_{1}(k-1)^{2}$ or both. Let $1 \leq \varrho \leq 2^{\omega(d)-\theta}$ be the greatest integer such that $R_{\varrho}=\left\{a_{i} \mid \nu\left(a_{i}\right)=\right.$ $\varrho\} \neq \phi$. For $k \geq \kappa_{0}$, we have

$$
\mathfrak{r}=\left|\left\{(i, j) \mid a_{i}=a_{j}, i>j\right\}\right| \geq g(\varrho):= \begin{cases}4 \varrho\left(2^{\omega(d)}-1\right) & \text { if } d \text { is odd }, \\ 2 \varrho\left(2^{\omega(d)-\theta}-1\right) & \text { if } d \text { is even. }\end{cases}
$$

Proof. We have

$$
k=\sum_{\mu=1}^{\varrho} \mu r_{\mu} \quad \text { and } \quad|R|=\sum_{\mu=1}^{\varrho} r_{\mu}
$$

where $r_{\mu}=\left|R_{\mu}=\left\{a_{i} \mid \nu\left(a_{i}\right)=\mu\right\}\right|$. Each R_{μ} gives rise to $\frac{\mu(\mu-1)}{2} r_{\mu}$ pairs of i, j with $i>j$ such that $a_{i}=a_{j}$. Then

$$
\mathfrak{r}=\sum_{\mu=1}^{\varrho} \frac{\mu(\mu-1)}{2} r_{\mu}=k-|R|+\sum_{\mu=1}^{\varrho} \frac{(\mu-1)(\mu-2)}{2} r_{\mu} .
$$

Suppose that the assertion of the Lemma 13 does not hold. Then $g(\varrho)>$ $k-|R|+\sum_{\mu=1}^{\varrho} \frac{(\mu-1)(\mu-2)}{2} r_{\mu}$. We have

$$
g(\varrho)-\sum_{\mu=1}^{\varrho} \frac{(\mu-1)(\mu-2)}{2} r_{\mu} \leq g(\varrho)-\frac{(\varrho-1)(\varrho-2)}{2}:=g_{0}(\varrho) .
$$

We see that $g_{0}(\varrho)$ is an increasing function of ϱ. Since $\varrho \leq 2^{\omega(d)-\theta}$, we find that

$$
k-|R|<g_{0}\left(2^{\omega(d)-\theta}\right)=\left(2^{\omega(d)-\theta}-1\right)\left(z_{3} 2^{\omega(d)-\theta}+1\right):=g_{1}
$$

where $z_{3}=\frac{7}{2}$ if d is odd and $\frac{3}{2}$ if d is even. Thus $|R|>k-g_{1}$. Since the a_{i} 's are squarefree, we have by Lemma 8 that

$$
\prod_{a_{i} \in R} a_{i} \geq z_{4}^{k-g_{1}}\left(k-g_{1}\right)!
$$

where $z_{4}=1.6$ if d is odd and 2.4 if d is even. Also, we have

$$
\prod_{a_{i} \in R} a_{i} \mid(k-1)!\left(\prod_{p<k} p\right) \prod_{2 \leq p \leq \mathfrak{m}} p^{\gamma_{p}-\gamma_{p}^{\prime}}
$$

where $\gamma_{p}, \gamma_{p}^{\prime}$ and \mathfrak{m} are as in Lemma 12. This with (45) and Lemma 1 (iv) gives

$$
\prod_{a_{i} \in R} a_{i}<k!k^{1.5 \pi(\mathfrak{m})-1}\left(z_{1} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2 p}{p^{2}-1}}\right)\left(\frac{z_{2}}{2.7205} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2}{p^{2}-1}}\right)^{-k} .
$$

Comparing the lower and upper bounds, we have

$$
\begin{equation*}
\frac{z_{4}^{g_{1}} k!}{\left(k-g_{1}\right)!}>k^{-1.5 \pi(\mathfrak{m})+1}\left(z_{1} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2 p}{p^{2}-1}}\right)^{-1}\left(\frac{z_{2} z_{4}}{2.7205} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2}{p^{2}-1}}\right)^{k} \tag{47}
\end{equation*}
$$

By Lemma 2, we have

$$
\frac{z_{4}^{g_{1}} k!}{\left(k-g_{1}\right)!}<z_{4}^{g_{1}} e^{-g_{1}} k^{g_{1}}\left(\frac{k}{k-g_{1}}\right)^{k-g_{1}+\frac{1}{2}} \frac{e^{\frac{1}{12 k}}}{e^{\frac{1}{12\left(k-g_{1}\right)+1}}}
$$

Since $k \geq \kappa_{0}$, we find that $g_{1}<\frac{k}{z_{5}}$ for $\omega(d) \geq 12$ where $z_{5}=37,18$ for d odd and d even, respectively. Thus

$$
\frac{z_{4}^{g_{1}} k!}{\left(k-g_{1}\right)!}< \begin{cases}\left(\frac{z_{4}\left(k-g_{1}\right)}{e}\right)^{g_{1}}\left(\frac{k}{k-g_{1}}\right)^{k+\frac{1}{2}} & \text { if } \omega(d) \leq 11 \\ \left(\frac{z_{5}}{z_{5}-1}\right)^{k+\frac{1}{2}}\left(\frac{\left(z_{4}\left(z_{5}-1\right) k\right.}{z_{5} e}\right)^{g_{1}} & \text { if } \omega(d) \geq 12\end{cases}
$$

Hence we derive from (47) that

$$
\begin{align*}
g_{1}> & \frac{k \log \left(\frac{z_{2} z_{4}}{2.7205} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2}{p^{2}-1}}\right)+\left(k+\frac{1}{2}\right) \log \left(1-\frac{g_{1}}{k}\right)}{\log \left(k-g_{1}\right)-1+\log z_{4}} \tag{48}\\
& -\frac{(1.5 \pi(\mathfrak{m})-1) \log k+\log \left(z_{1} \prod_{2<p \leq \mathfrak{m}} p^{\frac{2 p}{p^{2}-1}}\right)}{\log \left(k-g_{1}\right)-1+\log z_{4}}
\end{align*}
$$

for $\omega(d) \leq 11$ and
$g_{1}>\frac{k \log \left(\frac{z_{5}-1}{z_{5}} \frac{z_{2} z_{4}}{2.7200_{2}} \prod_{2<p \leq \mathrm{m}} p^{\frac{2}{p^{2}-1}}\right)-(1.5 \pi(\mathfrak{m})-1) \log k-\log \left(\sqrt{\frac{z_{5}}{z_{5}-1}} z_{1} \prod_{2<p \leq \mathrm{m}} p^{\frac{2 p}{p^{2}-1}}\right)}{\log k-1+\log z_{4}\left(z_{5}-1\right)-\log z_{5}}$
for $\omega(d) \geq 12$.

Let $\omega(d) \leq 11$. Taking $\mathfrak{m}=\min \left(1000, \sqrt{\kappa_{0}}\right)$ in (48), we observe that the right hand side of (48) is an increasing function of k and the inequality does not hold at $k=\kappa_{0}$. Hence (48) is not valid for all $k \geq \kappa_{0}$. For instance, when $\omega(d)=4, d$ odd, we have $\kappa_{0}=15700$ and $g_{1}=855$. With these values, we see that the right hand side of (48) exceeds 855 at $k=15300$, a contradiction. Hence (48) is not valid for all $k \geq 15300$.

Let $\omega(d) \geq 12$. Taking $\mathfrak{m}=1000$ in (49), we derive that

$$
g_{1}> \begin{cases}0.63104 \frac{k}{\log k} & \text { if } d \text { is odd } \\ 1.183 \frac{k}{\log k} & \text { if } d \text { is even }\end{cases}
$$

For d odd, we see that

$$
\begin{gathered}
0.63104 \frac{k}{\log k} \geq 0.63104 \frac{\kappa_{0}}{\log \kappa_{0}} \\
=\frac{0.63104 \times 11 \omega(d) 4^{\omega(d)}}{\omega(d) \log 4+\log 11+\log \omega(d)}>\frac{7}{2} 4^{\omega(d)}>g_{1}
\end{gathered}
$$

a contradiction. Similarly, we get a contradiction for d even.
Lemma 14. Let $k \geq \kappa_{0}=\kappa_{0}(\omega(d))$. Assume that $d<4 c_{1}(k-1)^{2}$. Let $T_{1}=\left\{0 \leq i<k \mid X_{i}>1\right\}$ defined in Section 2 be such that

$$
\left|T_{1}\right|>C_{1}:= \begin{cases}\frac{k}{C_{2}}+\frac{k}{48}+C_{3}+\frac{8}{3} & \text { if } \omega(d)=2 \\ \frac{k}{C_{2}}+\frac{k}{12}+C_{3}+\frac{2^{\omega(d)+1}}{3} & \text { if } \omega(d)=3,4,5 \\ \frac{k}{C_{2}}+\frac{k}{12}+\frac{k}{9}+ & \text { if } \omega(d) \geq 6\end{cases}
$$

where $C_{2} \leq 2 k^{\frac{1}{3}}$ and $C_{3}=39,42,195,806$ for $\omega(d)=2,3,4,5$, respectively. Then

$$
\max _{i \in T_{1}} A_{i} \geq 2^{\delta} C_{0} \frac{k}{C_{2}} \text { where } C_{0}=C_{0}(\omega(d))= \begin{cases}1 & \text { if } \omega(d)=2 \tag{50}\\ \frac{3}{4} 2^{\left.\frac{\omega(d)}{3}\right]} & \text { if } \omega(d) \geq 3\end{cases}
$$

Proof. We see that for $\omega(d) \geq 6$,

$$
\frac{k}{20 \cdot 2^{\omega(d)}} \geq\left(4 c_{1}(k-1)^{2}\right)^{\frac{1}{\omega(d)}}>d^{\frac{1}{\omega(d)}}
$$

where c_{1} is given by Proposition 2. Hence there exists a partition $d=d_{1} d_{2}$ of d with

$$
d_{1}<\frac{k}{20 \cdot 2^{\omega(d)}} \quad \text { with } \quad \omega\left(d_{1}\right) \geq 1 \quad \text { and } \quad \omega\left(d_{2}\right) \leq \omega(d)-1 .
$$

Therefore

$$
\begin{equation*}
\nu\left(A_{i}\right) \leq 2^{\omega\left(d_{2}\right)} \leq 2^{\omega(d)-1} \quad \text { for } A_{i} \geq \frac{k}{20 \cdot 2^{\omega(d)}} \tag{51}
\end{equation*}
$$

by Lemma 4.
Let

$$
\begin{equation*}
T_{2}=\left\{i \in T_{1} \left\lvert\, A_{i}>\frac{2^{\delta} \rho k}{3 c 2^{\omega(d)}}\right.\right\}, \quad T_{3}=T_{1}-T_{2} \tag{52}
\end{equation*}
$$

where $c=16$ if $\omega(d)=2, c=4$ if $\omega(d)=3,4,5$ and $c=2$ if $\omega(d) \geq 6$. Further let

$$
\begin{equation*}
S_{2}=\left\{A_{i} \mid i \in T_{2}\right\}, \quad S_{3}=\left\{A_{i} \mid i \in T_{3}\right\} \tag{53}
\end{equation*}
$$

and $\left|S_{3}\right|=s$. Then considering residue classes modulo $2^{\delta} \rho$, we derive that

$$
\frac{2^{\delta} \rho k}{3 c \cdot 2^{\omega(d)}} \geq \max _{A_{i} \in S_{3}} A_{i} \geq 2^{\delta} \rho(s-1)+1
$$

so that $\left|S_{3}\right|=s \leq \frac{k}{3 c 2^{\omega(d)}}-\frac{1}{\rho}+1 \leq \frac{k}{3 c 2^{\omega(d)}}+\frac{2}{3}$. We see from Corollary 1, (51), (52) and (53) that

$$
\begin{aligned}
\left|T_{3}\right| & \leq \frac{k}{20 \cdot 2^{\omega(d)}} 2^{\omega(d)}+\left(\frac{k}{6 \cdot 2^{\omega(d)}}-\frac{k}{20 \cdot 2^{\omega(d)}}+\frac{2}{3}\right) 2^{\omega(d)-1} \\
& \leq \frac{k}{20}+\left(\frac{k}{6}-\frac{k}{20}\right) 2^{-1}+\frac{2}{3} 2^{\omega(d)-1} \leq \frac{k}{12}+\frac{k}{40}+\frac{k}{6 \times 2^{6}} \leq \frac{k}{9}
\end{aligned}
$$

if $\omega(d) \geq 6$ and

$$
\left|T_{3}\right| \leq \begin{cases}\left(\frac{k}{48 \cdot 2^{\omega(d)}}+\frac{2}{3}\right) 2^{\omega(d)}=\frac{k}{48}+\frac{8}{3} & \text { if } \omega(d)=2 \\ \left(\frac{k}{12 \cdot 2^{\omega(d)}}+\frac{2}{3}\right) 2^{\omega(d)}=\frac{k}{12}+\frac{2^{\omega(d)+1}}{3} & \text { if } \omega(d)=3,4,5\end{cases}
$$

Therefore

$$
\left|T_{2}\right|>C_{1}-\left|T_{3}\right| \geq C_{4}:= \begin{cases}\frac{k}{C_{2}}+C_{3} & \text { if } \omega(d)=2,3,4,5, \\ \frac{k}{C_{2}}+\frac{k}{4} & \text { if } \omega(d) \geq 6 .\end{cases}
$$

Let $\mathfrak{C}, \mathfrak{C}_{\mu}$ be as in Lemma 10 with $c=16$ if $\omega(d)=2, c=4$ if $\omega(d)=3,4,5$ and $c=2$ if $\omega(d) \geq 6$. Then $C_{4}<\left|T_{2}\right|=\left|S_{2}\right|+\sum_{\mu \geq 2}(\mu-1)\left|\mathfrak{C}_{\mu}\right|$. Now we apply Lemma 10 and use $k \geq \kappa_{0} \geq \eta\left(2^{\omega(d)-2}\right)\left(\log 2^{\omega(d)-2}\right) 2^{\omega(d)}\left(2^{\omega(d)-\theta}-1\right)$ for $\omega(d) \geq 6$ to get

$$
C_{4}< \begin{cases}\left|S_{2}\right|+C_{3} & \text { if } 2 \leq \omega(d) \leq 5 \\ \left|S_{2}\right|+\frac{k}{12} & \text { if } \omega(d) \geq 6\end{cases}
$$

Thus

$$
\left|S_{2}\right|>\frac{k}{C_{2}}
$$

Let $\omega(d)=2$. Then considering the A_{i} 's modulo 2^{δ}, we see that

$$
\max _{A_{i} \in S_{2}} A_{i} \geq 2^{\delta}\left[\frac{k}{C_{2}}\right]+\frac{2^{\delta} k}{48 \times 4} \geq 2^{\delta} \frac{k}{C_{2}}
$$

which gives (50). Now we take $\omega(d) \geq 3$. Since $d<4 c_{1}(k-1)^{2}$, we have $r \geq\left[\frac{\omega(d)}{3}\right]$ by Lemma 6 . By (14), we have $\left.\frac{k}{C_{2}} \geq \frac{k^{\frac{2}{3}}}{2}>\frac{1}{2^{r}}\left(4 c_{1}(k-1)^{2}\right)\right)^{\frac{1}{3}}>$ $\prod_{j=1}^{r}\left(\frac{P_{j}-1}{2}\right)$. We now apply Corollary 2 with $s=\left[\frac{k}{C_{2}}+1\right]$ and $U=1$ to get

$$
\max _{A_{i} \in S_{2}} A_{i} \geq \frac{3}{4} 2^{r+\delta}\left[\frac{k}{C_{2}}+1\right] \geq \frac{3}{4} 2^{\left[\frac{\omega(d)}{3}\right]+\delta} \frac{k}{C_{2}}
$$

which yields (50).

4. Proof of Proposition 2

We assume that either $n \geq c_{1}(k-1)^{3}$ or $d \geq 4 c_{1}(k-1)^{2}$. Then $\nu\left(a_{i_{0}}\right) \leq 2^{\omega(d)-\theta}$ for $0 \leq i_{0}<k$ by Lemma 5 . Let ϱ be as defined in the statement of Lemma 13. Then $\nu\left(a_{i_{0}}\right) \leq \varrho$. By Lemma 13, there are at least $z \varrho\left(2^{\omega(d)}-1\right)$ distinct pairs (i, j) with $i>j$ and $a_{i}=a_{j}$, where $z=4$ if d is odd and 2 if d is even. Since there can be at most $2^{\omega(d)-\theta}-1$ possible partitions of d, by Box principle, there exists a partition $\left(d_{1}, d_{2}\right)$ of d and at least $z \varrho$ pairs of (i, j) with $a_{i}=a_{j}, i>j$ corresponding to this partition. We write

$$
x_{i}-x_{j}=d_{1} r_{1}(i, j) \quad \text { and } \quad x_{i}+x_{j}=d_{2} r_{2}(i, j)
$$

Let d be odd. Suppose there are at least ϱ distinct pairs $\left(i_{1}, j_{1}\right), \ldots$, $\left(i_{\varrho}, j_{\varrho}\right), \ldots$ with the corresponding $r_{1}(i, j)$ even. Then $\mid\left\{i_{1}, \ldots, i_{\varrho}, j_{1}, \ldots\right.$, $\left.j_{\varrho}\right\} \mid>\varrho$. Hence we can find $1 \leq l, m \leq \varrho$ with $\left(i_{l}, j_{l}\right) \neq\left(i_{m}, j_{m}\right), a_{i_{l}}=a_{j_{l}}$, $a_{i_{m}}=a_{i_{m}}$ and $a_{i_{l}} \neq a_{i_{m}}$. Now the result follows by Lemma 11. Thus we may assume that there are at most $\varrho-1$ pairs (i, j) with $r_{1}(i, j)$ even. Then there are at least $3 \varrho+1$ distinct pairs (i, j) with $r_{1}(i, j)$ odd. Since $a_{i} \equiv 1,2,3(\bmod 4)$, we can find at least ϱ pairs with $a_{i} \equiv a_{g}(\bmod 4)$ for any two such pairs $(i, j),(g, h)$. Then there exist two distinct pairs $(i, j),(g, h)$ with $a_{i}=a_{j}, a_{g}=a_{h}$ and $a_{i} \neq a_{g}$ from these pairs. Also $r_{1}(i, j) \equiv r_{1}(g, h)(\bmod 2)$. This gives (4) and (5) by Lemma 11 which is a contradiction.

Let d be even. We observe that $8 \mid\left(x_{i}^{2}-x_{j}^{2}\right)$ and $\operatorname{gcd}\left(x_{i}-x_{j}, x_{i}+x_{j}\right)=2$. We claim that there are at least ϱ pairs with $r_{1}(i, j) \equiv r_{1}(g, h)(\bmod 2)$ and $r_{2}(i, j) \equiv r_{2}(g, h)(\bmod 2)$ for any two such distinct pairs (i, j) and (g, h). If the claim is true, then there are two pairs $(i, j) \neq(g, h)$ with $i>j, g>h, a_{i}=a_{j}, a_{g}=a_{h}$ and $a_{i} \neq a_{g}$ since $\nu\left(a_{i}\right) \leq \varrho$. This implies (4) and (5) by Lemma 11, contradicting our assumption. Let ord ${ }_{2}(d)=1$. Then d_{1} is odd, implying that $r_{1}(i, j)$ is even. We can choose at least ϱ pairs whose r_{2} 's are of the same parity. Thus the claim is true in this case. Let $\operatorname{ord}_{2}(d) \geq 3$. Then we have either $\operatorname{ord}_{2}\left(d_{1}\right)=1$ implying that all the r_{1} 's are odd, or $\operatorname{ord}_{2}\left(d_{2}\right)=1$ implying that all the r_{2} 's are odd. Thus the claim follows. Finally, let $\operatorname{ord}_{2}(d)=2$. Then $2 \| d_{1}$ and $2 \| d_{2}$ so that r_{1} and r_{2} are of the opposite parity for any pair and hence the claim holds.

5. Proof of Proposition 3

In this section, we assume that $k \geq \kappa_{0}=\kappa_{0}(\omega(d))$. In view of Proposition 2 , we may assume that $d<4 c_{1}(k-1)^{2}$. We may also assume that X_{i} is a prime for each $i \in T_{1}$ in the proof of Proposition 3. Otherwise $n+(k-1) d \geq(k+1)^{4}$, which implies the assertion.

Since $d<4 c_{1}(k-1)^{2}$, d has at least one prime divisor $\leq k$ otherwise $d>k^{\omega(d)} \geq k^{2}$, giving a contradiction. Thus $\pi_{d}(k) \leq \pi(k)-1$. Let $n+(k-1) d \geq L$ for some $L>0$. By Lemma 3 and Lemma 1 (i), we have

$$
\begin{equation*}
\left|T_{1}\right|>k-\frac{(k-1) \log (k-1)}{\log L-\log 2}-\frac{k}{\log k}\left(1+\frac{1.5}{\log k}\right) . \tag{54}
\end{equation*}
$$

We see from [5] that $n(n+d) \ldots(n+(k-1) d)$ is divisible by at least $\pi(2 k)-\pi_{d}(k) \geq \pi(2 k)-\pi(k)+1$ primes exceeding k. Hence we have $n+(k-1) d \geq 4 k^{2}$. Thus by taking $L=4 k^{2}$ in (54), we get

$$
\left|T_{1}\right|>k-\frac{(k-1) \log (k-1)}{\log \left(2 k^{2}\right)}-\frac{k}{\log k}\left(1+\frac{1.5}{\log k}\right) .
$$

The right hand side of the above inequality is an increasing function of k and

$$
\left|T_{1}\right|> \begin{cases}\frac{k}{5}+\frac{k}{48}+C_{3}+\frac{8}{3} & \text { if } \omega(d)=2 \tag{55}\\ \frac{k}{6}+\frac{k}{12}+C_{3}+\frac{16}{3} & \text { if } \omega(d)=3 \\ \frac{5}{24} k+\frac{k}{12}+C_{3}+\frac{2^{\omega(d)+1}}{3} & \text { if } \omega(d)=4,5 \\ \frac{5}{48} k+\frac{k}{12}+\frac{k}{9} & \text { if } \omega(d) \geq 6\end{cases}
$$

Now we see from Lemma 14 that (50) holds with

$$
C_{2}= \begin{cases}5 & \text { if } \omega(d)=2 \\ 6 & \text { if } \omega(d)=3 \\ \frac{24}{5} & \text { if } \omega(d)=4,5 \\ \frac{48}{5} & \text { if } \omega(d) \geq 6\end{cases}
$$

This gives $n+(k-1) d \geq \frac{C_{0}}{C_{2}} k^{3}$. Hence (7) is valid for $\omega(d) \geq 4$. Now we take $\omega(d)=2,3$. Putting $L=\frac{C_{0}}{5} k^{3}$ in (54), we derive that

$$
\left|T_{1}\right|> \begin{cases}\frac{5 k}{16}+\frac{k}{48}+C_{3}+\frac{2^{\omega(d)+1}}{3} & \text { if } \omega(d)=2 \\ \frac{5 k}{24}+\frac{k}{12}+C_{3}+\frac{2^{\omega(d)+1}}{3} & \text { if } \omega(d)=3\end{cases}
$$

We apply Lemma 14 again to get $\max _{i \in T_{1}} A_{i} \geq 2^{\delta} \frac{5}{16} k$ so that $n+(k-1) d \geq$ $2^{\delta} \frac{5}{16} k^{3}$, which implies (7). This completes the proof.

References

[1] B. Brindza, L. Hajdu and I. Z. Ruzsa, On the equation $x(x+d) \ldots$ $(x+(k-1) d)=b y^{2}$, Glasgow. Math. J. (2000), 255-261.
[2] P. Dusart, Autour de la fonction qui compte le nombre de nombres premiers, Ph.D. thesis, Université de Limoges, 1998.
[3] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a power, Illinois J. Math. 19 (1975), 92-301.
[4] K. GYŐRy, Power values of products of consecutive integers and binomial coefficients, Number Theory and its Applications, Kluwer Acad. Publ., 1999, 145-156.
[5] S. Laishram and T. N. Shorey, Number of prime divisors in a product of terms of an arithmetic progression, Indag Math. 15(4) (2004), (in press).
[6] S. Laishram, Topics in Diophantine Equations, M.Sc. Thesis, University of Mumbai, 2004.
[7] R. Marszalek, On the product of consecutive elements of an arithmetic progression, Monatsh. für Math. 100 (1985), 215-222.
[8] A. Mukhopadhyay and T. N. Shorey, Almost squares in arithmetic progression (II), Acta Arith. 110 (2003), 1-14.
[9] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955), 26-29.
[10] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois Jour. Math. 6 (1962), 64-94.
[11] N. SARADHA, On perfect powers in products with terms from arithmetic progressions, Acta Arith. 82 (1997), 147-172.
[12] N. Saradha and T. N. Shorey, Almost squares in arithmetic progression, Compositio Math. 138 (2003), 73-111.
[13] L. Schoenfeld, Sharper bounds for the Chebyshev functions $\theta(x)$ and $\psi(x)$, II, Math. Comp. 30 (1976), 337-360.
[14] T. N. Shorey, Exponential diophantine equations involving products of consecutive integers and related equations, Number Theory, (R. P. Bambah, V. C. Dumir and R. J. Hans-Gill, eds.), Hindustan Book Agency, 1999, 463-495.
[15] T. N. Shorey, Powers in arithmetic progression, A Panorama in Number Theory or The View from Baker's Garden, (G. Wüstholz, ed.), Cambridge University Press, 2002, 325-336.
[16] T. N. Shorey and R. Tijdeman, Perfect powers in products of terms in an arithmetical progression, Compositio Math. 75 (1990), 307-344.

SHANTA LAISHRAM
SCHOOL OF MATHEMATICS
TATA INSTITUTE OF FUNDAMENTAL RESEARCH
HOMI BHABHA ROAD, MUMBAI 400005
INDIA
E-mail: shanta@math.tifr.res.in
(Received July 5, 2004; revised January 8, 2005)

