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Abstract. This paper is a continuation of, as well as a companion to, [4],
in which we developed our continual research further on the equivalent assertions
to the Rimeann hypothesis (RH) in terms of the Farey points. In this paper we
shall give all the proofs of results stated in [4] in a more general setting, in the
case of rather intriguing functions including the tent function, the Takagi function
and general Weierstrass functions. Our results are concerned with the equivalent
conditions to the RH stated as the distribution of values at Farey points of these
functions.

1. Introduction and notation

This is an expanded version of the paper announced as Ref. [18] in
[4] and is a companion to [4], treating that side of the ‘equivalence prob-
lem’ which is more closely related to (discrete) dynamical systems. The
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‘equivalence problem’, of finding equivalent assertions to the Riemann hy-
pothesis, was extensively studied first by M. Mikolás [5], [6] and then by
us [2]–[4], [10]–[12]. In this paper we shall establish intriguing and some-
what unexpected equivalent assertions to the RH in terms of dynamical
systems generating function values at Farey series arguments.

We shall, however, confine ourselves only to one specific discrete dy-
namical system generated by the tent function

ϕ(u) =




2u if 0 ≤ u ≤ 1
2

2 − 2u if 1
2 ≤ u ≤ 1

(1.1)

and prove two results enunciated in [4].
We shall also prove a generalized version of our Theorem 3 [4] on

Weierstrass functions in which we now allow the power function to be mul-
tiplicative function, as well as a general theorem on functions of bounded
variation.

We recall the RH asserts that the (analytic continuation of) Riemann
zeta-function defined by

ζ(s) =
∞∑

n=1

1
ns

, �s = σ > 1 (1.2)

has no zeros in σ > 1
2 .

Among many known equivalent conditions to the RH, we shall take
up the following.

Let µ(n) denote the Möbius function defined by

µ(n) =




1 n = 1

(−1)k n = product of k distinct primes

0 n is divisible by a square of a prime

(1.3)

and let M(x) denote its summatory function

M(x) =
∑
n≤x

µ(n). (1.4)
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Then the RH is equivalent to the estimate

M(x) = O
(
x

1
2
+ε
)

(1.5)

for every ε > 0, through which we shall study the equivalence problem.
We shall always use ε in this context subsequently and shall not repeat to
write about ε.

Corresponding to a narrower zero-free region of the Riemann zeta-
function there is a weaker RH and a weaker estimate for M(x) which will
not be considered here.

We define the Farey series Fx = F[x] of order [x], [x] denoting the
integral part of x, to be the increasing sequence of irreducible fractions ρν

between 0 and 1 (0 exclusive) with denominators ≤ x. The total number
#Fx of elements of Fx is

#Fx = Φ(x) =
∑
n≤x

φ(n),

the summatory function of the Euler function φ(n).
For any even, integrable ‘core’ function f on [0, 1], we define the error

term

Ef (x) =
Φ(x)∑
ν=1

f(ρν) − Φ(x)
∫ 1

0
f(u)du, (1.6)

where by an even function we mean f(u) = f(1−u), which we may suppose
on symmetry grounds.

Further we define the Lipschitz space Λα (α > 0) of functions by

Λα =
{

f : [0, 1] → C

∣∣∣ |f(u) − f(v)| < M |u − v|α
for an absolute constant M

}
(1.7)

and the Mellin transform of Ef (x):

F (s) = sζ(s)
∫ ∞

1
Ef (x)x−s dx

x
. (1.8)

Thus f and F are connected through Ef (x) by (1.8).
In [11] the following principle has been established, which will also

play a central role in this paper.
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The Principle. (i) If f is of (any) Lipschitz class (with 0 < α ≤ 1),
then the RH implies

Ef (x) = O
(
x2− 3

2
α+ε
)

. (1.9)

(ii) Conversely, if, for an integrable function f , we have

Ef (x) = O
(
x

1
2
+ε
)

and F (s) (defined by (1.8)) does not vanish for σ > 1
2 , then ζ(s) does not

vanish either, which is equivalent to the RH.

For a description of the relation between the RH and Farey series, see
e.g. [9].

2. The dynamical system of sophisticated tent functions

2.1. The dynamical system. Let fn(u) denote the directly connected
n tents with length 1

n and height 1
2n .

For n = 2k,

fn(u) = f2k(u) =
1

2k+1
ϕk+1(u), (2.1)

is the (k+1)-th iterate of the tent function defined by (1.1) divided by 2n,
where we mean by iterates the successive composition of ϕ:

ϕk(u) = ϕ(ϕk−1(u)), ϕ1(u) = ϕ(u), ϕ0(u) = 1.

Although we are mainly concerned with the special case n = 2k or
n = p (an odd prime), we shall state somewhat general results in antici-
pation of possible further developments.

Lemma 2.1. For the directly connected n tents fn(u) defined above,

the associated Mellin transform F (s) defined by (1.8) is given by

F (s) =
1

12n
Fn(s), (2.2)

where

Fn(s) =
∞∑

m=1

cn(m)
ms+1

, (2.3)
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and

cn(m) = (m, 2n)2 − (2m, 2n)2 (2.4)

with (a, b) denoting the g.c.d. of a and b.

This Fn(s) can be written down as follows.

Fn(s) = −3
(

1 − 1
2s+1

)
ζ(s + 1)Cn(s), (2.5)

where

Cn(s) =
∑
d|n

d1−s
∑
δ|d

δ: odd

µ(δ)
δ2

(2.6)

(with d|n meaning d runs through all positive divisors of n).

Proof. We shall prove (2.5) only, others being immediate.
Write (m,n) = d and m = dm′. Then

cn(m) =
((

m′, 2
)2 − 4

)
d2

and d runs through all the positive divisors of n and the condition (m,n) =
d transfers to

(
m′, n

d

)
= 1, which we may substitute by∑

δ|(m′, n
d )

µ(δ).

Hence we have

Fn(s) =
∑
d|n

∞∑
m=1

1
(dm)s+1

(
(m, 2)2 − 4

)
d2

∑
δ|(m, n

d )
µ(δ)

=
∑
d|n

∑
δ|n

d

d1−sµ(δ)
∞∑

m=1

(mδ, 2)2 − 4
(mδ)s+1

on writing mδ for m.
Then writing d′ for dδ, we see that the condition d|n, δ|nd becomes

d′|n, δ|d′, whence

Fn(s) =
∑
d′|n

∑
δ|d′

(
d′

δ

)1−s µ(δ)
δs+1

∞∑
m=1

(mδ, 2)2 − 4
ms+1
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= −3
(

1 − 1
2s+1

)
ζ(s + 1)Cn(s)

since the innermost sum of the last but one equality is

−3
(

1 − 1
2s+1

)
ζ(s + 1)

for δ odd and is 0 otherwise, and the proof is complete. �

Lemma 2.2. (i) We have

C2k(s) =
1 − 2(1−s)(1+k)

1 − 21−s

which does not vanish for 1
2 < σ < 1.

(ii) For an odd prime power pk,

Cpk(s) = 1 +
(

1 − 1
p2

)
p1−s − p(1−s)(1+k)

1 − p1−s
.

In particular, for an odd prime p Cp(s) = 1 + (p2 − 1)p−1−s.

Proof. For n = pk (k ≥ 1, p an odd prime),

Cpk(s) = 1 +
(

1 − 1
p2

) k∑
m=1

p(1−s)m,

whence summing the geometric sequence gives the assertion.
Similarly, for n = 2k,

C2k(s) =
k∑

m=0

2m(1−s)

is the sum of a geometric progression, giving the result.
The non-vanishingness assertion in (i) is clear, and the proof is com-

plete. �

We are now in a position to state and prove the main result of this
section, i.e. those two assertions announced on p. 433 of [4].
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Recall the ‘sophisticated’ iterates defined by (2.1):

f2k(u) =
1

2k+1
ϕk+1(u)

and its sum

TN (u) =
N−1∑
k=0

f2k(u) =
N∑

k=1

ϕk(u)
2k

. (2.7)

Theorem 2.1. With the notation above, each of the following asser-

tions in equivalent to the RH.

(i)
Φ(x)∑
ν=1

f2k(ρν) =
1
2k

Φ(x) + O
(
x

1
2
+ε
)

,

(ii)
Φ(x)∑
ν=1

TN (ρν) =
1
2
(1 − 2−N )Φ(x) + O

(
x

1
2
+ε
)

,

and

(iii)
Φ(x)∑
ν=1

fp(ρν) =
1
2p

Φ(x) + O
(
x

1
2
+ε
)

.

Proof. First we note that for fn, the main term is 1
2nΦ(x), while for

TN , it is
∫ 1
0 TN (u)du, which is 1

2(1 − 2−N ), and that fn and TN belong
to Λ1.

Hence by Principle (i), the error terms defined by (1.9) are all O
(
x

1
2
+ε
)

for fn and TN .
Conversely, using Lemma 2.2 with principle (ii) implies assertion (i).
For (ii) we note that the Mellin transform partner of TN is computed

to be

FTN
(s) = −1

2

(
1 − 1

2s+1

)
ζ(s + 1)G(s), (2.8)

where

G(s) = GTN
(s) =

2s

2s − 2

(
1 − 2−N − 1 − 2−sN

2s − 1

)
. (2.9)

To show that FTN
(s) �= 0 for 1

2 < σ < 1, it is enough to show non-
vanishingness of G(s) in 1

2 < σ < 1. For this we transform G(s) as follows.
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First,

G(s) =
2s

2s − 2
1

2s − 1
(
2s − 2 − 2−N (2s − 2) + 2−sN − 2−N

)
.

Then factor out 2s − 2 using

2−sN − 2−N = −(2s − 2)2−N−1
N∑

k=1

2(1−s)k

to obtain
G(s) =

1
1 − 2−s

G1(s), (2.10)

where

G1(s) = 1 − 2−N − 2−N−1
N∑

k=1

2(1−s)k. (2.11)

Now

∣∣G1(s)
∣∣ ≥ 1 − 2−N − 2−N−1

N∑
k=1

2(1−σ)k > 1 − 2−N − 2−N−1
N∑

k=1

2
k
2

= 1 + 2−
1
2
−N − 2−

N
2
−1(2 +

√
2),

which is seen to be positive.
This completes the proof. �

2.2. Takagi’s function. Regarding Takagi’s function

T (u) =
∞∑

m=0

∞∑
n=0

1
2m(2n + 1)2

cos 2π2m(2n + 1)u,

save for a few lines on p. 433 of [4], we have given only Corollary to
Theorem 5 [4], and it might not be without interest to give an independent
treatment of it.

Proposition 2.1. (i) Let

α =
∞∑

n=1

αn

2n
, αn = 0 or 1 (2.12)
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be the dyadic representation of α, 0 ≤ α ≤ 1. Then for Takagi’s function

T (u) = limN→∞ TN (u), with TN (u) defined by (2.7), we have

T (α) =
∞∑

m=2

1
2m

m−1∑
k=1

(αm − αk)2. (2.13)

(ii) We have T /∈ Λ1 but T ∈ Λ1−ε for every ε > 0, and also the Mellin

transform FT (s) of T (u) is given by

FT (s) = −1
4

1 − 1
2s+1

1 − 1
2s

ζ(s + 1), (2.14)

which has no zero in 1
2 < σ < 1.

(iii) (Corollary to Theorem 5 [4]). The RH is equivalent to

Φ(x)∑
ν=1

T (ρν) =
1
2
Φ(x) + O(x

1
2
+ε). (2.15)

Proof. (i) To prove (2.13) we first note that

ϕ(α) =
∞∑

n=1

(αn+1 − α1)2

2n
(2.16)

Indeed, from the definition (1.1), if α < 1
2 , then α1 = 0 and ϕ(α) = 2α =∑∞

n=1
αn+1

2n , which can be thought of as (2.16), while if 1
2 ≤ α ≤ 1, then

α1 = 1 and

ϕ(α) = 2 − 2α =
∞∑

n=1

1 − αn+1

2n
,

which can again be viewed as (2.16).
From (2.16) we proceed to prove

ϕk(α) =
∞∑

n=1

1
2n

(αn+k − αk)2. (2.17)

We prove this by induction on k.
The case k = 1 of (2.17) is (2.16).
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Suppose (2.17) true for k. Then viewing it as the expression (2.12) for
ϕk(α), we apply (2.16) be obtain

ϕk+1(α) =
∞∑

n=1

1
2n

(
(αn+1+k − αk)2 − (α1+k − αk)2

)2

=
∞∑

n=1

1
2n

(αn+k+1 − αk+1)2(1 − 2αk)2,

which is seen to be the right-hand side of (2.17) with k + 1. Now (2.17)
and (2.7) imply (2.13).

(ii) T /∈ Λ1 being clear, we prove that T ∈ Λτ , 0 ≤ τ < 1.
Proof is similar to that of Theorem 3 [4].
For each n ∈ N, and α, β ∈ [0, 1], suppose 2−n ≤ |α−β| ≤ 21−n. Then

1
2k

∣∣∣ϕk(β) − ϕk(α)
∣∣∣ ≤




|β − α| if k ≤ n,

1
2k−n + 1

|β − α| if k ≥ n + 1,

whence we deduce that

1
2k

∣∣∣ϕk(β) − ϕk(α)
∣∣∣ ≤




2(1−n)(1−τ)|β − α|τ k ≤ n,

2(1−n)(1−τ)

2k−n + 1
|β − α|τ k ≥ n + 1.

(2.18)

Adding (2.18) over all k, we obtain

|T (β) − T (α)| ≤
(

n +
∞∑

k=1

1
2k + 1

)
2(1−n)(1−τ)|β − α|τ

< (n + 1)2(1−τ)(1−n)|β − α|τ . (2.19)

Now we notice that the function fτ (u) = (u + 1)2(τ−1)(u−1) (u ≥ 1)
has its maximum at u = 1 for

0 < τ ≤ 1 − 1
2 log 2

= 0.2786524 . . . ,

and at
u =

1
(1 − τ) log 2

− 1 for 1 − 1
2 log 2 ≤ τ < 1.
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Hence putting

M = max
{

2,
41−τ

(1 − τ)e log 2

}
,

we deduce that
|T (β) − T (α)| ≤ M |β − α|τ . (2.20)

We write τ = 1 − ε to conclude that T ∈ Λ1−ε for every ε > 0 with
absolute constant

M = Mε = max
{

2,
4ε

εe log 2

}
in (1.7).

Secondly, (2.14) follows from (2.8) by letting N → ∞.
(iii) The assertion is a consequence of (i) and (ii), and Principle (i),

(ii), thereby completing the proof. �

3. General Weierstrass function

Proposition 3.1. Suppose f(u) is given by the gap Fourier series (p

denotes a fixed prime, m a fixed positive integer)

f(u) =
∞∑

n=1

c(n) cos 2πpmnu. (3.1)

(i) If c(n) is multiplicative, then the Mellin transform F (s) defined by

(1.8) has the representation

F (s) =
1

1 − p1−s

∞∑
n=1

c(n)(1 − p1−spm(1−s)n). (3.2)

(ii) If either
∑∞

n=1 |c(n)|pτn < ∞ for 0 < τ ≤ 1 or
∑

n≤x |c(n)|pn =
O(x) holds, then

RH ⇐⇒ Ef (x) = O
(
x

1
2
+ε
)

.

Proof. (i) We apply Theorem 2 [4] with f(u) =
∑∞

n=1 c̃(n) cos 2πnu,

F (s) =
∏
p

Gp(1) − p1−sGp(s)
1 − p1−s

, (3.3)
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and

G(s) =
∞∑

n=1

c̃(n)
ns−1

=
∏
p

Gp(s) with Gp(s) =
∞∑

k=0

c̃(pk)
pk(s−1)

.

Then

c̃(l) =

{
0, l �= pmn

c(n), l = pmn.

Hence as in the proof of Theorem 3 [4], p. 446, we have

Gp(s) = G(s) =
∞∑

n=1

c(n)
pm(s−1)n

. (3.4)

Substituting (3.3) in (3.4) proves (3.2).
(ii) Proof goes on similar lines as those of proof of Theorem 3 [4], i.e.

we classify the difference |u − v| according to powers of p:

p−m−1 ≤ |u − v| < p−m, m = 0, 1, 2, . . . (3.5)

and use the trivial inequality

cos 2πpnu − cos 2πpnv = O (min {pn|u − v|, 1}) .

In both cases we proceed in an analogous way. First,
∣∣f(u) − f(v)

∣∣ ≤∑ |c(n)|min {pn|u − v|, 1} =
∑
n≤m

+
∑

n≥m+1

, (3.6)

say.
Suppose

∑∞
n=1 |c(n)|pτn < ∞. Then in the first sum we adopt the

inequalities pn|u − v| = pτnp(1−τ)n|u − v| ≤ pτnp(1−τ)m|u − v|, and in the
second sum we use 1 ≤ pτ(n−(m+1)) = p−τ(m+1)pτn.
Using the convergence we conclude that

|f(u) − f(v)| = O(|u − v|p(1−τ)m) + O
(
p−τ(m+1)

)
.

Comparing the right-hand side with (3.5) yields |f(u)−f(v)| = O(|u−v|τ ),
or f ∈ Λτ .
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Now suppose we have∑
n≤x

|c(n)|pn = O(eδx), δ > 0 arbitrarily small. (3.7)

Then the first sum on the right of (3.6) can be estimated as O(|u − v|m),
which is O(|u − v|1−ε) in view of (3.5).

In the second sum we write

pτ(n−(m+1)) = p−(1−ε)(m+1)p(1−ε)n. �

4. Functions of bounded variation

In this section we state some results on the error term for function f

of bounded variation

Ef (x) =
Φ(x)∑
ν=1

f(ρν) − Φ(x)
∫ 1

0
f(u) du

defined by (1.6), based on the estimates for L2-norm of the error function
E(ξ;x) defined by

E(ξ;x) =
∑
ρν≤ξ

1 − ξΦ(x), (4.1)

where 0 < ξ ≤ 1 (cf. e.g. [2]).

Theorem 4.1. We consider a function of bounded variation whose

values at its discontinuities x are modified by

f(x) =
1
2

(f(x + δ) + f(x − δ))

(i) If f is of bounded variation, then

Ef (x) = O(x). (4.2)

(ii) Suppose f is absolutely continuous and that f ′ ∈Lp[0, 1], 1< p≤ 2.
Then

Ef (x) = O (xδ(x)) , (4.3)

where

δ(x) = e−c(log x)0.6(log log x)−0.2
, (4.4)

c being an absolute constant > 0.



14 R. Balasubramanian, S. Kanemitsu and M. Yoshimoto

For the proof we need some lemmas.

Lemma 4.1. Suppose f is of bounded variation, then

Ef (x) = −
∫ 1

0
E(u;x) df(u). (4.5)

In particular, if f is absolutely continuous then

Ef (x) = −
∫ 1

0
E(u;x)f ′(u) du. (4.6)

Lemma 4.2 (Niederreiter [7]). We have

max
0≤ξ≤1

|E(ξ;x)| = O(x). (4.7)

Lemma 4.3. We have

‖E(•;x)‖2 :=
(∫ 1

0
|E(u;x)|2 du

)1
2

=




O (xδ(x)) unconditionally,

O
(
x

1
2
+ε
)

on the RH.
(4.8)

Proof. We recall the relation (cf. [1], p. 938, l. 3)

∫ 1

0
E(u;x)2 du = Φ(x)

Φ(x)∑
ν=1

δ2
ν , (4.9)

where
δν = ρν − ν

Φ(x)
, 1 ≤ ν ≤ Φ(x). (4.10)

The sum
∑Φ(x)

ν=1 δ2
ν in (4.9) was first considered by J. Franel and then

by E. Landau, M. Mikolás et al. and it is well known that

Φ(x)∑
ν=1

δ2
ν =

{
O (δ(x)) unconditionally

O
(
x−1+ε

)
on the RH.

(4.11)

This gives (4.8) immediately. �

Proof of Theorem 4.1. (i) From Lemma 4.1 and a trivial estimate
we have successively

|Ef (x)| ≤
∫ 1

0
|E(u;x)||df | ≤ max

0≤u≤1
|E(u;x)|

∫ 1

0
|df |,
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whence follows (i) on recoursing to Lemma 4.2.
(ii) Using Hölder’s inequality, we have from Lemma 4.1 (1/p+1/q = 1)

|Ef (x)| ≤
(∫ 1

0
|E(u;x)|q du

)1/q (∫ 1

0
|f ′(u)|p du

)1/p

= ‖f ′‖p

(∫ 1

0
|E(u;x)|2 · |E(u;x)|q−2du

)1/q

.

Now estimating |E(u;x)|q−2 trivially by xq−2, we arrive at

|Ef (x)| � x
q−2

q ‖E(•;x)‖
2
q

2 . (4.12)

Using Lemma 4.3 in (4.12), we conclude the assertion in (ii). �

Remark. It is interesting to consider a conditional estimate of Ef (x)
on the RH, corresponding to (4.3), which we will do elsewhere.

Acknowledgments. The authors are very thankful to the referee
for his/her very careful checking of the manuscript, thanks to which the
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