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An estimate for the length of an arithmetic progression
the product of whose terms is almost square

By SHANTA LAISHRAM (Mumbai)

Abstract. Erdős conjectured that

n(n + d) . . . (n + (k − 1)d) = y2 (1)

in positive integers n, k ≥ 3, d > 1, y with gcd(n, d) = 1, implies that k is
bounded by an absolute constant. Shorey and Tijdeman [16] showed that (1)
implies that k is bounded by an effectively computable number depending only
on ω(d), the number of distinct prime divisors of d. In this paper, an explicit
bound for k in terms of ω(d) is presented.

1. Introduction

For an integer x > 1, we denote by P (x) and ω(x) the greatest prime
factor of x and the number of distinct prime divisors of x, respectively.
Further we put P (1) = 1 and ω(1) = 0. Let n, d, k, b, y be positive integers
such that b is square free, d ≥ 1, k ≥ 3, P (b) ≤ k and gcd(n, d) = 1. We
consider the equation

n(n + d) . . . (n + (k − 1)d) = by2 in n, d, k, b, y with P (b) ≤ k. (2)
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For a survey of results on (2), see [16], [4], [14] and [15]. Equation (2) with
d = 1 has been solved completely in [3] with P (b) < k and in [11] with
P (b) = k. Therefore we assume from now onwards that d > 1. Marsza-

lek [7] proved that (2) implies k is bounded by an effectively computable
number k0 depending only on d. In fact the above assertion holds with k0

depending only on ω(d). This is due to Shorey and Tijdeman [16], who
proved that 2ω(d) > c k

log k where c is an effectively computable absolute
constant. However the bound k0 is very large. Further (2) with ω(d) = 1
and k /∈ {3, 5} has been solved completely in [12] and [8]. Therefore we
shall always assume that ω(d) ≥ 2. In this paper, we give an explicit
bound for k in terms of ω(d) whenever (2) holds.

For 2 ≤ ω(d) ≤ 11, we define κ0 = κ0(ω(d)) as in the table below.

ω(d) κ0(d even) κ0(d odd) ω(d) κ0(d even) κ0(d odd)

2 500 800 7 2.643× 105 1.376 × 106

3 700 3400 8 1.172× 106 6.061 × 106

4 2900 15300 9 5.151× 106 2.649 × 107

5 13100 69000 10 2.247× 107 1.149 × 108

6 59000 3.096 × 105 11 9.73 × 107 4.95 × 108

For ω(d) ≥ 12, we define κ0 = κ0(ω(d)) as

κ0(ω(d)) =

{
2.25ω(d)4ω(d) if d is even,

11ω(d)4ω(d) if d is odd.

We prove

Theorem 1. Equation (2) implies that

k < κ0. (3)

Theorem 1 is a direct consequence of the following two propositions.

Proposition 2. Let k ≥ κ0. Then (2) implies that

d < 4c1(k − 1)2, (4)

n < c1(k − 1)3 (5)
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and hence

n + (k − 1)d < 5c1(k − 1)3 (6)

where

c1 =




1
16

if d is odd,

1
8

if ord2(d) = 1,

1
4

if ord2(d) ≥ 2.

Proposition 3. Let k ≥ κ0. Then (2) implies that

n + (k − 1)d ≥ 2δ 5
16

k3 (7)

where

δ = min{ord2(d), 3}.

2. Notation and preliminaries

From (2), we have

n + id = AiX
2
i (8)

for 0 ≤ i < k with P (Ai) ≤ k and (Xi,
∏

p≤k p) = 1. Also we have

n + id = aix
2
i (9)

for 0 ≤ i < k with ai squarefree. Since gcd(n, d) = 1, we see that

(Ai, d) = (ai, d) = (Xi, d) = (xi, d) = 1 for 0 ≤ i < k. (10)

Let

T = {i | 0 ≤ i < k, Xi = 1}, T1 = {i | 0 ≤ i < k, Xi �= 1}.

Note that Xi > k for i ∈ T1. For 0 ≤ i < k, let

ν(Ai) = |{j ∈ T1, Aj = Ai}|. (11)
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We always suppose that there exist i0 > i1 > · · · > iν(Ai)−1 such that
Ai0 = Ai1 = · · · = Aiν(Ai)

−1. Similarly we define

R = {ai | 0 ≤ i < k}

and

ν(ai) =
∣∣{j | 0 ≤ j < k, ai = aj}

∣∣. (12)

Define

ρ := ρ(d) =

{
1 if 3 � d,

3 if 3 | d.
(13)

The letter p always denotes a prime number and pi the i-th prime number.
Let P1 < P2 < . . . be odd prime divisors of d. Let r := r(d) ≥ 0 be the
unique integer such that

P1P2 . . . Pr < (4c1)
1
3 (k − 1)

2
3 but P1P2 . . . Pr+1 ≥ (4c1)

1
3 (k − 1)

2
3 . (14)

If r = 0, we understand that the product P1 . . . Pr = 1.
Let d′ | d and d′′ = d

d′ be such that gcd(d′, d′′) = 1. We write

d′′ = d1d2, gcd(d1, d2) =

{
1 if ord2(d′′) ≤ 1,

2 if ord2(d′′) ≥ 2

and we always suppose that d1 is odd if ord2(d′′) = 1. We call such pairs
(d1, d2) as partitions of d′′.

We observe that the number of partitions of d′′ is 2ω(d′′)−θ1 where

θ1 := θ1(d′′) =

{
1 if ord2(d′′) = 1, 2,

0 otherwise

and we write θ for θ1(d). In particular, by taking d′ = 1 and d′′ = d, the
number of partitions of d is 2ω(d)−θ .

Suppose that Ai = Aj , i > j. Then from (8) and (10), we have

(i − j)d = Ai(X2
i − X2

j ) = Ai(Xi − Xj)(Xi + Xj) (15)
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such that gcd(d,Xi −Xj ,Xi +Xj) = 1 if d is odd and 2 if d is even. Hence
for any divisor d′′ of d, we have a partition (d1, d2) of d′′ corresponding to
Ai = Aj such that d1 | (Xi − Xj) and d2 | (Xi + Xj) and it is the unique
partition of d′′ corresponding to the pair (i, j). Similarly, we have unique
partition of d′′ corresponding to every pair (i, j) whenever ai = aj .

As in Shorey and Tijdeman [16], the proof depends on comparing an
upper bound and a lower bound for n + (k− 1)d. The upper bound of n +
(k−1)d given by Proposition 2 is a consequence of Lemmas 5, 8, 11, 12, 13
which are refinements of results in [16], [1] and [12]. It is proved by counting
the number of distinct ai’s and looking at the number of partitions of d.
The proof of Proposition 3 is by counting the number of Xi’s greater than k

and calculating the maximal value of Ai. Proposition 3 is a consequence of
Lemmas 4, 6, 7, 9, 10, 14. The new features of the paper are the refinement
of the upper bound of the multiplicities of Ai with respect to partitions
of d, counting the number of Ai’s with multiplicity greater than 1 and the
use of r to improve the lower bounds of the maximum of Ai’s.

We shall follow the notation of this section throughout the paper. We
use Mathematica for the computations in the paper. This is a part of
my Master’s thesis [6].

3. Lemmas

We begin with some estimates from Prime number theory.

Lemma 1. We have

(i) π(ν) ≤ ν

log ν

(
1 +

1.5
log ν

)
for ν > 1,

(ii) π(ν) ≥ ν

log ν

(
1 +

0.5
log ν

)
for ν ≥ 59,

(iii) pi ≥ i log i for i ≥ 2,

(iv)
∑
p≤ν

log p < 1.000081ν for ν > 0,

(v) ordp(k!) ≥ k − p

p − 1
− log(k − 1)

log p
for p < k.



456 Shanta Laishram

Proof.The estimates (i), (ii) and (iii) are due to Rosser and Schoen-

feld [10]. For estimate (iv), see [13, p. 360] and [2, Prop. 1.7]. For a proof
of (v), see [5, Lemma 2(i)]. �

The next result is Stirling’s formula, see [9].

Lemma 2. For a positive integer ν, we have

√
2πν e−νννe

1
2ν+1 < ν! <

√
2πν e−νννe

1
12ν .

Lemma 3. Let πd(k) ≤ π(k) − 1. Then

|T1| > k − (k − 1) log (k − 1)
log (n + (k − 1)d) − log 2

− π(k). (16)

Proof. We use [12, Lemma 3] with t = k, − log
∏

p|d p− ordp((k−1)!)≥0
and πd(k) ≤ π(k) − ω(d) + 2. Let n ≥ (k − 1)d. Then log n ≥ log(n +
(k − 1)d) − log 2. This with [12, (4.2)] and Lemma 1 (i) gives (16). For
n < (k − 1)d, we have log(k − 1) + log d > log(n + (k − 1)d) − log 2. This
with [12, (4.1)] and Lemma 1 (i) gives (16). �

Lemma 4. Let d = d′d′′ with gcd(d′, d′′) = 1. Let i0 ∈ T1 be such

that Ai0 ≥ d′. Then

ν(Ai0) ≤ 2ω(d′′)−θ1(d′′). (17)

Proof. For simplicity, we write θ1 = θ1(d′′). Assume that ν(Ai0) >

2ω(d′′)−θ1 . Then there exists a sequence of indices i0 > i1 > · · · > i2ω(d′′)−θ1

such that Ai0 = Ai1 = . . . = Ai
2ω(d′′)−θ1

. For each pair (i0, ir), r = 1, 2, . . . ,

2ω(d′′)−θ1 , we have a unique partition corresponding to the pair. But
there are at most 2ω(d′′)−θ1 partitions of d′′. Since (i0 − ir)d = Ai0(Xi0 −
Xir)(Xi0 + Xir) and Ai0 ≥ d′, we have

k > i0 − ir =
Ai0

d′

(
Xi0 − Xir

d1

)(
Xi0 + Xir

d2

)

≥
(

Xi0 − Xir

d1

)(
Xi0 + Xir

d2

)
,

where (d1, d2) is the partition of d′′ corresponding to pair (i0, ir). This
shows that we cannot have the partition ( d′′

2θ1
, 2θ1) corresponding to any
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pair. Hence there can be at most 2ω(d′′)−θ1 −1 partitions of d′′ with respect
to 2ω(d′′)−θ1 pairs of (i0, ir), r = 1, . . . , 2ω(d′′)−θ1 . Hence by Box Principle,
there exist pairs (i0, ir), (i0, is) with 1 ≤ r < s ≤ 2ω(d′′)−θ1 and a partition
(d1, d2) of d′′ corresponding to these pairs. Thus

d1 | (Xi0 − Xir), d2 | (Xi0 + Xir) and d1 | (Xi0 − Xis), d2 | (Xi0 + Xis)

so that lcm(d1, d2) | (Xir −Xis). Since Air = Ais = Ai0 and gcd(d1, d2) ≤ 2,
we have

k > (ir − is)
d′

Ai0

=
(Xir − Xis)
lcm(d1, d2)

(Xir + Xis)
gcd(d1, d2)

>
(Xir + Xis)

2
>

2k
2

= k,

a contradiction. �

By taking d′ = 1 and d′′ = d, the following result is immediate from
Lemma 4 since θ1(d) = θ.

Corollary 1. For i0 ∈ T1, we have ν(Ai0) ≤ 2ω(d)−θ .

Lemma 5. Let k ≥ 17. Suppose n ≥ c1(k − 1)3 or d ≥ 4c1(k − 1)2.
Then for 0 ≤ i0 < k, we have

ν(ai0) ≤ 2ω(d)−θ . (18)

Proof. Suppose that ν(ai0) > 2ω(d)−θ . We note that both xi + xj

and xi − xj are even when d is even. Continuing as in the proof of (17)
with d′′ = d, we see that there exists i, j with i > j and

k >
ai0(xi + xj)

2

where d
2 | (xi − x0) if d is even and d | (xi − x0) if d is odd. We have

xi ≥ xj + d
2 so that k > 1

2ai0(xi + xj) ≥
(
ajx

2
j

) 1
2 + d

4 ≥ n
1
2 + d

4 and hence

k >

{
1 + c1(k − 1)2 if d ≥ 4c1(k − 1)2,

(c1)
1
2 (k − 1)

3
2 + 1 if n ≥ c1(k − 1)3

which is not true for k ≥ 17. �
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Lemma 6. Equation (2) implies that either

d ≥ 4c1(k − 1)2

or

r ≥
[
ω(d)

3

]
.

Proof. If r + 1 ≤ [ω(d)
3 ], then ω(d) ≥ 3(r + 1) giving d ≥ 4c1(k − 1)2

by (14). �

Lemma 7. Let S ⊆ {Ai | 0 ≤ i < k} and minAh∈S Ah ≥ U . Let t ≥ 1.
Assume that

|S| > Qt

(
P1 − 1

2

)
. . .

(
Pt − 1

2

)
(19)

where Qt ≥ 1 is an integer. Then

max
Ah∈S

Ah ≥ 2δQtP1 . . . Pt + U. (20)

Proof. For an odd p | d, we have(
Ah

p

)
=
(

AhX2
h

p

)
=
(

n

p

)

where ( ··) is Legendre symbol, so that Ah belongs to at most p−1
2 distinct

residue classes modulo p for each 0 ≤ h < k. If d is even, then Ah also
belongs to a unique residue class modulo 2δ for each 0 ≤ h < k. Hence
by Chinese remainder theorem, Ah belongs to at most

(
P1−1

2

)
. . .
(Pj−1

2

)
distinct residue classes modulo 2δP1 . . . Pj for each j, 1 ≤ j ≤ t. Assume
that (20) does not hold. Then

max
Ah∈S

Ah − (U − 1) ≤ 2δQtP1 . . . Pt.

Therefore

|S| ≤ 2δQtP1 . . . Pt

2δP1 . . . Pt

(
P1 − 1

2

)
. . .

(
Pt − 1

2

)
,

contradicting (19). �
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Corollary 2. Let S and U be as in Lemma 7. Let |S| ≥ s >(
P1−1

2

)
. . .
(

Pt−1
2

)
, then

max
Ah∈S

Ah ≥ 3
4
2t+δs + U. (21)

Proof. Let (f − 1)
(

P1−1
2

)
. . .
(Pt−1−1

2

)
< s − Qt

(
P1−1

2

)
. . .
(

Pt−1
2

) ≤
f
(

P1−1
2

)
. . .
(Pt−1−1

2

)
where Qt ≥ 1 and 1 ≤ f ≤ Pt−1

2 is an integer. To
see this, write s = Q

(
P1−1

2

)
. . .
(

Pt−1
2

)
+ Q′(P1−1

2

)
. . .
(Pt−1−1

2

)
+ R where

0 ≤ Q′ < Pt−1
2 and 0 ≤ R <

(
P1−1

2

)
. . .
(Pt−1−1

2

)
. If R > 0, then take

Qt = Q, f − 1 = Q′; if R = 0 and Q′ > 0, then take Qt = Q, f =
Q′; and if R = Q′ = 0, then take Qt = Q − 1 and f = Pt−1

2 . We
arrange the elements of S in increasing order and let S′ ⊆ S be the first
(f − 1)

(
P1−1

2

)
. . .
(Pt−1−1

2

)
+ 1 elements and S′′ consist of the remaining

set. Then we see from Lemma 7 with t = t − 1 and Qt = f − 1 that

max
Ah∈S′ Ah ≥ 2δ(f − 1)P1P2 . . . Pt−1 + U = U ′.

Now we apply Lemma 7 with U = U ′ in S′′ to derive

max
Ah∈S

Ah ≥ 2δQtP1P2 . . . Pt + 2δ(f − 1)P1P2 . . . Pt−1 + U.

Hence to derive (21), it is enough to prove

QtP1 . . . Pt + (f − 1)P1 . . . Pt−1

≥ 3
4
{Qt(P1 − 1) . . . (Pt − 1) + 2f(P1 − 1) . . . (Pt−1 − 1)} .

By observing that

Qt(P1 − 1) . . . (Pt − 1) ≤ QtP1 . . . Pt − QtP1 . . . Pt−1,

2f(P1 − 1) . . . (Pt−1 − 1) ≤ 2fP1 . . . Pt−1 − 2fP1 . . . Pt−2,

it suffices to show that

Qt +
3(Qt − 1) − (2f + 1)

Pt
+

6f
PtPt−1

≥ 0

which is true since Qt ≥ 1 and 1 ≤ f ≤ Pt−1
2 . �
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Lemma 8. Let si denote the i-th squarefree positive integer. Then

si ≥ 1.6i for i ≥ 78 (22)

and
l∏

i=1

si ≥ (1.6)ll! for l ≥ 286. (23)

Further let ti be i-th odd squarefree positive integer. Then

ti ≥ 2.4i for i ≥ 51 (24)

and
l∏

i=1

ti ≥ (2.4)ll! for l ≥ 200. (25)

Proof. The proof is similar to that of [12, (6.9)]. For (22) and (24),
we check that si ≥ 1.6i for 78 ≤ i ≤ 286 and ti ≥ 2.4i for 51 ≤ i ≤ 132,
respectively. Further we observe that in a given set of 144 consecutive
integers, there are at most 90 squarefree integers and at most 60 odd
squarefree integers by deleting multiples of 4, 9, 25, 49, 121 and 2, 9, 25, 49,
respectively. Then we continue as in the proof of [12, (6.9)] to get (22) and
(24). Further we check that (23) holds at l = 286 and (25) holds at l = 200.
Then we use (22) and (24) to obtain (23) and (25), respectively. �

Lemma 9. Let X > 1 be a positive integer. Then

X−1∑
i=1

2ω(i) ≤ η(X)X log X (26)

where

η := η(X) =




1 if X = 1,∑X−1
i=1 2ω(i)

X log X
if 1 < X < 248,

0.75 if X ≥ 248.

(27)
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Proof. We check that (26) holds for 1 < X < 11500. Thus we
may assume X ≥ 11500. Let sj be the largest squarefree integer ≤ X.
Then by Lemma 8, we have 1.6j ≤ sj ≤ X so that j ≤ [

X
1.6

]
. We have

2ω(i) =
∑

e|i |µ(e)|. Therefore

X−1∑
i=1

2ω(i) =
X−1∑
i=1

∑
e|i

|µ(e)|

≤
∑

1≤e<X

[
X − 1

e

]
|µ(e)| ≤ (X − 1)

∑
1≤e<X

|µ(e)|
e

≤ X

[ X
1.6 ]∑
i=1

1
si

.

We check that there are 6990 squarefree integers upto 11500. By using
(22), we have

X−1∑
i=1

2ω(i) ≤ X




6990∑
i=1

1
si

− 1
1.6

6990∑
i=1

1
i

+
1

1.6

[ X
1.6

]∑
i=1

1
i




≤ X

{
6990∑
i=1

1
si

− 1
1.6

6990∑
i=1

1
i

+
1

1.6

(
1 + log

X

1.6

)}

≤ 3
4
X log X

{
4
3

1.1658
log X

+
4
3

1
1.6

}
,

implying (26). �

Lemma 10. Let c > 0 be such that c2ω(d)−3 > 1, µ ≥ 2 and

Cµ =
{

Ai

∣∣∣ ν(Ai) = µ, Ai >
ρ2δk

3c2ω(d)

}
.

Then

C :=
∑
µ≥2

µ(µ − 1)
2

|Cµ|

≤ c

8
η(c2ω(d)−3)2ω(d)(2ω(d)−θ − 1)(log c2ω(d)−3).

(28)

Proof. Let i1 > i2 > · · · > iµ be such that Ai1 = Ai2 = · · · = Aiµ .
These give rise to µ(µ−1)

2 pairs of (i, j), i > j with Ai = Aj. Therefore the
total number of pairs (i, j) with i > j and Ai = Aj is C.
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We know that there is a unique partition of d corresponding to each
pair (i, j), i > j such that Ai = Aj . Hence by Box Principle, there exists
at least C

2ω(d)−θ−1
pairs of (i, j), i > j with Ai = Aj and a partition (d1, d2)

of d corresponding to these pairs. For every such pair (i, j), we write
Xi − Xj = d1rij, Xi + Xj = d2sij. Then gcd(Xi − Xj ,Xi + Xj) = 2 and
24 | (X2

i − X2
j ). Let r′ij , s′ij be such that r′ij | rij , s′ij | sij, gcd(r′ij, s

′
ij) = 1

and rijsij = 24
ρ2δ r′ijs

′
ij. Then

r′ijs
′
ij =

ρ2δ

24
rijsij =

ρ2δ

24
X2

i − X2
j

d
=

ρ2δ

24
i − j

Ai
<

ρ2δ

24
k

Ai
< c2ω(d)−3

since Ai > ρ2δk
3c2ω(d) . There are at most

∑c2ω(d)−3−1
i=1 2ω(i) possible pairs of

(r′ij , s
′
ij), and hence an equal number of possible pairs of (rij , sij). By

Lemma 9, we estimate

c2ω(d)−3−1∑
i=1

2ω(i) ≤ η(c2ω(d)−3)c2ω(d)−3(log c2ω(d)−3).

Thus if we have

C

2ω(d)−θ − 1
> η(c2ω(d)−3)c2ω(d)−3(log c2ω(d)−3),

then there exist distinct pairs (i, j) �= (g, h), i > j, g > h with Ai = Aj ,
Ag = Ah such that rij = rgh, sij = sgh giving

Xi − Xj = d1rij = Xg − Xh and Xi + Xj = d2sij = Xg + Xh.

Thus Xi = Xg, Xj = Xh implying (i, j) = (g, h), a contradiction. Hence

C

2ω(d)−θ − 1
≤ η(c2ω(d)−3)c2ω(d)−3(log c2ω(d)−3), s

implying (28). �

The following lemma is a refinement of [16, Lemma 2].

Lemma 11. Let i > j, g > h, 0 ≤ i, j, g, h < k be such that

ai = aj, ag = ah (29)
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and

xi −xj = d1r1, xi +xj = d2r2, xg −xh = d1s1, xg +xh = d2s2 (30)

where (d1, d2) is a partition of d; r1 ≡ s1 (mod 2), r2 ≡ s2 (mod 2) when d

is even; and either r1 ≡ s1 (mod 2) and ai ≡ ag (mod 4) or 2 | gcd(r1, s1)
when d is odd. Then we have either

ai = ag, r1 = s1 or ai = ag, r2 = s2 (31)

or (4) and (5) hold.

Proof. We follow the proof of [16, Lemma 2]. Suppose that (31) does
not hold. Then

air
2
1 − ags

2
1 �= 0, air

2
2 − ags

2
2 �= 0. (32)

We proceed as in [16, Lemma 2] to conclude from d | (aix
2
i − agx

2
g) that

d1d2 = d
∣∣ 1

4

{
(air

2
1 − ags

2
1)d

2
1 + (air

2
2 − ags

2
2)d

2
2

+ 2d(air1r2 − ags1s2)
}

.
(33)

Thus we have

(air
2
1 − ags

2
1)d

2
1 = ai(xi − xj)2 − ag(xg − xh)2 �= 0

and
(air

2
2 − ags

2
2)d

2
2 = ai(xi + xj)2 − ag(xg + xh)2 �= 0.

Since
n ≤ ajx

2
j < aixixj < aix

2
i ≤ n + (k − 1)d

and
n ≤ ahx2

h < agxgxh < agx
2
g ≤ n + (k − 1)d,

we have ∣∣aixixj − agxgxh

∣∣ < (k − 1)d. (34)

Also

|aix
2
i − agx

2
g| = |i − g|d ≤ (k − 1)d (35)
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|ajx
2
j − ahx2

h| = |j − h|d ≤ (k − 1)d (36)

and

n ≤ min
{

1
4
ai(xi + xj)2,

1
4
ag(xg + xh)2

}
. (37)

Hence we derive from (34), (35) and (37) that∣∣(air
2
2 − ags

2
2)d

2
2

∣∣ < 4(k − 1)d (38)

n
∣∣(air

2
1 − ags

2
1)d

2
1

∣∣ <
1
4
(k − 1)2d2 (39)

and further considering the cases {air
2
1 > ags

2
1, air

2
2 > ags

2
2}, {air

2
1 >

ags
2
1, air

2
2 < ags

2
2}, {air

2
1 < ags

2
1, air

2
2 > ags

2
2} and {air

2
1 < ags

2
1, air

2
2 <

ags
2
2}, we derive

G(i, g) =
∣∣air

2
1 − ags

2
1

∣∣d2
1 +

∣∣air
2
2 − ags

2
2

∣∣d2
2 < 4(k − 1)d. (40)

Let d = d1d2 be odd, gcd(d1, d2) = 1. We have either r1, s1 are even
and hence r1, r2, s1, s2 are even, or ai ≡ ag (mod 4) and r1 ≡ s1 (mod 2)
and hence r2 ≡ s2( (mod 2). Then reading modulo d1 and d2 separately
in (33), we have

d1

∣∣ 1
4
(air

2
2 − ags

2
2) and d2

∣∣ 1
4
(air

2
1 − ags

2
1). (41)

Therefore

4dd2 = 4d1d
2
2 ≤ |air

2
2 − ags

2
2|d2

2 (42)

and

4dd1 = 4d2
1d2 ≤ |air

2
1 − ags

2
1|d2

1. (43)

From (40), we have

4d(d1 + d2) ≤ G(i, g) < 4(k − 1)d

so that

d = d1d2 ≤
(

d1 + d2

2

)2

<
(k − 1)2

4
.
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This gives (4). Again from (43) and (39), we see that 4ndd1 < 1
4(k−1)2d2,

i.e., n < 1
16 (k − 1)2d2. From (42) and (38), we have 4dd2 < 4(k − 1)d, i.e.,

d2 < (k − 1). Thus (5) is also valid.
Let d = d1d2 be even with ord2(d) = 1 and d1 odd. Then the xi’s are

odd and therefore both r1 and s1 is even. We see from (33) that

4d1

∣∣ (air
2
2 − ags

2
2)d

2
2 and 4d2

∣∣ (air
2
1 − ags

2
1)d

2
1. (44)

Since r1 ≡ s1 (mod 2), r2 ≡ s2 (mod 2), gcd(d1, d2) = 1 and d1 odd, we
derive that

2d1

∣∣ (air
2
2 − ags

2
2), 4d2

∣∣ (air
2
1 − ags

2
1).

Therefore

2dd2 = 2d1d
2
2 ≤ |air

2
2 − ags

2
2|d2

2, 4dd1 = 4d2
1d2 ≤ |air

2
1 − ags

2
1|d2

1.

Now we argue as above to conclude (4) and (5).
Let d = d1d2 be even with ord2(d) ≥ 2, gcd(d1, d2) = 2. Then we

see from (33) that (44) holds. Since gcd(d1, d2) = 2, r1 ≡ s1 (mod 2) and
r2 ≡ s2 (mod 2), we derive that

2d1 | (air
2
2 − ags

2
2), 2d2 | (air

2
1 − ags

2
1).

Therefore

2dd2 = 2d1d
2
2 ≤ |air

2
2 − ags

2
2|d2

2, 2dd1 = 2d2
1d2 ≤ |air

2
1 − ags

2
1|d2

1.

Now we argue as above to conclude (4) and (5). �

Lemma 12. For a prime p < k, let

γp = ordp

( ∏
ai∈R

ai

)
, γ′

p = 1 + ordp((k − 1)!).

Let m > 1 by any real number. Then

∏
2≤p≤m

pγp−γ′
p ≤ k1.5π(m)

(
z1

∏
2<p≤m

p
2p

p2−1

)(
z2

∏
2<p≤m

p
2

p2−1

)−k

(45)

where (z1, z2) = (2
4
3 , 2

2
3 ) if d is odd and (z1, z2) = (4, 2) if d is even.
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Proof. The proof is the refinement of inequality [12, (6.4)]. Let ph ≤
k − 1 < ph+1 where h is a positive integer. Then

γ′
p − 1 =

[
k − 1

p

]
+
[
k − 1

p2

]
+ · · · +

[
k − 1
ph

]
. (46)

Let p � d. Then we see that gp is the number of terms in {n, n + d, . . . , n +
(k − 1)d} divisible by p to an odd power. After removing a term to which
p appears to a maximal power, the number of terms in the remaining set
divisible by p to an odd power is at most

[
k − 1

p

]
−
([

k − 1
p2

]
− 1
)

+
[
k − 1

p3

]
−
([

k − 1
p4

]
− 1
)

+ . . .

+ (−1)ε
([

k − 1
ph

]
+ (−1)ε

)

where ε = 1 or 0 according as h is even or odd, respectively. We note
that the above expression is always positive. Combining this with (46)
and

[
k−1
pi

] ≥ k−1
pi − 1 + 1

pi = k
pi − 1, we have

γp − γ′
p ≤ −2

{[
k − 1

p2

]
+ · · · +

[
k − 1
ph−1+ε

]}
+

h − 1 + ε

2

≤ −2
{

k

p2
+ · · · + k

ph−1+ε
− h − 1 + ε

2

}
+

h − 1 + ε

2

= − 2k
p2
(
1 − 1

p2

) (1 − 1
ph−1+ε

)
+ 1.5(h − 1 + ε).

Since ph ≥ k
p and h < log k

log p , we get

γp − γ′
p < − 2k

p2 − 1
+

1.5 log k

log p
+

2p2−ε

p2 − 1
+ 1.5ε − 1.5

≤ − 2k
p2 − 1

+
1.5 log k

log p
+

2p
p2 − 1

.

When d is even, we have γ2 − γ′
2 = −1 − ord2(k − 1) < −k + log k

log 2 + 2 by
Lemma 1 (v). Now (45) follows immediately. �
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Lemma 13. Suppose that n ≥ c1(k − 1)3 or d ≥ 4c1(k − 1)2 or both.

Let 1 ≤ � ≤ 2ω(d)−θ be the greatest integer such that R	 = {ai | ν(ai) =
�} �= φ. For k ≥ κ0, we have

r =
∣∣{(i, j) | ai = aj, i > j}∣∣ ≥ g(�) :=

{
4�(2ω(d) − 1) if d is odd,

2�(2ω(d)−θ − 1) if d is even.

Proof. We have

k =
	∑

µ=1

µrµ and |R| =
	∑

µ=1

rµ

where rµ = |Rµ = {ai | ν(ai) = µ}|. Each Rµ gives rise to µ(µ−1)
2 rµ pairs

of i, j with i > j such that ai = aj . Then

r =
	∑

µ=1

µ(µ − 1)
2

rµ = k − |R| +
	∑

µ=1

(µ − 1)(µ − 2)
2

rµ.

Suppose that the assertion of the Lemma 13 does not hold. Then g(�) >

k − |R| +∑	
µ=1

(µ−1)(µ−2)
2 rµ. We have

g(�) −
	∑

µ=1

(µ − 1)(µ − 2)
2

rµ ≤ g(�) − (� − 1)(� − 2)
2

:= g0(�).

We see that g0(�) is an increasing function of �. Since � ≤ 2ω(d)−θ , we find
that

k − |R| < g0(2ω(d)−θ) = (2ω(d)−θ − 1)(z32ω(d)−θ + 1) := g1

where z3 = 7
2 if d is odd and 3

2 if d is even. Thus |R| > k − g1. Since the
ai’s are squarefree, we have by Lemma 8 that∏

ai∈R

ai ≥ zk−g1
4 (k − g1)!

where z4 = 1.6 if d is odd and 2.4 if d is even. Also, we have

∏
ai∈R

ai

∣∣∣ (k − 1)!

(∏
p<k

p

) ∏
2≤p≤m

pγp−γ′
p
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where γp, γ
′
p and m are as in Lemma 12. This with (45) and Lemma 1 (iv)

gives∏
ai∈R

ai < k!k1.5π(m)−1

(
z1

∏
2<p≤m

p
2p

p2−1

)(
z2

2.7205

∏
2<p≤m

p
2

p2−1

)−k

.

Comparing the lower and upper bounds, we have

zg1
4 k!

(k − g1)!
> k−1.5π(m)+1

(
z1

∏
2<p≤m

p
2p

p2−1

)−1(
z2z4

2.7205

∏
2<p≤m

p
2

p2−1

)k

. (47)

By Lemma 2, we have

zg1
4 k!

(k − g1)!
< zg1

4 e−g1kg1

(
k

k − g1

)k−g1+
1
2 e

1
12k

e
1

12(k−g1)+1

.

Since k ≥ κ0, we find that g1 < k
z5

for ω(d) ≥ 12 where z5 = 37, 18 for d

odd and d even, respectively. Thus

zg1
4 k!

(k − g1)!
<




(
z4(k − g1)

e

)g1
(

k

k − g1

)k+ 1
2

if ω(d) ≤ 11,

(
z5

z5 − 1

)k+ 1
2
(

(z4(z5 − 1)k
z5e

)g1

if ω(d) ≥ 12.

Hence we derive from (47) that

g1 >
k log

(
z2z4

2.7205

∏
2<p≤mp

2
p2−1

)
+ (k + 1

2) log(1 − g1

k )

log(k − g1) − 1 + log z4

−
(1.5π(m) − 1) log k + log

(
z1
∏

2<p≤mp
2p

p2−1

)
log(k − g1) − 1 + log z4

(48)

for ω(d) ≤ 11 and

g1>
k log

(
z5−1

z5

z2z4
2.7205

∏
2<p≤m

p
2

p2−1

)
−(1.5π(m)−1) log k− log

(√
z5

z5−1
z1

∏
2<p≤m

p
2p

p2−1

)
log k−1+ log z4(z5−1)− log z5

(49)

for ω(d) ≥ 12.
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Let ω(d) ≤ 11. Taking m = min(1000,
√

κ0 ) in (48), we observe that
the right hand side of (48) is an increasing function of k and the inequality
does not hold at k = κ0. Hence (48) is not valid for all k ≥ κ0. For instance,
when ω(d) = 4, d odd, we have κ0 = 15700 and g1 = 855. With these
values, we see that the right hand side of (48) exceeds 855 at k = 15300,
a contradiction. Hence (48) is not valid for all k ≥ 15300.

Let ω(d) ≥ 12. Taking m = 1000 in (49), we derive that

g1 >




0.63104
k

log k
if d is odd,

1.183
k

log k
if d is even.

For d odd, we see that

0.63104
k

log k
≥ 0.63104

κ0

log κ0

=
0.63104 × 11ω(d)4ω(d)

ω(d) log 4 + log 11 + log ω(d)
>

7
2
4ω(d) > g1,

a contradiction. Similarly, we get a contradiction for d even. �

Lemma 14. Let k ≥ κ0 = κ0(ω(d)). Assume that d < 4c1(k − 1)2.
Let T1 = {0 ≤ i < k | Xi > 1} defined in Section 2 be such that

|T1| > C1 :=




k

C2
+

k

48
+ C3 +

8
3

if ω(d) = 2,

k

C2
+

k

12
+ C3 +

2ω(d)+1

3
if ω(d) = 3, 4, 5,

k

C2
+

k

12
+

k

9
+ if ω(d) ≥ 6,

where C2 ≤ 2k
1
3 and C3 = 39, 42, 195, 806 for ω(d) = 2, 3, 4, 5, respectively.

Then

max
i∈T1

Ai ≥ 2δC0
k

C2
where C0 = C0(ω(d)) =




1 if ω(d) = 2,

3
4
2[ ω(d)

3
] if ω(d) ≥ 3.

(50)
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Proof. We see that for ω(d) ≥ 6,

k

20 · 2ω(d)
≥ (4c1(k − 1)2

) 1
ω(d) > d

1
ω(d)

where c1 is given by Proposition 2. Hence there exists a partition d = d1d2

of d with

d1 <
k

20 · 2ω(d)
with ω(d1) ≥ 1 and ω(d2) ≤ ω(d) − 1.

Therefore

ν(Ai) ≤ 2ω(d2) ≤ 2ω(d)−1 for Ai ≥ k

20 · 2ω(d)
(51)

by Lemma 4.
Let

T2 =
{

i ∈ T1 | Ai >
2δρk

3c2ω(d)

}
, T3 = T1 − T2, (52)

where c = 16 if ω(d) = 2, c = 4 if ω(d) = 3, 4, 5 and c = 2 if ω(d) ≥ 6.
Further let

S2 = {Ai | i ∈ T2}, S3 = {Ai | i ∈ T3} (53)

and |S3| = s. Then considering residue classes modulo 2δρ, we derive that

2δρk

3c · 2ω(d)
≥ max

Ai∈S3

Ai ≥ 2δρ(s − 1) + 1

so that |S3| = s ≤ k
3c2ω(d) − 1

ρ + 1 ≤ k
3c2ω(d) + 2

3 . We see from Corollary 1,
(51), (52) and (53) that

|T3| ≤ k

20 · 2ω(d)
2ω(d) +

(
k

6 · 2ω(d)
− k

20 · 2ω(d)
+

2
3

)
2ω(d)−1

≤ k

20
+
(

k

6
− k

20

)
2−1 +

2
3
2ω(d)−1 ≤ k

12
+

k

40
+

k

6 × 26
≤ k

9
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if ω(d) ≥ 6 and

|T3| ≤




(
k

48 · 2ω(d)
+

2
3

)
2ω(d) =

k

48
+

8
3

if ω(d) = 2,

(
k

12 · 2ω(d)
+

2
3

)
2ω(d) =

k

12
+

2ω(d)+1

3
if ω(d) = 3, 4, 5.

Therefore

|T2| > C1 − |T3| ≥ C4 :=




k

C2
+ C3 if ω(d) = 2, 3, 4, 5,

k

C2
+

k

4
if ω(d) ≥ 6.

Let C, Cµ be as in Lemma 10 with c = 16 if ω(d) = 2, c = 4 if ω(d) = 3, 4, 5
and c = 2 if ω(d) ≥ 6. Then C4 < |T2| = |S2|+

∑
µ≥2(µ − 1)|Cµ|. Now we

apply Lemma 10 and use k ≥ κ0 ≥ η(2ω(d)−2)(log 2ω(d)−2)2ω(d)(2ω(d)−θ−1)
for ω(d) ≥ 6 to get

C4 <



|S2| + C3 if 2 ≤ ω(d) ≤ 5,

|S2| + k

12
if ω(d) ≥ 6.

Thus
|S2| >

k

C2
.

Let ω(d) = 2. Then considering the Ai’s modulo 2δ, we see that

max
Ai∈S2

Ai ≥ 2δ

[
k

C2

]
+

2δk

48 × 4
≥ 2δ k

C2

which gives (50). Now we take ω(d) ≥ 3. Since d < 4c1(k − 1)2, we have

r ≥ [ω(d)
3 ] by Lemma 6. By (14), we have k

C2
≥ k

2
3

2 > 1
2r (4c1(k − 1)2))

1
3 >∏r

j=1

(Pj−1
2

)
. We now apply Corollary 2 with s = [ k

C2
+ 1] and U = 1 to

get

max
Ai∈S2

Ai ≥ 3
4
2r+δ

[
k

C2
+ 1
]
≥ 3

4
2
[

ω(d)
3

]
+δ k

C2

which yields (50). �
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4. Proof of Proposition 2

We assume that either n ≥ c1(k − 1)3 or d ≥ 4c1(k − 1)2. Then
ν(ai0) ≤ 2ω(d)−θ for 0 ≤ i0 < k by Lemma 5. Let � be as defined in
the statement of Lemma 13. Then ν(ai0) ≤ �. By Lemma 13, there are
at least z�(2ω(d) − 1) distinct pairs (i, j) with i > j and ai = aj , where
z = 4 if d is odd and 2 if d is even. Since there can be at most 2ω(d)−θ − 1
possible partitions of d, by Box principle, there exists a partition (d1, d2)
of d and at least z� pairs of (i, j) with ai = aj, i > j corresponding to this
partition. We write

xi − xj = d1r1(i, j) and xi + xj = d2r2(i, j).

Let d be odd. Suppose there are at least � distinct pairs (i1, j1), . . . ,
(i	, j	), . . . with the corresponding r1(i, j) even. Then |{i1, . . . , i	, j1, . . . ,
j	}| > �. Hence we can find 1 ≤ l,m ≤ � with (il, jl) �= (im, jm), ail = ajl

,
aim = aim and ail �= aim. Now the result follows by Lemma 11. Thus
we may assume that there are at most � − 1 pairs (i, j) with r1(i, j) even.
Then there are at least 3� + 1 distinct pairs (i, j) with r1(i, j) odd. Since
ai ≡ 1, 2, 3 (mod 4), we can find at least � pairs with ai ≡ ag (mod 4)
for any two such pairs (i, j), (g, h). Then there exist two distinct pairs
(i, j), (g, h) with ai = aj, ag = ah and ai �= ag from these pairs. Also
r1(i, j) ≡ r1(g, h) (mod 2). This gives (4) and (5) by Lemma 11 which is
a contradiction.

Let d be even. We observe that 8 | (x2
i −x2

j) and gcd(xi−xj, xi+xj)= 2.
We claim that there are at least � pairs with r1(i, j) ≡ r1(g, h) (mod 2)
and r2(i, j) ≡ r2(g, h) (mod 2) for any two such distinct pairs (i, j) and
(g, h). If the claim is true, then there are two pairs (i, j) �= (g, h) with
i > j, g > h, ai = aj , ag = ah and ai �= ag since ν(ai) ≤ �. This implies
(4) and (5) by Lemma 11, contradicting our assumption. Let ord2(d) = 1.
Then d1 is odd, implying that r1(i, j) is even. We can choose at least �

pairs whose r2’s are of the same parity. Thus the claim is true in this case.
Let ord2(d) ≥ 3. Then we have either ord2(d1) = 1 implying that all the
r1’s are odd, or ord2(d2) = 1 implying that all the r2’s are odd. Thus
the claim follows. Finally, let ord2(d) = 2. Then 2 ‖ d1 and 2 ‖ d2 so
that r1 and r2 are of the opposite parity for any pair and hence the claim
holds. �
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5. Proof of Proposition 3

In this section, we assume that k ≥ κ0 = κ0(ω(d)). In view of Propo-
sition 2, we may assume that d < 4c1(k − 1)2. We may also assume that
Xi is a prime for each i ∈ T1 in the proof of Proposition 3. Otherwise
n + (k − 1)d ≥ (k + 1)4, which implies the assertion.

Since d < 4c1(k − 1)2, d has at least one prime divisor ≤ k otherwise
d > kω(d) ≥ k2, giving a contradiction. Thus πd(k) ≤ π(k) − 1. Let
n + (k − 1)d ≥ L for some L > 0. By Lemma 3 and Lemma 1 (i), we have

|T1| > k − (k − 1) log(k − 1)
log L − log 2

− k

log k

(
1 +

1.5
log k

)
. (54)

We see from [5] that n(n + d) . . . (n + (k − 1)d) is divisible by at least
π(2k) − πd(k) ≥ π(2k) − π(k) + 1 primes exceeding k. Hence we have
n + (k − 1)d ≥ 4k2. Thus by taking L = 4k2 in (54), we get

|T1| > k − (k − 1) log(k − 1)
log(2k2)

− k

log k

(
1 +

1.5
log k

)
.

The right hand side of the above inequality is an increasing function of k

and

|T1| >




k

5
+

k

48
+ C3 +

8
3

if ω(d) = 2,

k

6
+

k

12
+ C3 +

16
3

if ω(d) = 3,

5
24

k +
k

12
+ C3 +

2ω(d)+1

3
if ω(d) = 4, 5,

5
48

k +
k

12
+

k

9
if ω(d) ≥ 6.

(55)

Now we see from Lemma 14 that (50) holds with

C2 =




5 if ω(d) = 2,

6 if ω(d) = 3,

24
5

if ω(d) = 4, 5,

48
5

if ω(d) ≥ 6.
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This gives n + (k − 1)d ≥ C0
C2

k3. Hence (7) is valid for ω(d) ≥ 4. Now we
take ω(d) = 2, 3. Putting L = C0

5 k3 in (54), we derive that

|T1| >




5k
16

+
k

48
+ C3 +

2ω(d)+1

3
if ω(d) = 2,

5k
24

+
k

12
+ C3 +

2ω(d)+1

3
if ω(d) = 3.

We apply Lemma 14 again to get maxi∈T1 Ai ≥ 2δ 5
16k so that n+(k−1)d ≥

2δ 5
16k3, which implies (7). This completes the proof. �
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[3] P. Erdős and J. L. Selfridge, The product of consecutive integers is never a
power, Illinois J. Math. 19 (1975), 92–301.
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