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A note on connectedness

By MEHMET BARAN (Kayseri) and MUAMMER KULA (Kayseri)

Abstract. In this paper, we generalize the notion of (strong) connectedness
to arbitrary set based topological categories. Furthermore, we give a characteri-
zation of these concepts as well as the characterization of other various notions of
connectedness introduced previously by many others in the categories of various
types of filter convergence spaces. Finally, we investigate the relationships among
these various notions of connectedness.

1. Introduction

Let E be a complete category [1] and X be an object in E . Clementino

and Tholen [9] considered ∇(C) = {X | δX C-dense}, the category of
the C-connected objects, (δX = 〈1X , 1X〉 : X → X × X is the diagonal
morphism) for a closure operator C in the sense of Dikranjan and Giuli

[10]. If E = TOP, the category of topological spaces and continuous maps,
and C = q, the quasi-component closure operator which assigns to a subset
M of X its quasi-component, i.e., the intersection of clopen sets in X

containing M , then ∇(q) is the category of connected spaces [9].
It is well known that for a topological space X, the followings are

equivalent:

(1) X is connected;

(2) X and ∅ are the only subsets of X which are both closed and open;
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(3) every continuous function from X into a discrete space must be con-
stant.

The fact (3) is used by several authors [2], [7], [8], [16], [19], [20] to motivate
a closer look at analogous situations in a more general categorical setting.

The notions of “closedness” and “strong closedness” in set based topo-
logical categories are introduced by Baran [3], [4] and it is shown in [5]
and [6] that these notions form an appropriate closure operator in the sense
of Dikranjan and Giuli [10] in some-well known topological categories.

The main goal of this paper is, by using the fact (2), to introduce the
notions of connectedness and strong connectedness in set based topological
categories, and to explore these concepts of connectedness as well as the
ones introduced previously by many others [7]–[9], [16], in the categories
of filter and local filter convergence spaces.

2. Preliminaries

Let E be a category and SET be the category of sets. The functor
U : E → SET is said to be topological or the category E is said to be
topological over SET if U is concrete (i.e., faithful and amnestic (i.e., if
U(f) = id and f is an isomorphism, then f = id)), has small (i.e., sets)
fibers, and if every U -source has an initial lift or, equivalently, if every
U -sink has a final lift [1], [11], [15], [21].

Let E be a topological category and X ∈ E . M is called a subspace
of X if the inclusion map i : M → X is an initial lift (i.e., an embedding)
and we denote it by M ⊂ X.

Let B be a set and p ∈ B. The infinite wedge product
∨∞

p B is formed
by taking countably many disjoint copies of B and identifying them at the
point p. Let B∞ = B × B × . . . be the countable cartesian product of B.
Define A∞

p :
∨∞

p B → B∞ by A∞
p (xi) = (p, p, . . . , x, p, p, . . . ), where xi is

in the i-th component of the infinite wedge and x is in the i-th place in
(p, p, . . . , x, p, p, . . . ) and �∞

p :
∨∞

p B → B by �∞
p (xi) = x for all i, [3]

or [4].
Note, also, that the map A∞

p is the unique map arising from the multi-
ple pushout of p : 1 → B for which A∞

p ij = (p, p, p, . . . , p, id, p, . . . ) : B →
B∞, where the identity map, id, is in the j-th place.
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Definition 2.1 (cf. [3] p. 335 or [4] p. 386). Let U : E → SET be
topological and X an object in E with U(X) = B. Let M be a nonempty
subset of B. We denote by X/M the final lift of the epi U -sink q : U(X) =
B → B/M = (B\M) ∪ {∗}, where q is the epi map that is the identity on
B\M and identifying M with a point ∗.
Let p be a point in B.

(1) X is T1 at p iff the initial lift of the U -source {Sp : B
∨

p B → U(X2) =
B2 and ∇p : B

∨
p B → UD(B) = B} is discrete, where D is the

discrete functor which is a left adjoint to U .

(2) p is closed iff the initial lift of the U -source {A∞
p :

∨∞
p B → B∞ =

U(X∞) and �∞
p :

∨∞
p B → UD(B) = B} is discrete.

(3) M ⊂ X is strongly closed iff X/M is T1 at ∗ or M = ∅.
(4) M ⊂ X is closed iff ∗, the image of M , is closed in X/M or M = ∅.
(5) If B = M = ∅, then we define M to be both closed and strongly closed.

Next, we define the notion of (strongly) open subobject of a given
object in a set based topological category.

Definition 2.2. Let E be a topological category over SET, X an object
in E and M be a nonempty subset of X.

(1) M ⊂ X is open iff M c, the complement of M , is closed in X.

(2) M ⊂ X is strongly open iff M c, the complement of M , is strongly
closed in X.

Remark 2.3. (1) In TOP, the category of topological spaces, the no-
tion of closedness and openness coincides with the usual ones [3] and M is
strongly closed iff M is closed and for each x �∈ M there exists a neighbour-
hood of M missing x [3]. If a topological space is T1, then the notions of
openness (closedness) and strong openness (resp., closedness) coincide [3].

(2) In general, for an arbitrary topological category, the notions of
openness (closedness) and strong openness (resp., closedness) are indepen-
dent of each other (see 2.4, 2.5, and [4]). Even if X ∈ E is T1, where E
is a topological category, then these notions are still independent of each
other (see 2.6 and [4]).

(3) Note also that the notion of open subobjects of a given object in a
category with respect to a closure operator in the sense of Dikranjan and
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Giuli [10] was introduced in [14]. In every set based topological category
E , and for every finitely additive closure operator of E , their definition
coincides with ours.

Let A be a set and δ be a filter on A. The filter δ is said to be proper
(improper) iff δ does not contain (resp., δ contains) the empty set, ∅.

Let L be a function on A that assigns each point x of A a set of filters
(the “filters converging to x”) is called a convergence structure on A ((A,L)
a filter convergence space) iff it satisfies the following two conditions:

(1) [x] = [{x}] ∈ L(x) for each x ∈ A (where [M ] = {B ⊂ A : M ⊂ B}).
(2) β ⊃ α ∈ L(x) implies β ∈ L(x) for any filter β on A.

A map f : (A,L) → (B,S) between filter convergence spaces is called
continuous iff α ∈ L(x) implies f(α) ∈ S(f(x)) (where f(α) denotes the
filter generated by {f(D) : D ∈ α}). The category of filter convergence
spaces and continuous maps is denoted by FCO (see [13] or [22]). A filter
convergence space (A,L) is said to be a local filter convergence space (in
[21], it is called a convergence space) if α ∩ [x] ∈ L(x) whenever α ∈ L(x)
(see [18] or [21]). These spaces are the objects of the full subcategory
LFCO (in [21] Conv) of FCO.

For filters α and β we denote by α ∪ β the smallest filter containing
both α and β.

Note that (A,L) is a discrete object in FCO (resp., LFCO) iff L(a) =
{[a], [∅]} for all a in A [4].

Note that both FCO and LFCO are topological categories over SET.
More on these categories can be found in [1], [13], [17], [18], [21],

and [22].

Theorem 2.4 ([4], Theorems 3.1 and 3.2). Let (B,L) be in FCO
(resp., LFCO).

(a) ∅ �= M ⊂ X is closed iff for any a /∈ M , if there exist α ∈ L(a) such

that α ∪ [M ] is proper, then [a] /∈ L(c) for all c ∈ M .

(b) ∅ �= M ⊂ X is strongly closed iff for any a ∈ B, if a /∈ M, then

[a] /∈ L(c) for all c ∈ M and if α ∈ L(a), then α ∪ [M ] is improper.

Theorem 2.5. Let (B,L) be in FCO (resp., LFCO).

(a) ∅ �= M ⊂ B is open iff for any a ∈ M, if there exists α ∈ L(a) such

that α ∪ [M c] is proper, then [a] /∈ L(c) for all c /∈ M .
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(b) ∅ �= M ⊂ B is strongly open iff for any a ∈ B, if a ∈ M, then [a] /∈ L(c)
for all c /∈ M and if α ∈ L(a), then α ∪ [M c] is improper.

Proof. It follows from 2.2 and 2.4. �

Remark 2.6. Let (B,L) be in FCO (resp., LFCO) and ∅ �= M ⊂ B.
If (B,L) is T1, i.e., for all x, y ∈ B with x �= y, [x] /∈ L(y) [5], then all
subsets of B are closed and M is strongly closed iff for any a /∈ M and any
α ∈ L(a), α ∪ [M ] is improper. Hence, if M is strongly closed, then M is
closed but the converse is not true, in general. The similar result follows
for strong openness and openness.

3. Connected objects

In this section, the notion of (strongly) connected object in a set based
topological category E is introduced and investigated. Also, the character-
izations of each of these notions in the categories of FCO and LFCO are
given.

Definition 3.1. Let E be a topological category over SET and X be an
object in E .

(1) X is connected iff the only subsets of X both strongly open and
strongly closed are X and ∅.

(2) X is strongly connected iff the only subsets of X both open and closed
are X and ∅.
Remark 3.2. Note that for the category TOP of topological spaces, the

notion of strong connectedness coincides with the usual notion of connect-
edness. If a topological space X is T1, then, by 2.3 and 3.1, the notions of
connectedness and strong connectedness coincide.

Lemma 3.3. Let (B,L) be in FCO (resp., LFCO).

(B,L) is strongly connected if and only if for any non-empty proper subset

M of B, either the condition (I) or (II) holds.

(I) There exists a proper filter α in L(a) such that α ∪ [M ] is proper for

some a ∈ M c and [a] ∈ L(b) for some b ∈ M .
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(II) There exists a proper filter α in L(b) such that α ∪ [M c] is proper for

some b ∈ M and [b] ∈ L(a) for some a ∈ M c.

Proof. It follows from 2.4, 2.5, and 3.1. �

Lemma 3.4. Let (B,L) be in FCO (resp., LFCO).

(B,L) is connected if and only if for any non-empty proper subset M of

B, either the condition (I) or (II) holds.

(I) There exists a proper filter α in L(a) such that α ∪ [M ] is proper for

some a ∈ M c or [a] ∈ L(b) for some b ∈ M .

(II) There exists a proper filter α in L(b) such that α ∪ [M c] is proper for

some b ∈ M or [b] ∈ L(a) for some a ∈ M c.

Proof. It follows from 2.4, 2.5, and 3.1. �

Theorem 3.5. Let (B,L) be in FCO (resp., LFCO). If (B,L) is

strongly connected, then (B,L) is connected. But the converse is not true.

Proof. It follows easily from 3.3 and 3.4. The converse of this im-
plication is not true, in general. For example; Let B={a,b} and L(a) =
{[a], [b], [B], [∅]} L(b) = {[b], [∅]}. Note that (B,L) is connected but it is
not strongly connected. Indeed, let M = {b} and M c = {a}. Since [b]
in L(a) with [b] ∪ [M ] is proper and [b] ∈ L(a), by 3.4, (B,L) is con-
nected. Note that [b] in L(a) with [b] ∪ [M ] is proper but [a] /∈ L(b) and
α∪ [M c] is improper for all α ∈ L(b). Hence, by 3.3, (B,L) is not strongly
connected. �

Theorem 3.6. Let (B,L) be in FCO(resp., LFCO).

If (B,L) is T1, then

(i) (B,L) is strongly connected if and only if B is a point or the empty

set.

(ii) (B,L) is connected if and only if for any non-empty proper subset M

of B, either the condition (I) or (II) holds.

(I) There exists a proper filter α in L(a) such that α∪ [M ] is proper

for some a ∈ M c.

(II) There exists a proper filter α in L(b) such that α∪ [M c] is proper

for some b ∈ M .
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Proof. If (B,L) is T1, then, by 2.6, all subsets of B are both closed
and open. Hence, if (B,L) is T1, then, by 3.3, (B,L) is strongly connected
if and only if B is a point or the empty set, and, by 3.4, (B,L) is connected
iff for any non-empty proper subset M of B, either the condition (I) or
(II) holds. �

4. Connectedness with respect to a closure operator

We begin this section by recalling the definition of C-connectedness
defined by Clementino and Tholen [9].

Definition 4.1 (cf. [9] p. 158). Let E be a complete category and C be a
closure operator in the sense of Dikranjan and Giuli [10] of E . An object
X of E is called C-connected if the diagonal morphism δX = 〈1X , 1X〉 :
X → X × X is C-dense. By ∇(C) we denote the full subcategory of
C-connected objects.

Note that if E = TOP and C = K, the usual Kuratowski closure
operator, then ∇(K) is the category of irreducible spaces (i.e., of spaces
X for which X = F ∪G with closed sets F , G is possible only for F=X or
G=X) [9]. If C = q, the quasi-component closure operator which assigns
to a subset M of X its quasi-component, i.e., the intersection of clopen
sets in X containing M , then ∇(q) is the category of connected spaces [9].

Definition 4.2 (cf. [5] p. 39 or [6] p. 410). Let X be in FCO (resp.,
LFCO) and M ⊂ X. The (strong) closure of M is the intersection of all
(strongly) closed subsets of X containing M and it is denoted by clE(M)
(resp., sclE(M)), where E is one of the above categories. For simplicity,
we sometimes use cl(scl) for clE (sclE). Note that both clE and sclE are
closure operators in the sense of [10].

Recall that M ⊂ X is said to be (strongly) dense iff clE(M) = X

(resp., sclE(M) = X).
Let (B,L) be in FCO (resp., LFCO) and M ⊂ B. Define K(M) =

{x ∈ B : there exists α ∈ L(x) such that α ∪ [M ] is proper} ([13]) and
define K∗(M) = {x ∈ B : K({x})∩M �= ∅} = {x ∈ B : (∃c ∈ M) and [x] ∈
L(c)} ([12]). Note that K, the ordinary Kuratowski operator, and its
opposite K∗ are closure operators.
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Theorem 4.3 (cf. [5] p. 39 or [6] p. 413). (1) clE = K̂ ∧ K∗, the

idempotent hull of K ∧ K∗, and sclE = K̂ ∨ K∗, the idempotent hull of

K ∨ K∗, where E = FCO or LFCO.

(2) If X is T1, then clE = δ, the discrete closure operator [13], and

sclE = K, where E = FCO or LFCO.

Remark 4.4 (cf. [5] p. 39). (1) Both sclE and clE are idempotent closed
closure operators of E = FCO or LFCO.

(2) clTOP = K and sclTOP = K̂ ∨ K∗.

(3) If a topological space X is T1, then, by 2.3, clTOP = K = sclTOP.

Next we give a characterization of C-connected objects of E = FCO
and LFCO for C = K, K∗, clE and sclE .

Lemma 4.5. Let (B,L) be in FCO (resp., LFCO). (B,L) is K-

connected iff for all a, b ∈ B with a �= b, L(a) ∩ L(b) �= {[∅]}.
Proof. Suppose that (B,L) is K-connected and for a, b ∈ B with

a �= b. Note that (a, b) ∈ B2 = K(∆) since (B,L) is K-connected. It
follows that there exists a proper filter α in L2(a, b), where L2 is the
product structure on B2, such that α∪ [�] is proper. Recall, by definition,
α ∈ L2(a, b) iff π1α ∈ L(a) and π2α ∈ L(b), where πi : B2 →B are
the projections maps i = 1, 2. Let β = π−1

1 π1α ∪ π−1
2 π2α and note that

β ∈ L2(a, b) since π1β = π1α ∈ L(a) and π2β = π2α ∈ L(b) and β ⊂ α

(since π−1
1 π1α ⊂ α and π−1

2 π2α ⊂ α). Since α ∪ [�] is proper, it follows
that β ∪ [�] is proper and consequently for any V ∈ β, V ∩ � �= ∅. But
V ∈ β implies V ⊃ V1 ×V2 for some V1 ∈ π1α and V2 ∈ π2α. Hence
(V1 × V2) ∩ � �= ∅. Note that (V1 × V2) ∩ � �= ∅ iff V1 ∩ V2 �= ∅. Since
V1∩V2 ∈ π1α∪π2α, it follows that π1α∪π2α is proper and in L(a)∩L(b).
Hence L(a) ∩ L(b) �= {[∅]}.

Suppose that for any a, b ∈ B with a �= b, L(a)∩L(b) �= {[∅]}. It follows
that there exists a proper filter β in L(a) ∩ L(b). Let σ = π−1

1 β ∪ π−1
2 β

and note that π1σ = β ∈ L(a) and π2σ = β ∈ L(b) and consequently
σ ∈ L2(a, b). We need to show that σ ∪ [�] is proper. If σ ∪ [�] is not
proper, then there exists V ∈ σ such that V ∩� = ∅. V ∈ σ implies there
exists U ∈ β such that V ⊃ π−1

1 U ∩ π−1
2 U = U2. Since V ∩ � = ∅, it

follows that U2∩� = ∅ and consequently U = ∅ ∈ β, a contradiction since
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β is proper. Thus σ∪ [�] is proper and consequently (a, b) ∈ K(∆), which
shows that K(∆) = B2, i.e., (B,L) is K-connected. �

Lemma 4.6. Let (B,L) be in FCO (resp., LFCO). (B,L) is K∗-
connected iff there exists c ∈ B such that [a] and [b] ∈ L(c) for all a, b ∈ B

with a �= b.

Proof. It follows easily from definition of K∗ and 4.1. �

Lemma 4.7. Let (B,L) be in FCO (resp., LFCO). (B,L) is cl-
connected iff for all a, b ∈ B with a �= b, L(a) ∩ L(b) �= {[∅]} and there

exists c ∈ B such that [a] and [b] ∈ L(c).

Proof. Combine 4.3, 4.5 and 4.6. �

Lemma 4.8. Let (B,L) be in FCO (resp., LFCO). (B,L) is scl-
connected iff for all a, b ∈ B with a �= b, L(a)∩L(b) �= {[∅]} or there exists

c ∈ B such that [a] and [b] ∈ L(c).

Proof. It follows from 4.3, 4.5 and 4.6. �

Now, we investigate the relationships between our notions of (strong)
connectedness and C-connectedness in categories of E = FCO and LFCO
for C = clE or sclE .

Theorem 4.9. Let (B,L) be in FCO (resp., LFCO).

(1) If (B,L) is strongly connected, then (B,L) is cl-connected.

(2) If (B,L) is scl-connected, then (B,L) is connected.

(3) If (B,L) is cl-connected, then (B,L) is scl-connected. But the converse

of implication is not true, in general.

(4) Strong connectedness ⇒ cl-connectedness ⇒ scl-connectedness ⇒ con-

nectedness, but the converse of each implication is not true, in general.

Proof. (1) Suppose that (B,L) is strongly connected. Let a, b ∈ B

with a �= b. Let M = {b}. Then, by assumption, either conditions (I) or
(II) in 3.3 holds. Suppose condition (I) in 3.3. holds. Then, there exists
a proper filter α in L(a) such that α ∪ [M ] is proper for some a ∈ M c

and [a] ∈ L(b). Since α ∪ [M ] is proper, then α ⊂ [b] and [b] ∈ L(a).
Hence, [b] ∈ L(a) ∩ L(b) and consequently L(a) ∩ L(b) �= {[∅]}. Note that
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[a], [b] ∈ L(b). Similarly, if the condition (II) of 3.3 holds, then for any
a, b ∈ B with a �= b, L(a) ∩ L(b) �= {[∅]}. Hence (B,L) is cl-connected.

(2) Suppose that (B,L) is scl-connected and M is a non-empty proper
subset of B. Let a ∈ M c and b ∈ M . (a, b) ∈ B2 = scl(∆) since (B,L)
is scl-connected. It follows from Theorem 4.3 that either K(∆) = B2 or
K∗(∆) = B2. If K(∆) = B2, then there exists a proper filter α in L2(a, b)
such that α∪[∆] is proper. Note that π1α ∈ L(a) and π2α ∈ L(b). We show
that either π1α∪ [M ] or π2α∪ [M c] is proper. If π1α∪ [M ] and π2α∪ [M c]
are improper, then it follows that there exist V1 ∈ π1α and V2 ∈ π2α such
that V1 ∩ M = ∅ and V2 ∩ M c = ∅. Let β = π−1

1 π1α ∪ π−1
2 π2α and note

that β ⊂ α. Since V1 ∩ V2 = ∅, β ∪ [∆] is improper, and consequently
α∪ [∆] is improper, a contradiction. Hence, either π1α∪ [M ] or π2α∪ [M c]
is proper. Thus, by 3.4, (B,L) is connected. If K∗(∆) = B2, then, by 3.4
and 4.6, (B,L) is connected. This completes the proof.

(3) It follows from 4.7 and 4.8.

(4) It follows from (1), (2) and (3). �

Next we give a characterization of D-connected objects of E = FCO
and LFCO.

Definition 4.10 ([7], [16], [19], [21]). Let E be a topological category
over SET and X an objects in E . X is said to be connected (we call it D-
connected, for simplicity) if and only if any morphism from X to discrete
object is constant.

Lemma 4.11. Let (B,L) be in FCO (resp., LFCO).

(B,L) is D-connected if and only if for any non-empty proper subset

M of B, either the condition (I) or (II) holds.

(I) There exists a proper filter α in L(a) such that α ∪ [M ] is proper for

some a ∈ M c.

(II) There exists a proper filter α in L(b) such that α ∪ [M c] is proper for

some b ∈ M .

Proof. Suppose that (B,L) is D-connected but conditions (I) and
(II) do not hold for some non-empty proper subset M of B. Let (A,S)
be a discrete object in FCO (resp., LFCO), i.e., S(a) = {[a], [∅]} for all
a in A, with CardA > 1. Define f : (B,L) → (A,S) by f(x) = a, if
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x ∈ M and f(x) = b, if x ∈ M c. We show that f is continuous. Suppose
c ∈ B and α ∈ L(c). Let c ∈ M . Since α ∪ [M c] is improper for any
α ∈ L(c) (by assumption), we can choose V ∈ α such that V ∩ M c = ∅.
We want to show f(α) ∈ S(f(c)), i.e., f(α) = [∅] or f(α) = [f(c)] = [a]
(since c ∈ M). If α = [∅], f(α) = [∅]. Let α �= [∅] and W ∈ f(α). Since
W ∈ f(α), there exists V ∈ α such that W ⊃ f(V ). Since V ⊂ M ,
f(V ) = {a}. Consequently, a ∈ W and f(α) = [a]. Similarly if c ∈ M c,
then f(α) = [∅] or f(α) = [b]. Therefore, f is continuous but it is not
constant, a contradiction.

Suppose that the condition (I) holds. Let f : (B,L) → (A,S) be
continuous map with (A,S) is discrete object. If CardA=1, then f is
constant. Suppose that CardA>1 and f is not constant. There exists
y, c ∈ B with y �= c such that f(y) �= f(c). Let M = {c}. By assumption,
there exists α ∈ L(y) such that α∪[M ] is proper, and consequently α ⊂ [c].
Since α ∈ L(y), [c] ∈ L(y), but [f(c)] /∈ S(f(y)) (since f(y) �= f(c)).
This shows that f is not continuous, a contradiction. Hence f must be
constant. �

Similarly if the condition (II) holds, then the result follows. Hence,
by 4.10, (B,L) is D-connected.

Theorem 4.12. Let (B,L) be in FCO (resp., LFCO). (B,L) is con-

nected if and only if (B,L) is D-connected.

Proof. (B,L) is D-connected, by 3.4 and 4.11, then (B,L) is con-
nected.

Suppose that (B,L) is connected and M is any non empty proper
subset of B. If the first part of condition (I) in 3.4 holds, then the result
follows. Suppose that the second part of condition (I) in 3.4 holds. Let
b∈M and [a] ∈ L(b), a ∈ M c. Note that [a]∪ [M c] is proper. Hence, con-
dition (II) of 4.11 holds and consequently (B,L) is D-connected. Similarly,
if the condition (II) of 3.4 holds, then (B,L) is D-connected. �

We can infer the following results.

Remark 4.13. (1) For the category FCO (resp., LFCO), by 4.9 and
4.12, strong connectedness ⇒ cl-connectedness ⇒ scl-connectedness ⇒ D-
connectedness ⇔ connectedness, but the converse of each implication is
not true, in general.
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(2) Let (B,L) be in FCO (resp., LFCO). If (B,L) is T1, then

(i) by 3.6, 4.3, and 4.7, the followings are equivalent:

(a) (B,L) is strongly connected.

(b) (B,L) is cl-connected.

(c) B is a point or the empty set.

(ii) by 3.6, 4.3, 4.5, 4.8, 4.11, and 4.12, the followings are equivalent:

(a) (B,L) is scl-connected.

(b) (B,L) is D-connected.

(c) (B,L) is connected.

(d) for any non-empty proper subset M of B, we have either condition
(I) or (II), where the conditions are:

(I) there exists a proper filter α in L(a) such that α ∪ [M ] is
proper for some a ∈ M c.

(II) there exists a proper filter α in L(b) such that α ∪ [M c] is
proper for some b ∈ M .

Acknowledgement. The authors would like to thank the referee for
his valuable suggestions which improved the paper.

References

[1] J. Adamek, H. Herrlich and G. E. Strecker, Abstract and Concrete Cate-
gories, John Wiley and Sons, New York, 1990.

[2] A. V. Arhangel’skii and R. Wiegandt, Connectedness and disconnectedness in
topology, Gen. Topology and its Appl. 5 (1975), 9–33.

[3] M. Baran, Separation properties, Indian J. Pure Appl. Math. 23 (1992), 333–341.

[4] M. Baran, The notion of closedness in topological categories, Comment. Math.
Univ. Carolinae 34 (1993), 383–395.

[5] M. Baran, Closure operators in convergence spaces, Acta Math. Hungar. 87 (2000),
33–45.

[6] M. Baran, Compactness, perfectness, separation, minimality and closedness with
respect to closure operators, Aplied Categorical Structures 10 (2002), 403–415.

[7] G. Castellini and D. Hajek, Closure operators and connectedness, Topology and
its Applications 55 (1994), 29–45.

[8] G. Castellini, Connectedness with respect to a closure operator, Applied Cate-
gorical Structures 9 (2001), 285–302.



A note on connectedness 501

[9] M. M. Clementino and W. Tholen, Separation versus connectedness, Topology
and its Applications 75 (1997), 143–181.

[10] D. Dikranjan and E. Giuli, Closure operators I, Topology Appl. 27 (1987),
129–143.

[11] D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure opera-
tors, Quaestiones Math. 11 (1988), 323–337.

[12] D. Dikranjan, E. Giuli and W. Tholen, Closure operators II, Proceedings of the
International Conference on Categorical Topology, (Prague, 1988), World Scientific
Publ., Singapore, 1989, 297–335.

[13] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, with
Applications to Topology, Algebra and Discrete Mathematics, Kluwer Academic
Publishers, 1995.

[14] E. Giuli and W. Tholen, Openness with respect to a closure operators, Applied
Categorical Structures 8 (2000), 487–502.

[15] H. Herlich, Topological functors, Gen. Topology Appl. 4 (1974), 125–142.

[16] H. Lord, Connectednesses and disconnectednesses, Annals Newyork Academy of
Sciences 767 (1995), 115–139.

[17] E. Lowen-Colebunders, Function Classes of Cauchy Continous Maps, Marcel
Dekker, Inc., New York, 1989.

[18] L. D. Nel, Initially structured categories and cartesian closedness, Canad. Journal
of Math. 27 (1975), 1361–1377.
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