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On the quadratic functional equation on groups

By PETER DE PLACE FRIIS (Jackson) and HENRIK STETKÆR (Aarhus)

Abstract. We study the solutions f : G → H of the quadratic functional
equation on G, where G and H are groups, H abelian. We show that any solution
f is a function on the quotient group [G, [G, G]]. By help of this we find sufficient
conditions on G for all solutions to satisfy Kannappan’s condition. We use this to
derive explicit formulas for the solutions on various groups like, e.g., the (ax+ b)-
group and GL(n,�).

1. Introduction

A norm ‖·‖ on a vector space V stems from an inner product (·, ·) on V ,
i.e. ‖x‖2 = (x, x) for all x ∈ V , if and only if it satisfies the parallelogram
identity

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2, x, y ∈ V. (1.1)

This is classical knowledge, going back to the theorem of Apollonius in
Euclidean geometry: The sum of the squares of the lengths of the two
diagonals of a parallelogram is equal to the sum of the squares of the lengths
of the four sides. A special case of Apollonius’ theorem is Pythagoras’
theorem that asserts the same for rectangles. Jordan and von Neumann

[12] proved the result for vector spaces.
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Generalizing the parallelogram identity from a vector space V to a
group G we are led to the quadratic functional equation

f(xy) + f(xy−1) = 2f(x) + 2f(y), x, y ∈ G, (1.2)

where f : G → H is to be determined. In the present paper we allow G

to be any group and the range space H of f to be any abelian group. The
functional equation (1.2) also turns up in discussions of other functional
equations (See for example [2, Lemma 2] and [20, Corollary III.8].)

A generalization of (1.1), similar to (1.2), is

f(xy) + f(y−1x) = 2f(x) + 2f(y), x, y ∈ G. (1.3)

However the two functional equations (1.2) and (1.3) have the same solu-
tions because any solution f of one of them satisfies that f(xy) = f(yx)
for all x, y ∈ G. This is because the right hand side is symmetric in x

and y (See Section 9 for a general result.) So (1.3) is not really a new
generalization.

In [13] Kannappan listed a number of functional equations that are
equivalent to the quadratic functional equation if G is abelian or just if f

satisfies Kannapan’s condition f(xyz) = f(xzy), x, y, z ∈ G. Kannappan’s
condition on f is equivalent to f being a function on the abelian group
G/[G,G].

To describe the existing results about the quadratic functional equa-
tion on groups in a short way we introduce the following terminology:

Definition 1.1. Let G be a group and H be an abelian group. We
will say that a map f : G → H is a quadratic function if there exists a
symmetric bimorphism Q : G × G → H such that f(x) = Q(x, x) for all
x ∈ G.

We choose the word function to avoid confusion with [15], [25] and [13]
in which a quadratic form or a quadratic functional by definition is any
solution of the quadratic functional equation.

There may be other solutions than the quadratic functions even for
H = �. See the remarks prior to Corollary 6.7 for an example.

The basic result for abelian groups is Theorem 1.2 below. It is due
to Aczél [1]. In [13, Result 1] it is mentioned that the assumption of G

being abelian can be replaced by Kannappan’s condition.



The quadratic equation 67

Theorem 1.2 (Aczél 1965). Let G be an abelian group and let H

be an abelian group in which every equation of the form 2x = h ∈ H has

one and only one solution x ∈ H. Then any solution f : G → H of the

quadratic functional equation on G is a quadratic function.

Motivated by the original situation (1.1) Kannappan studied in [13]
the equation (1.2) when G is the additive group of a linear space, to find
out when solutions arise from bilinear functionals. So there is not only the
group structure to take into account, but also the multiplication by scalars.
It might here be mentioned that Kurepa [15, Theorem 5], also inspired by
the original equation (1.1), studied when the square f(x) = d(x, e)2 of a
right-invariant pseudometric d(·, ·) on a group G (instead of the square of a
norm on a vector space) solves (1.2). He found in particular that such an f

is a quadratic function. For literature about the vector space situation we
refer to [3], [13] and the recent monograph [7] and their references, because
we shall here discuss the pure group case, where the group may even be
non-abelian.

The quadratic functional equation was generalized by Chung, Eb-

anks, Ng and Sahoo [5]. Their paper [5] derives formulas for the complex-
valued solutions of the generalization, assuming Kannappan’s condition.
Our paper does not impose Kannappan’s condition in the general set-up,
and we do not restrict ourselves to complex-valued solutions, but on the
other hand we study exclusively the quadratic functional equation (1.2)
and not any generalizations of it.

For any function f : G → H, where G is a group and H is an abelian
group, we introduce the Cauchy-difference Cf of f by

Cf(x, y) = f(xy) − f(x) − f(y), x, y ∈ G. (1.4)

The key to the studies on a non-abelian group G is the following observa-
tion: If f : G → H is a solution of the quadratic equation (1.2), then its
Cauchy-difference Cf satisfies Jensen’s functional equation in each of its
variables when the other variable is fixed. That is why Hosszú [11] and
Kurepa [14], [15] found relations between solutions of the quadratic func-
tional equation and their Cauchy-differences. In [15, Theorem 1] Kurepa

shows that any solution of the quadratic functional equation is a quadratic
function if G is generated by 2 elements and H has no elements of order 2.
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Corovei considered in [6, Lemma 4] the quadratic functional equation
when G was a P3-group and H a quadratically closed field of characteristic
different from 2 and 3. He found that the quadratic functions are the only
solutions.

Using Ng’s works [16], [17], [18] on Jensen’s functional equation Di-

Lian Yang [25] derived a number of basic formulas for the solutions of the
quadratic functional equation and applied them to solve the equation on
free groups and on the general linear group GLn(�) over the integers. Like
Ng, but in contrast to the other works mentioned above, she imposed no
assumptions on the range group H but that it should be an abelian group.
Her formulas can be used to derive results by Hosszú [11] and Kurepa

[14], [15].
The purpose of the present paper is to continue the investigations

of the quadratic functional equation on groups that are not necessarily
abelian. We let the range group H be any abelian group, even though
many of our statements would simplify, if we assumed, e.g., that H had
no elements of order 2.

To formulate our results we introduce the following notation and ter-
minology: If x, y ∈ G we let [x, y] = xyx−1y−1. And if A and B are
subsets of G we let [A,B] denote the subgroup of G generated by the ele-
ments [a, b], where a ∈ A and b ∈ B. Of particular interest are [G,G] and
[G, [G,G]] which are normal subgroups of G.

Let G0 be a subgroup of G. A function f : G→H is said to be a
function on G/G0 if f(xx0) = f(x) for all x ∈ G and x0 ∈ G0. In that case
we will not distinguish between f : G → H and the function F : G/G0 → H

defined on the coset space G/G0 by F (xG0) = f(x), x ∈ G.
Building upon certain of the formulas derived in [25] we get the fol-

lowing results:

(a) We refine Aczél’s basic result for abelian groups (Theorem 1.2) by al-
lowing any abelian group as range group (Proposition 5.1 and Corol-
lary 5.2).

b) We generalize Corovei’s result [6, Lemma 4] on P3-groups, i.e. groups
in which each commutator has order ≤ 2: It suffices that each com-
mutator has finite order (see the remark after Proposition 5.3 for the
precise statement).
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c) Kurepa’s result for groups with 2 generators is extended: It suffices for
Kannappan’s condition to hold that the quotient group G/(Z(G)[G,G])
is generated by 2 elements, and Kurepa’s assumption about H having
no elements of order 2 is removed (Corollary 6.7).

d) We prove that any solution of the quadratic functional equation on
a group G is a function on the quotient group G/[G, [G,G]] (Theo-
rem 3.2). This fact is mentioned without proof in [25, Remark 4.4].

e) We show that a solution of the quadratic equation on a product of
groups satisfies Kannappan’s condition if and only if its restriction to
each of the subgroups satisfies Kannappan’s condition (Corollary 6.3).

f) We give sufficient conditions on the group G to ensure that all solutions
of the quadratic equation on it are quadratic functions. One such
condition is that [G, [G,G]] = [G,G], which is satisfied for certain non-
abelian groups like GL(n,�), n ≥ 2. (See Theorem 5.2 for details.)

g) We solve the quadratic functional equation on selected groups (mainly
semidirect products), that are of interest in other connections. Among
the examples are the (ax+b)-group, the Heisenberg group and GL(n,�),
n ≥ 2, where we find simple explicit formulas for the continuous solu-
tions of the quadratic functional equation (Section 8).

Throughout the present paper (except for Section 9) we let G denote
a group with neutral element e, and we let H denote an abelian group.

2. Formulas and preliminary results

This section contains results that will be needed later. We mention in
particular the indispensable Theorem 2.6.

Definition 2.1. We say that a map Φ : G × G × · · · × G → H

(n factors) is

(1) a multimorphism, if it is a homomorphism in any of its variables when
the remaining n − 1 variables are fixed. If n = 2 a multimorphism is
called a bimorphism.

(2) alternating, if Φ(xσ(1), . . . , xσ(n)) = sgn(σ)Φ(x1, . . . , xn) whenever σ is
a permutation of n elements and x1, . . . , xn ∈ G.
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We recall ([25, formula (3)]) that the map Bf : G × G × G → H

corresponding to any f : G → H is for x, y, z ∈ G defined by

Bf (x, y, z) = f(xyz) − f(xy) − f(xz) − f(yz) + f(x) + f(y) + f(z)

= Cf(xy, z) − Cf(x, z) − Cf(y, z). (2.1)

The second line shows that Bf is the 2nd Cauchy-difference of f .
We will often use the following easy result from [25] without explicit

mentioning. It allows us in many contexts to assume that f(e) = 0, which
is the standard normalization of f in the formulation of the results in [25].

Lemma 2.2. Let f : G → H be a solution of the quadratic func-

tional equation (1.2). Then 2f(e) = 0, and the decomposition f =
(f−f(e))+f(e) splits f into two solutions, such that the first one vanishes

at the neutral element e, while the second one is constant. Furthermore

2Bf−f(e) = 2Bf .

The following relations between solutions of (1.2) and Cauchy-differ-
ences are easy to derive from [25].

Lemma 2.3. If f : G → H is a solution of the quadratic functional

equation, then

(a) [f − f(e)](xn) = n2[f − f(e)](x) for all n ∈ � and x ∈ G.

(b) 2f(x) = C(f − f(e))(x, x) for all x ∈ G.

(c) f is invariant under inner automorphisms, i.e. f(xy) = f(yx) for all

x, y ∈ G.

(d) Cf is symmetric, i.e. Cf(x, y) = Cf(y, x) for all x, y ∈ G.

(e) Cf(·, y) is a solution of Jensen’s functional equation for each fixed

y ∈ G, and Cf(e, y) = f(e).

(f) If f is a quadratic function, say f(x) = Q(x, x), where Q : G×G → H

is a symmetric bimorphism, then 2Q = Cf .

Proof. (a) [25, formula (13)].

(b) If f(e) = 0, then (b) can be found as [25, formula (15)]. Using
that, we get for a general solution f that

2f(x) = 2(f(x) − f(e)) = C(f − f(e))(x, x) for all x ∈ G.



The quadratic equation 71

(c) follows from Proposition 9.1.

(d) follows from (c).

(e) is a simple computation (Details can be found in the proof of [25,
formula (8)]).

(f) The identity f(xy) = Q(xy, xy) = Q(x, x) + Q(y, y) + 2Q(x, y) =
f(x) + f(y) + 2Q(x, y) implies that 2Q(x, y) = f(xy) − f(x) − f(y) =
Cf(x, y). �

A frequently encountered condition on G is that it shall be 2-divisible,
i.e. that G = {x2 | x ∈ G}. A weaker condition is that G is generated
by its squares, i.e. that G = 〈G2〉, where 〈G2〉 denotes the subgroup of G

generated by the set of squares {x2 | x ∈ G}. Parnami and Vasudeva

have in [19] a still weaker condition, viz. that [G/〈G2〉] ≤ 2. To put
their condition into perspective we observe the following: Let G be a Lie
group, and let Go denote the connected component of G containing the
identity element. As is well known 〈G2〉 ⊇ Go [Let exp : g → G be the
exponential map. Then U = exp(g) is a neighborhood of {e} consisting of
squares. Hence 〈U〉 ⊆ 〈G2〉. But, U being a neighborhood of {e}, we have
〈U〉 ⊇ Go by [10, Theorem 7.4]]. If G is connected then G = 〈G2〉, and
if G has two components then [G/〈G2〉] ≤ [G/Go] = 2. So the condition
is automatically satisfied for any Lie group with at most two connected
components like GL(n,�). In this context we note the following technical
lemma that holds for any group G:

Lemma 2.4. Assume that [G/〈G2〉] ≤ 2. If f : G → H is a solution

of the quadratic functional equation on G, then Cf(x, y) ∈ f(e) + 2H for

all x, y ∈ G.

Proof. Possibly replacing f by f−f(e) we may assume that f(e) = 0
(note that C(f − c) = Cf + c).

We shall prove that Cf(u, ξ) ∈ 2H and Cf(ξ, u) ∈ 2H for any ξ ∈ 〈G2〉
and u ∈ G. By the symmetry of Cf (Lemma 2.3(d)) we need only prove
the second claim. Now Cf(·, u) is by Lemma 2.3(e) a solution of Jensen’s
functional equation on G such that Cf(e, u) = 0. By [16, formula (2.2)]
we have that

Cf(xynz, u) = nCf(xyz, u) − (n − 1)Cf(xz, u) for all x, y, z ∈ G.
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Using this formula with n = 2 we get by induction on k that
Cf(x2

1x
2
2 · · · x2

k, u) ∈ 2H.
We use below that any element ξ ∈ 〈G2〉 may be written in the form

ξ = x2
1x

2
2 · · · x2

n where x1, x2, . . . , xn ∈ G.
If [G/〈G2〉] = 1 then G = 〈G2〉, so Cf(ξ, u) ∈ 2H for all ξ ∈ 〈G2〉 and

u ∈ G.
We next write down the proof in the case of [G/〈G2〉] = 2, so we

assume that there exists an x0 ∈ G\ 〈G2〉 such that any element in G may
be written in the form xk

0ξ, where k ∈ {0, 1} and where ξ ∈ 〈G2〉.
It is left to prove that Cf(x0ξ, x0η) ∈ 2H for any ξ, η ∈ 〈G2〉. Now,

Cf(x0ξ, x0η) = f(x0ξ, x0η) − f(x0ξ) − f(x0η)

= f(x2
0(x

−1
0 ξx0)η)

− [Cf(x0, ξ) + f(x0) + f(ξ)] − [Cf(x0, η) + f(x0) + f(η)]

= f(x2
0(x

−1
0 ξx0)η)

− Cf(x0, ξ) − Cf(x0, η) − 2f(x0) − f(ξ) − f(η),

so modulo 2H we have that

Cf(x0ξ, x0η) = f(x2
0(x

−1
0 ξx0)η) − f(ξ) − f(η).

Noting that x−1
0 ξx0 ∈ 〈G2〉, because 〈G2〉 is normal, we see that it suffices

to prove that f(〈G2〉) ⊆ 2H. Any element in 〈G2〉 may be written in the
form x2

1x
2
2 · · · x2

n where x1, x2, . . . , xn ∈ G, so we will establish f(〈G2〉) ⊆
2H by induction on n = 1, 2, . . . . Since f(x2) = 4f(x) by Lemma 2.3(a)
(this is n = 1) we find with a = x2

1x
2
2 · · · x2

n, computing modulo 2H, that

f(ax2
n+1) = f(a) + f(x2

n+1) + Cf(a, x2
n+1)

= f(a) + 4f(xn+1) + 0 = f(a),

from which the induction step follows. �

Lemma 2.5. If f : G → H is a solution of the quadratic functional

equation, then

(a) Let Γ be a subgroup of G. If f is a function on G/Γ, then Cf is a

function on the coset space G/Γ × G/Γ.
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(b) Assume that [G/〈G2〉] ≤ 2, and that H has the property that 2h = 0
implies h = 0. Then there exists exactly one map A : G × G → H

such that Cf = 2A. The map A is symmetric, and A(·, u) is a solution

of Jensen’s functional equation on G such that A(e, u) = 0 for each

u ∈ G. Furthermore f(x) = A(x, x) for all x ∈ G.

(c) Assume that f is a function on G/Γ, where Γ is a subgroup of G.

Assume also that f is a quadratic function, say f(x) = Q(x, x), where

Q : G × G → H is a symmetric bimorphism. Assume finally that H

has the property that 2h = 0 implies h = 0. Then Q is a symmetric

function on G/Γ × G/Γ.

Proof. (a) Due to the symmetry of Cf (Lemma 2.3(d)) we only
need to verify that Cf(x, yγ) = Cf(x, y) for all x, y ∈ G and γ ∈ Γ. And
Cf(x, yγ) = f(xyγ) − f(x) − f(yγ) = f(xy) − f(x) − f(y) = Cf(x, y).

(b) The only problem is to show that Cf(x, y) ∈ 2H = {2h | h ∈ H}
for all x, y ∈ G, the unique divisibility by 2 taking care of the rest. But
this is done in Lemma 2.4.

(c) Immediate from (a) and Lemma 2.3(f). �

In Theorem 2.6 we list pertinent basic properties of any solution f :
G → H of the quadratic functional equation and the corresponding map
Bf : G × G × G → H. These properties are consequences of [25, Theo-
rem 2.1]. Of central interest for us is the formula [25, formula (17)]:

f(xuvy) = f(xvuy) + 2Bf (u, v, yx), x, y, u, v ∈ G, (2.2)

because it deals with interchange of elements and hence with commutators.
It is derived in [25] under the hypothesis that f(e) = 0, but it remains true
without this assumption.

Theorem 2.6. If f : G → H is a solution of the quadratic functional

equation, then

(a) f(x[y, z]) = f(x) + 2Bf (x, y, z) for all x, y, z ∈ G.

(b) 2Bf : G × G × G → H is a multimorphism.

(c) Bf : G × G × G → H is alternating.

(d) 2Bf (x, y, z) = 0 if any two of the elements x, y, z ∈ G commute.

(e) Bf (x, y, z) = f(e) if any two of the elements x, y, z ∈ G are equal.
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Proof. We may in (a) and (b) assume that f(e) = 0, since Bf−f(e) =
Bf + f(e), so that 2Bf−f(e) = 2Bf , because 2f(e) = 0 Lemma 2.2.

(b) The multimorphism property is proved in [25, formula (16)].
(e) is immediate from [25, formula (20)].

(a) Put y = u−1v−1 in (2.2) and use (b) and (e).

(c) By [25, formula (22)] we have that Bf−f(e)(x, y, z)+Bf−f(e)(x, z, y) = 0
for all x, y, z ∈ G. Substituting Bf−f(e)(x, y, z) = Bf (x, y, z) + f(e) we
get that Bf (x, y, z) + Bf (x, z, y) = 0. Similarly arguments show that
Bf (x, y, z) + Bf (z, y, x) = 0 and that Bf (x, y, z) + Bf (y, x, z) = 0.

(d) Assume first that y and z commute. Using the definition (2.1) of Bf and
(c) we find that that Bf (x, y, z) = Bf (x, z, y) = −Bf (x, y, z), proving (d)
in this case. Similar arguments work if other elements commute, because
Bf is alternating. �

3. Solutions are functions
on the quotient group G/[G, [G, G]]

Given any function f on G we introduced in [21] the normal subgroup

Z(f) = {u ∈ G | f(xuy) = f(xyu) for all x, y ∈ G}
of G. The notation Z(f) reflects the fact that if an element u ∈ Z(f) occurs
in an argument for f then it may be moved around as though residing in
the center Z(G) of G, i.e. f(xuyz) = f(xyuz) for all x, y, z ∈ G.

Lemma 3.1. If f : G → H is a solution of the quadratic functional

equation, then [G,G] ⊆ Z(f). Furthermore 2Bf (x, y, z) = 0, if one of the

elements x, y, z ∈ G belongs to Z(f).

Proof. Consider the formula (2.2) with y = e, i.e.

f(xuv) = f(xvu) + 2Bf (u, v, x) for all x, u, v ∈ G. (3.1)

Any u∈ [G,G] may be written in the form u =
∏n

i=1[ai, bi] where ai, bi ∈G.
We see that the last term of (3.1) vanishes, because 2Bf is a homomor-
phism in its first variable (Theorem 2.6(b)):
2Bf (u, v, x) =

∑n
i=1 2Bf ([ai, bi], v, x) = 0. It follows that u ∈ Z(f).
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If u ∈ Z(f), i.e. f(xuv) = f(xvu), then we get from (3.1) that
2Bf (u, v, x) = 0, so the statement is true in the first variable. It follows for
the two other variables, because Bf is alternating (Theorem 2.6(c)). �

Theorem 3.2. Any solution f : G → H of the quadratic func-

tional equation (1.2) is a function on the quotient group G/[G, [G,G]],
i.e. f(xv) = f(x) for all x ∈ G and v ∈ [G, [G,G]].

Proof. Any element v ∈ [G, [G,G]] is a product of factors of the
form [y, u] and [u, y], where y ∈ G and u ∈ [G,G]. Elements in [G,G]
behave according to Lemma 3.1 as in the center of G when occurring in
an argument of f , so moving u ∈ [G,G] one position to the right, a factor
of the form [y, u] = yuy−1u−1 may be replaced by yy−1uu−1 = e without
affecting the value of f . Similarly for the factors of the form [u, y], where
y ∈ G and u ∈ [G,G]. So each of the factors of v may be replaced by e. �

The result of Theorem 3.2 is mentioned without proof in [25, Re-
mark 4.4], and is also true for solutions of Jensen’s functional equation
[22, Theorem 2.2(c)] (It is derived in [22] for H = �, but the proof holds
for any abelian range group H).

4. Solutions are constant on the commutator subgroup

The following Proposition 4.1 can be found as [25, Corollary 2.3] under
the assumption that f(e) = 0. We believe that our proof is simpler.

Proposition 4.1. If f : G → H is a solution of the quadratic func-

tional equation on a group G, then f = f(e) on [G,G].

Proof. From Theorem 2.6(a) and the fact that 2Bf is a multimor-
phism we get by induction on n the formula

f(x[yn, zn][yn−1, zn−1] · · · [y1, z1]) = f(x) +
n∑

i=1

2Bf (x, yi, zi)

for x, yi, zi ∈ G, i = 1, 2, . . . , n.

The proposition is the special case of x = e, because Bf (e, yi, zi) = f(e)
by the defining identity (2.1), so 2Bf (e, yi, zi) = 2f(e) = 0. �
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If G is a connected semisimple Lie group like SL(n,�), SL(n,�),
Sp(n) etc, then [G,G] = G by [24, Corollary 3.18.10], so on such groups
each solution f of the quadratic functional equation is constant by Propo-
sition 4.1. However, certain groups are by their nature not connected,
but have several components. To take an example the pseudo-orthogonal
group O(p, q) has 4 connected components when p, q ≥ 1. The following
Corollary 4.2 addresses that situation.

Corollary 4.2. If f : G → � is a solution of the quadratic functional

equation on a semisimple Lie group G with only finitely many connected

components, then f = 0.

Proof. Let Go denote identity component of G. It is a normal sub-
group of G by [10, Theorem 7.1]. Then G/Go is a finite group, the or-
der, say n, of which is the number of connected components of G. Now
[Go, Go] = Go by [24, Corollary 3.18.10], so

G/[G,G] ∼= (G/[Go, Go])/([G,G]/[Go , Go]) = (G/Go)/([G,G]/Go),

so G/[G,G] is a finite group the order of which divides n. Hence xn ∈ [G,G]
for any x ∈ G. By Proposition 4.1 and Lemma 2.3(a) we get 0 = f(xn) =
n2f(x), so that f(x) = 0. �

5. Conditions for all solutions to be quadratic functions

As is easy to check any quadratic function is a solution of (1.2). We
shall in this section give sufficient conditions on G to ensure the converse,
i.e. that all solutions of the quadratic functional equation are quadratic
functions, at least for range groups in which no element has order 2.

Our first result refines Aczél’s classical result (Theorem 1.2) by allow-
ing any abelian group H as range group.

Proposition 5.1. Let f : G → H be a solution of the quadratic

functional equation satisfying Kannappan’s condition. Then

(a) 4f is a quadratic function. Indeed, 2C(f − f(e)) : G × G → H is

a symmetric biadditive map, and 2f(x) = C(f − f(e))(x, x) for all

x ∈ G.
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(b) If H has the property that 2h = 0 implies h = 0, then 2f is a quadratic

function.

(c) If the map h �→ 2h is a bijection of H onto H, then f is a quadratic

function.

(d) Let 〈G2〉 denote the subgroup of G generated by the squares {x2 | x ∈
G}. If [G/〈G2〉] ≤ 2, then 2f is a quadratic function.

(e) If H has the property that 2h = 0 implies h = 0 and if furthermore

|G/〈G2〉| ≤ 2, then f is a quadratic function.

Proof. (a) From Lemma 2.3(b) we recall the formula

2f(x) = C(f − f(e))(x, x) for all x ∈ G. (5.1)

C(f−f(e))(·, y) is a solution of Jensen’s functional equation (Lemma 2.3(e))
vanishing at e and satisfying Kannappan’s condition, so 2C(f−f(e))(·, y) is
a homomorphism [2, Proof of Lemma 1]. The Cauchy difference C(f−f(e))
of f − f(e) is symmetric by Lemma 2.3(d), so 2C(f − f(e)) : G × G → H

is a symmetric biadditive map. Multiplying (5.1) by 2 we get that 4f is a
quadratic function as desired.

(b) is immediate from (a).

(c) follows immediately from (b).

(d) Since f satisfies Kannappan’s condition we may, possibly replacing
G by G/[G,G], assume that G is abelian. Actually in this replacement we
use the fact that [G,G] ⊆ 〈G2〉, which follows from the formula [x, y] =
(xy)2y−2(yx−1y−1)2. Indeed,

G/〈G2〉 = (G/[G,G])/(〈G2〉/[G,G]).

By [19, Theorem 6] Cf(·, ·) is a homomorphism in each variable, when G

is abelian.

(e) According to Lemma 2.5(b) there exists a symmetric map A :
G × G → H such that f(x) = A(x, x) for all x ∈ G and Cf = 2A. By
assumption f satisfies Kannappan’s condition, so hence does Cf . Being
a solution of Jensen’s equation Cf is a homomorphism in each variable.
Hence so is 2A. The unique divisibility by 2 implies that A is a homomor-
phism in each variable. �
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The assumption [G, [G,G]] = [G,G] of the following Corollary 5.2 is
clearly satisfied for abelian groups, so the corollary contains the classical
result stated above in Theorem 1.2. In Section 8 we give examples of
important non-abelian groups, for which the assumption holds. Let us
here note that the condition holds on semisimple Lie groups (that a Lie
group is semisimple means by definition that its Lie algebra is semisimple)
with at most two connected components like SO(p, q) when 0 < p < p + q

(see [9, Lemma X.2.4]): Let Go be the connected component of the identity
for such a group G. It is a normal subgroup of G by [10, Theorem 7.1].
The possible other component must be of the form aGo for some a /∈ Go.
It follows that a2 ∈ Go. Since G has at most two connected components
we see by small calculations that [G,G] ⊆ Go. And since Go is a connected
semisimple Lie group, we have [Go, Go] = Go (see [24, Corollary 3.18.10]).
Now

[G, [G,G]] ⊇ [Go, [Go, Go]] = [Go, Go] = Go ⊇ [G,G]

implies that [G, [G,G]] = [G,G]. See also Corollary 4.2.

Corollary 5.2. Let f : G → H be a solution of the quadratic func-

tional equation on G. Let G satisfy that [G, [G,G]] = [G,G]. Then f

satisfies Kannappan’s condition. Furthermore

(a) 4f is a quadratic function. Indeed, 2C(f − f(e)) : G × G → H is

a symmetric biadditive map, and 2f(x) = C(f − f(e))(x, x) for all

x ∈ G.

(b) If H has the property that 2h = 0 implies h = 0, then 2f is a quadratic

function.

(c) If the map h �→ 2h is a bijection of H onto H, then f is a quadratic

function.

(d) If [G/〈G2〉] ≤ 2, then 2f is a quadratic function.

(e) If H has the property that 2h = 0 implies h = 0 and if furthermore

[G/〈G2〉] ≤ 2, then f is a quadratic function.

Proof. The condition [G, [G,G]] = [G,G] is equivalent to the quo-
tient group G/[G, [G,G]] being abelian. f is a function on G/[G, [G,G]]
according to Theorem 3.2, so by our assumption f is a function on the
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abelian group G/[G, [G,G]]. In particular f satisfies Kannappan’s condi-
tion, so that we may apply Proposition 5.1. �

Proposition 5.3. If

(a) each commutator in G has finite order, or

(b) [G,G]/[G, [G,G]] is a torsion group, or

(c) G is a semi-direct product of a topological abelian group (the nor-

mal part) and a semi-simple Lie group with at most finitely many

connected components,

then any solution f : G → � of the quadratic equation (1.2) on G is a

quadratic function.

Proof. (a): Using Lemma 2.2 we get that f(e) = 0, because H = �.
From Lemma 2.3 we get that f(x) = 1

2Cf(x, x). The Cauchy-difference Cf

of f is symmetric by Lemma 2.3, so it suffices to prove that Cf(·, y) = 0 is
additive for each y ∈ G. Now Cf(·, y) is a solution of Jensen’s functional
equation (Lemma 2.3) vanishing at e ∈ G. By [22, Proposition 6.3(c)] we
get the additivity.

(b) resp. (c): The same as for (a) except that the last reference shall
be to [22, Proposition 3.3(c)], resp. [22, Proposition 6.5(b)]. �

Proposition 5.3(a) covers for complex-valued solutions the case of a
P3-group that was studied by Corovei [6, Lemma 4].

6. Kannappan’s condition and the 2nd Cauchy difference

There are close relations between Kannappan’s condition and the 2nd

Cauchy difference Bf for a solution f of the quadratic functional equation.
The present section describes and exploits some of these relations. The
key observation is the following lemma.

Lemma 6.1. Let f : G → H be a solution of the quadratic functional

equation on a group G. Then f satisfies Kannapan’s condition if and only

if 2Bf = 0.

Proof. Immediate from the formula (2.2) with y = e. �



80 Peter de Place Friis and Henrik Stetkær

Earlier papers (see [25, Remark 3.3] for references) stated Lemma 6.1
in an equivalent way, namely that 2Cf should be a bimorphism. The
formulation of Lemma 6.1 has certain advantages as for example demon-
strated by our proof of Corollary 6.2.

Corollary 6.2. Let f : G → H be a solution of the quadratic func-

tional equation on G. Let Gi, i ∈ I be subgroups of G. Assume that

(a) G is generated by the Gi, i ∈ I.

(b) Gi and Gj commute when i �= j.

(c) For each i ∈ I the restriction of f to Gi satisfies Kannappan’s condi-

tion.

Then f satisfies Kannappan’s condition on G.

Proof. Any 3 elements x, y, z ∈ G can be written in the form x =
xi1xi2 · · · xin , y = yi1yi2 · · · yin , z = zi1zi2 · · · zin , where xil , yil , zil ∈ Gil for
l = 1, 2, . . . , n. Now

2Bf (x, y, z) = 2Bf (xi1xi2 · · · xin , yi1yi2 · · · yin , zi1zi2 · · · zin).

Due to the multi-additivity of 2Bf (Theorem 2.6(b)) we get that 2Bf (x, y, z)
is a sum of terms of the form 2Bf (xik , yil , zim). Factors from subgroups
with different index commute by assumption. So if two of the indices in
2Bf (xik , yil , zim) are different then this term is 0 by Theorem 2.6(d). Left
are the terms of the form 2Bf (xik , yik , zik). But they are 0 by Lemma 6.1.
Hence 2Bf (x, y, z) = 0 for all x, y, z ∈ G, and the result is a consequence
of Lemma 6.1. �

The Examples 8.4 and 8.5 show that Corollary 6.2 can be applied to
the Heisenberg groups H2n+1(�) and H2n+1(�). The Gi will be copies of
the non-abelian groups H3(�) and H3(�) respectively.

If {Gi | i ∈ I} is a non-void family of groups we let
∏

i∈I Gi denote the
direct product of the groups Gi. We let

∏∗
i∈I Gi denote the weak direct

product of the groups Gi, i.e. the subgroup of
∏

i∈I Gi of all (xi)i∈I such
that xi = e for all but a finite set of indices (this set varying with (xi)i∈I).
If the index set I is finite, say I = {1, 2, . . . , n}, then

∏
i∈I Gi =

∏∗
i∈I Gi =

G1 × G2 × · · · × Gn.
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Corollary 6.3. Let G =
∏∗

i∈I Gi be the weak direct product of the

subgroups Gi. Let f : G → H be a solution of the quadratic functional

equation on G. Then f satisfies Kannappan’s condition on G if and only if

the restriction of f to each of the subgroups Gi, i ∈ I, satisfies Kannapan’s

condition on that subgroup.

Proof. Immediate from Corollary 6.2. �

Corollary 6.4. Let G =
∏

i∈I Gi be the direct product of the sub-

groups Gi. We assume that each Gi is a topological group and that G has

the product topology. We let H be a Hausdorff topological group.

Let finally f : G → H be a continuous solution of the quadratic

functional equation on G.

Then f satisfies Kannappan’s condition on G if and only if the restric-

tion of f to each of the subgroups Gi, i ∈ I, satisfies Kannapan’s condition

on that subgroup.

Proof. If f satisfies Kannappan’s condition on G, then it clearly
does so on each subgroup of G. Let us conversely assume that f |Gi sat-
isfies Kannappan’s condition for each i ∈ I. According to Corollary 6.3 f

satisfies Kannappan’s condition on the subgroup
∏∗

i∈I Gi of G. Combining
that this subgroup is dense in G (by [10, Theorem 6.2]) with the continuity
of f we get that f satisfies Kannappan’s condition on all of G. �

Lemma 6.5. If f : G → H is a solution of the quadratic functional

equation on a group G, then 2Bf : G × G × G → H is actually a function

on G/Z(f) × G/Z(f) × G/Z(f), i.e. 2Bf (xz1, yz2, zz3) = 2Bf (x, y, z) for

all x, y, z ∈ G and all z1, z2, z3 ∈ Z(f).

Proof. By Lemma 3.1 we see that 2Bf (x, y, z) = 0 for all x, y, z ∈ G

such that z ∈ Z(f). 2Bf being a homomorphism in its third variable we
find that

2Bf (x, y, zz3) = 2Bf (x, y, z) + 2Bf (x, y, z3)

= 2Bf (x, y, z) + 0 = 2Bf (x, y, z).

The result for the two other variables follows from the fact that Bf is
alternating (Theorem 2.6(c)). �
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By Lemma 3.1 we have that [G,G] ⊆ Z(f) for any solution f : G → H

of the quadratic functional equation on the group G. Since also Z(G) ⊆
Z(f) we get

Corollary 6.6. If f : G → H is a solution of the quadratic func-

tional equation on a group G, then 2Bf is an alternating multimorphism

of G/(Z(G)[G,G]) × G/(Z(G)[G,G]) × G/(Z(G)[G,G]) into H.

Corollary 6.7 below gives a transparent proof that Kannappan’s con-
dition automatically holds if the group G is generated by 2 elements. It
generalizes [15, Theorem 1] and [25, Remark 3.3], that impose the stronger
condition that G, and not just G/(Z(G)[G,G]), is generated by 2 elements.

The corresponding result is not valid in general for groups with 3 or
more generators. Indeed, let G be the free group generated by 3 elements
{a1, a2, a3} and define f : G → � by

f(am1
s1

am2
s2

· · · aml
sl

) =
∑

1≤i<j<k≤l

mimjmkB(asi , asj , ask
),

where B(aσ(1), aσ(2), aσ(3)) = sgn (σ) for any permutation σ of three ob-
jects and 0 otherwise (see [25, Remark 3.3]). Then f is a solution of the
quadratic functional equation (1.2), which does not satisfy Kannappan’s
condition. f is by the way an example of a solution of (1.2) that is not a
quadratic function.

Corollary 6.7. If the quotient group G/(Z(G)[G,G]) is generated

by 2 elements, in particular if so is G, then any solution of the quadratic

functional equation on G satisfies Kannappan’s condition.

Proof. Let a and b be generators of G/(Z(G)[G,G]). Then any el-
ement may be written as a product of factors of the form ambn. 2Bf

is an alternating multimorphism of G/(Z(G)[G,G]) × G/(Z(G)[G,G]) ×
G/(Z(G)[G,G]) into H, so 2Bf (x, y, z) becomes for any x, y, z ∈ G a lin-
ear combination of the terms 2Bf (a, a, a), 2Bf (a, a, b), 2Bf (a, b, b) and
2Bf (b, b, b). But these terms vanish according to Theorem 2.6(e), each
containing at least 2 identical elements, and hence so does 2Bf (x, y, z).
We now refer to Lemma 6.1. �
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Corollary 6.7 is used in Example 8.5 (The Heisenberg group with in-
teger entries).

7. On certain semi-direct products

Many important groups are semi-direct products. In the present short
section we study a special class of semi-direct products. The class contains
examples like the (ax + b)-group and GL(n,�) that are treated in detail
in Section 8 below.

Let G = NK be the semi-direct product of a normal subgroup N and
a subgroup K. Thus N ∩K = {e}, and each element x ∈ G may in exactly
one way be written as x = nk, where n ∈ N and k ∈ K.

We have [G,N ] ⊆ N , because N is a normal subgroup of G. As-
suming more, namely equality [G,N ] = N , we get that N = [G,N ] =
[G, [G,N ]] ⊆ [G, [G,G]]. Let f : G → H be a solution of the quadratic
functional equation on G. From Theorem 3.2 we read that f is a function
on G/[G, [G,G]], so that f(xk) = f(kx) = f(k) for all x ∈ [G, [G,G]] and
k ∈ K. In particular f(nk) = f(k) for all n ∈ N and k ∈ K. The restric-
tion F of f to the subgroup K of G is of course a solution of the quadratic
functional equation on K. Conversely, if F is a solution of the quadratic
functional equation on K, then the function f defined by f(nk) = F (k) is
a solution of the quadratic functional equation on G, so we get all the so-
lutions of the quadratic functional equation on G from the solutions on K.
Let πK : G → K denote the homomorphism given by π(nk) = k for n ∈ N ,
k ∈ K. Then the solutions of the quadratic functional equation on G are
the functions of the form F ◦πK , where F ranges over the solutions of the
quadratic functional equation on K.

Let us furthermore take G to be a topological group, and let N and
K be closed subgroups of G. Equipping N and K with the topology from
G we also assume that the topology on G is the product topology from
N and K (by the open mapping theorem for groups [9, Corollary II.3.3]
the last statement is automatically true if G is a locally compact, second
countable Hausdorff group), so that the map πK : G → K is continuous.
Still enforcing [G,N ] = N we find that the continuous solutions of the
quadratic functional equation on G are the functions of the form F ◦ πK ,
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where F ranges over the continuous solutions of the quadratic functional
equation on K.

The group �n ×s O(n) of rigid motions of �n for n ≥ 2 is an example
of a semi-direct product such that [G,N ] = N . The Heisenberg group is an
example that does not satisfy this condition (see Example 8.4 for details).

Summing up we have

Proposition 7.1. Let G = NK be the semi-direct product of a nor-

mal subgroup N and a subgroup K, and assume that [G,N ] = N . Let

πK : G → K denote the projection on K. Then

(a) The solutions of the quadratic functional equation on G are the func-

tions of the form F ◦ πK , where F ranges over the solutions of the

quadratic functional equation on K.

F satisfies Kannappan’s condition on K if and only if F ◦ πK satisfies

Kannappan’s condition on G.

(b) Assume furthermore that G is a topological group, N and K are closed

subgroups of G, and that the topology on G is the product topology

from N and K. Then the continuous solutions of the quadratic func-

tional equation on G are the functions of the form F ◦ πK , where F

ranges over the continuous solutions of the quadratic functional equa-

tion on K.

Proposition 7.1 will be useful several times in the discussions of the
specific examples in Section 8.

8. Examples

We have already above encountered general examples of various types:
The remarks right after Proposition 5.1, Proposition 5.3 and Corollary 4.2.
In this section we discuss some specific examples.

Example 8.1. The (ax + b)-group

G =
{(

a b

0 1

) ∣∣∣ a ∈ �, a > 0, b ∈ �
}
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is the semi-direct product of the subgroups

N =
{(

1 b

0 1

) ∣∣∣ b ∈ �
}

and K =
{(

a 0
0 1

) ∣∣∣ a ∈ �, a > 0
}

∼= �+,

N being the normal part. Since [G,N ] = N , we can apply Proposition 7.1.
In the notation of Proposition 7.1 we have that

πK

(
a b

0 1

)
= πK

((
1 b

0 1

)(
a 0
0 1

))
=

(
a 0
0 1

)
.

Any continuous solution f : G → � of the quadratic functional equa-
tion on G has the form f = F ◦πK , where F : K ∼= �+ → � is a continuous
solution of the quadratic functional equation on �+, i.e.

F (ac) + F (ac−1) = 2F (a) + 2F (c), a, c > 0.

The continuous function Φ(x) := F (exp x), x ∈ �, satisfies

Φ(x + y) + Φ(x − y) = 2Φ(x) + 2Φ(y), x, y ∈ �.

It follows that Φ has the form Φ(x) = cx2 for some constant c ∈ � [7,
Corollary 10.1], so that F (a) = c(log a)2 for a > 0.

We conclude that the continuous solutions of the quadratic functional
equation on the (ax + b)−group are the functions fc of the form

fc

(
a b

0 1

)
= c(log a)2,

(
a b

0 1

)
∈ G,

where c ranges over �.

Example 8.2. Let n ≥ 3. For any ring with unit 1 the subgroup En(R)
of GL(n,R) generated by the elementary matrices satisfies [En(R), En(R)]
= En(R) (see [4]). From now on we assume that R is a field or a commu-
tative Euclidean ring. In those cases En(R) = SL(n,R), so
[SL(n,R), SL(n,R)] = SL(n,R).

According to [25, Corollary 2.3] the only normalized solution of the
quadratic functional equation on SL(n,R) is f = 0.
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We will consider the group G = GL(n,R). Decomposing the matrix
A = {aij} ∈ GL(n,R) as follows




a11(det A)−1 a12 · · · a1n

a21(det A)−1 a22 · · · a2n
...

...
. . .

...
an1(det A)−1 an2 · · · ann







detA 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




we see that GL(n,R) is the semi-direct product of SL(n,R) (the normal
part) and the group U of units of the ring R.

It follows from Proposition 7.1 that the solutions f : G → H of the
quadratic functional equation on GL(n,R) are the functions of the form
f = φ ◦ det, where φ : U → H ranges over the solutions of the quadratic
functional equation on the abelian group U .

For R = � we have U = {±1} and so we get [25, Theorem 4.2] in the
case of n ≥ 3.

Example 8.3. We will find the continuous solutions f : G → � of the
quadratic functional equation on G = GL(n,�) for n ≥ 2. For n ≥ 3 we
can apply the results of the previous Example 8.2. Actually the crucial
point in Example 8.2 is that [SL(n,R), SL(n,R)] = SL(n,R), which is
true for R = �, because SL(n,�) is a connected semi-simple Lie group
(see [24, Corollary 3.18.10]). So we may also take n = 2. According to
Example 8.2 the solutions of the quadratic functional equation on G are
the functions of the form f = φ ◦ det, where φ : U → � ranges over the
continuous solutions of the quadratic functional equation on the group U

of units of �, i.e. the multiplicative group �∗ of all non-zero real numbers.
The continuous quadratic forms on �∗ are the functions of the form

φ(t) = c(log |t|)2, t ∈ �∗, where c ∈ � is an arbitrary constant. This
formula was on the subgroup t > 0 derived in Example 8.1. To get it on
the negative half-axis as well, we first note that

0 = 2φ(1) = φ((−1)(−1))+ φ((−1)(−1)−1) = 2φ(−1)+ 2φ(−1) = 4φ(−1),

so φ(−1) = 0. And then we get for any t > 0 that

2φ(−t) = φ(t(−1)) + φ(t(−1)−1) = 2φ(t) + 2φ(−1) = 2φ(t) + 0 = 2φ(t),
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so φ(−t) = φ(t).
Combining the above we get that the continuous solutions of the qua-

dratic functional equation on GL(n,�) are the functions

f(x) = c(log |det x|)2, x ∈ GL(n,�),

where c ∈ � is an arbitrary constant.
This may be compared with the case of GL(n,�), where f = 0 is the

only complex-valued quadratic form [25, Theorem 4.2].

Example 8.4. We will find all continuous solutions f : G → � of
the quadratic functional equation on the Heisenberg group G = H3(�),
defined by

H3(�) =


(x, y, z) =


1 x z

0 1 y

0 0 1




∣∣∣∣ x, y, z ∈ �

 ,

but until further notice we consider solutions f : G → H, where H is any
abelian group.

The Heisenberg group is the semi-direct product of the abelian sub-
groups N = {(0, y, z) | y, z ∈ �} and K = {(x, 0, 0) | x ∈ �}, but it
does not satisfy the condition [G,N ] = N from Proposition 7.1. Indeed,
[G,N ] = {(0, 0, z) | z ∈ �} �= N .

It is easy to check that e = (0, 0, 0), and that [G,G] = {(0, 0, z) ∈ G |
z ∈ �}. Furthermore [G, [G,G]] = {e}, so [G, [G,G]] �= [G,G]. Thus the
condition of Corollary 5.2 is not satisfied either.

Nevertheless, as we shall see, all solutions f : G → H of the quadratic
functional equation on G satisfy Kannappan’s condition. We find this sur-
prising, because the Heisenberg group provides a counter-example to the
conjecture that all solutions of Jensen’s functional equation are affine func-
tions. This was observed in [8, Proposition 4.3] and [22, Example 5.1].

G is 2-divisible, and so in particular generated by its squares, because(x

2
,
y

2
,
z

2
− xy

8

)2
= (x, y, z) for all x, y, z ∈ G.

Furthermore we get by an easy calculation for any x′, y′, z′, x, y, z ∈ �
that

(x′, y′, z′)(x, y, z)(x′, y′, z′)−1 = (x, y, z − xy′ + yx′). (8.1)
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Let f : G → H be a solution of the quadratic functional equation.
Since f is invariant under inner automorphisms we have from (8.1) that

f(x, y, z) = f((x′, y′, z′)(x, y, z)(x′, y′, z′)−1)

= f(x, y, z − xy′ + yx′), for all x′, y′, z′, x, y, z ∈ �,

so that f(x, y, z) = f(x, y, 0) if (x, y) �= (0, 0). The same conclusion holds
if (x, y) = (0, 0), because f by Theorem 4.1 is equal to f(e) = f(0, 0, 0) on
[G,G] = {(0, 0, z) ∈ G | z ∈ �}. Thus f is a function on G/[G,G] which
is an abelian group. In particular f satisfies Kannappan’s condition. Via
Proposition 5.1(e) we see that f is a quadratic function, if H has the
property that 2h = 0 implies h = 0. Assuming this we let f(x) = Q(x, x),
where Q : G × G → H is a symmetric bimorphism. f is a function on
G/[G,G], so Q is by Lemma 2.5 a map G/[G,G] × G/[G,G] → H. Thus
we shall find all symmetric bimorphisms of G/[G,G] � (�2,+) into H.

We do this for H = � and f : G → � continuous. Since f is continu-
ous, so is Q : �2×�2 → �. Now Q is bilinear, being continuous and biad-
ditive. This gives f(x, y, z) = f(x, y, 0) = Q((x, y), (x, y)) = ax2+bxy+cy2

for some constants a, b, c ∈ �.
Combining Corollary 6.2 with the result just obtained about H3(�) we

get more generally that any solution of the quadratic functional equation
on the (2n+1)-dimensional Heisenberg group H2n+1(�) satisfies Kannap-
pan’s condition.

Example 8.5. Let us consider the Heisenberg group G = H3(�) with
integer entries, defined by

H3(�) =


(x, y, z) =


1 x z

0 1 y

0 0 1




∣∣∣∣ x, y, z ∈ �

 .

Here [G,G] = {(0, 0, k) | k ∈ �}, so G/[G,G] ∼= �2. This group is gener-
ated by two elements, so all solutions of the quadratic functional equation
on G satisfy Kannappan’s condition according to Corollary 6.7 (or [25,
Remark 3.3]). Thus any solution f is a function on G/[G,G]. We get that

f(m,n, k) = f((0, n, 0)(m, 0, 0)(0, 0, k)) = f((0, n, 0)(m, 0, 0))
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= [f − f(e)]((0, n, 0)(m, 0, 0)) + f(e)

= C(f − f(e))((0, n, 0), (m, 0, 0))

+ [f − f(e)](0, n, 0) + [f − f(e)](m, 0, 0) + f(e)

= C(f − f(e))((0, 1, 0)n , (1, 0, 0)m)

+ [f − f(e)]((0, 1, 0)n) + [f − f(e)]((1, 0, 0)m) + f(e).

Here we use that the first term C(f − f(e))(·, ·) is a solution of Jensen’s
functional equation in each variable, vanishing at the neutral element, and
that each such solution g of Jensen’s equation has the property g(xl) =
lg(x) for any l ∈ � and x ∈ G ([16, Formula (2.2)]). On the second and
the third term we apply Lemma 2.3(e). We get

f(m,n, k) = nmC(f − f(e))((0, 1, 0), (1, 0, 0))

+ n2[f − f(e)]((0, 1, 0)) + m2[f − f(e)]((1, 0, 0)) + f(e).

Thus there exist h0, h1, h2, h3 ∈ H with 2h0 = 0 such that

f(m,n, k) = m2h1 + n2h2 + mnh3 + h0, m, n, k ∈ �. (8.2)

Conversely, any map of H3(�) into H of this form is a solution.
This result could alternatively have been derived from [25, Corol-

lary 2.2].
We saw above that any solution of the quadratic functional equation

on the Heisenberg group H3(�) with integer entries satisfies Kannappan’s
condition. Combining this with Corollary 6.2 we get more generally that
any solution of the quadratic functional equation on the Heisenberg group
H2n+1(�) = {(x, y, z) ∈ H2n+1(�) | x, y, z ∈ �} with integer entries
satisfies Kannappan’s condition. This can be used to derive a formula
similar to (8.2) for the general solution of the quadratic functional equation
on H2n+1(�).
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9. The case of a symmetric right hand side

The results of this section have been noted in various special instances.
For example in [23, Proposition B.1] and [25, Remark 4.3].

Throughout this section we let G and H be two sets with binary op-
erations (x, y) �→ xy and (a, b) �→ a ∗ b respectively. We assume that the
operation in G has a unit e ∈ G, and that ∗ : H ×H → H has the cancel-
lation properties that for all a, b, c ∈ H we have a ∗ b = a ∗ c implies b = c

and b ∗ a = c ∗ a implies b = c. These assumptions are of course satisfied if
G and H are groups. Finally σ : G → G is an involution, i.e. σ(σ(x)) = x

and σ(xy) = σ(y)σ(x) for all x, y ∈ G and σ(e) = e. If G is a group then
σ could be σ(x) = x−1, x ∈ G, which is the involution met above in this
paper.

Proposition 9.1. Let f : G → H and F : G × G → H satisfy

f(xy) ∗ f(xσ(y)) = F (x, y) for all x, y ∈ G.

Then the two statements

(a) f(xy) = f(yx) for all x, y ∈ G, and f ◦ σ = f .

(b) F (x, y) = F (y, x) for all x, y ∈ G.

are equivalent.

Proof. Suppose that F (x, y) = F (y, x) for all x, y ∈ G. Then

f(xy) ∗ f(xσ(y)) = f(yx) ∗ f(yσ(x)) for all x, y ∈ G. (9.1)

Putting x = e in (9.1) we get from the assumption about left cancellation
that f ◦σ = f . Using this on the last term of (9.1) we get that f(yσ(x)) =
f(σ(yσ(x))) = f(xσ(y)), so that (9.1) reads

f(xy) ∗ f(xσ(y)) = f(yx) ∗ f(xσ(y)) for all x, y ∈ G. (9.2)

By right cancellation we get that f(xy) = f(yx).
Conversely, if (a) holds then we get for any x, y ∈ G that

F (x, y) = f(xy) ∗ f(xσ(y)) = f(yx) ∗ f(σ(xσ(y)))

= f(yx) ∗ f(yσ(x)) = F (y, x). �
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Proposition 9.2. Let f : G → H and F : G × G → H satisfy

f(xy) ∗ f(σ(y)x) = F (x, y) for all x, y ∈ G.

Then the two statements

(a) f(xy) = f(yx) for all x, y ∈ G, and f ◦ σ = f .

(b) F (x, y) = F (y, x) for all x, y ∈ G.

are equivalent.

Proof. Suppose that F (x, y) = F (y, x) for all x, y ∈ G. For any
x ∈ G we get

f(x) ∗ f(x) = f(xe) ∗ f(σ(e)x) = F (x, e) = F (e, x)

= f(ex) ∗ f(σ(x)e) = f(x) ∗ f(σ(x)),

which by left cancellation implies that f(x) = f(σ(x)) for all x ∈ G.
Next we find for any x, y ∈ G that

f(xy) ∗ f(σ(y)x) = F (x, y) = F (y, x) = f(yx) ∗ f(σ(x)y)

= f(yx) ∗ f(σ(σ(x)y)) = f(yx) ∗ f(σ(y)x),

which by right cancellation implies that f(xy) = f(yx) for all x, y ∈ G.
Conversely, if (a) holds then we get for any x, y ∈ G that

F (x, y) = f(xy) ∗ f(σ(y)x) = f(yx) ∗ f(σ(σ(y)x))

= f(yx) ∗ f(σ(x)y) = F (y, x). �

Corollary 9.3. Let f : G → H and F : G×G → H and assume that

F (x, y) = F (y, x) for all x, y ∈ G. Then the pair {f, F} is a solution of

f(xy) ∗ f(xσ(y)) = F (x, y) for all x, y ∈ G,

if and only if {f, F} is a solution of

f(xy) ∗ f(σ(y)x) = F (x, y) for all x, y ∈ G.
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