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On Stetkaer type functional equations
and Hyers—Ulam stability

By BOUIKHALENE BELAID (Kenitra) and
ELQORACHI ELHOUCIEN (Agadir)

Abstract. Let G be a locally compact group, K a compact subgroup of
morphisms of G, x : K — {z € C | |z| = 1} a continuous homomorphism
and p a K-invariant bounded measure on GG. In this paper we study functional
equations of the form

/ / f(ath - y)x(k)dkdp(t) = g(@)h(y), 2.y € G,
GJK

in which f, g,h € Cy(G) are unknown functions. These equations may be viewed
as a generalization of the functional equations considered by Stetkser in many of
his works. We show how the solutions g and h are closely related to the solutions of
Badora’s functional equation solved in [4] and [13]. We treat examples and we give
some applications. The case where G is a Lie group is considered. Furthermore,
we investigate the Hyers—Ulam stability problem of these functional equations.

1. Introduction

Let GG be a locally compact group endowed with a left Haar measure dz,
and K a compact subgroup of morphisms of G i.e. of mappings k of G onto
itself that are either automorphisms and homeomorphisms (k € K1), or
antiautomorphisms and homeomorphisms (k € K ). The action of k € K
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on z € G will be denoted by k-z. The mapping x: K — {2z € C | |z| = 1}
is a continuous homomorphism. For g a complex bounded measure on
G, fi (vesp. i) will denote the measure defined by (i, f) = {(u, f) (resp.
(@, f) = (u, f)), where f(z) = f(z~1), f(z) = f(z) for all continuous and
bounded functions f on G. C(G) (resp. Cp(G)) designates the space of
continuous (resp. continuous and bounded) complex valued functions. We
assume that K has a topology making it a compact Hausdorff group with
the property that the canonical map K x G — G sending each pair (k, x)
onto k - x is continuous. For any k € K, and for any function f on G, we
put (k- f)(z) = f(k~!-z), and we say that f is K-invariant if k- f = f
for all £ € K. The algebra of all regular and complex bounded measures
on G will be denoted by M(G). We recall that the convolution of M(G)
is given by

(v, f) = /G/Gf(ts)du(t)du(s), for all f € Cy(G).

For any un € M(G) and any k € K, we put (k- pu, f) = (u, k- f) for all
f € Cy(@), and we say that p is K-invariant if k- = p for all k € K. A
function f € Cy(G) is bi-p-invariant if f, = f, where f, is the continuous
and bounded function defined by

://f(sxt)d,u(s)du(t), for all z € G.
GJG

We notice that if u*u = u, then f is bi-y-invariant if and only if it is both
left and right 4 invariant, i.e. [, f(tz)du(t) = [ f(xt)du(t) = f(z) for all
zeQG.

Finally, L1 (G, dz) designates the Banach algebra of all integrable func-
tions on G.

Definition 1.1 ([2]). Let p € M(G); p is said to be a Gelfand measure
if 1 = p+p = p and the Banach algebra LY(G) = pu* L1(G) * p is
commutative under the convolution.

A non-zero function ¢ € Cy(G) is a p-spherical function if it satisfies
the functional equation

/G b(aty)du(t) = d(@)e(y), 5,y € G, (1.1)
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We will say that a function f € Cy(G) satisfying

/G faty)du(t) = F(@)éy), 2.y €G (1.2)

is associated to the p-spherical function ¢.

The p-spherical functions and related notions have been introduced
by M. AkkoucHI and A. BAKALI [2]. When H is a compact subgroup
of G and dh is the normalized Haar measure of H, then dh is a Gelfand
measure on G if and only if (G, H) is a GELFAND pair [11]. A function
[ € Cp(G) satisfies a KANNAPPAN type condition K (p) [25], [12] if

//fzsxty du(s)du(t) //fzsyt:c du(s)du(t), z,y,z € G.

In the series of papers [28]-[32], a number of results has been obtained by
STETKAR for functional equations of the form

[ stk Nk = 3 @), w6, (1.3)
=1

where the functions f,g1,...,9n,h1,...,h, to be determined are contin-
uous complex-valued functions on a locally compact group G and K is a
compact subgroup of automorphisms of G.

In the present paper we study a generalization of the equation (1.3)

/ / f(ath - XY dkdu(t) = g(0)h(y), wyeG,  (14)

where p is a complex bounded measure on G and K is a compact subgroup
of morphisms of GG, not just a compact subgroup of automorphisms of G.

Our approach is to consider u = d.: The Dirac measure concentrated
at the identity element e as a complex bounded measure on G, and then
the functional equation (1.3) can be written in the form

//fa:tk y)x (k)dkdbe( Zgz hi(y), z,y€G. (1.5)
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It is the same point of view as in [12] and [16] except that the compact
subgroup K of morphisms of G is new; it was {I,o} in [12], [16] (o is
a continuous involution of G), where ELQORACHI and AKKOUCHI have
introduced and studied the functional equation

/G f(aty)dp(t) 7 /G Fletat)duld) =23 a@hit). (10

The class of equations (1.4) contains also the functional equation of spher-
ical functions

/K f(ak - y)dk = F(2)f(y), @y € G, (L.7)

which has attracted the attention of many mathematicians. The first sig-
nificant results were obtained in [9], [4], [31] and [32] for bounded and
continuous solutions. For continuous solutions of (1.7), recently SHIN’YA
[27] described the non-zero solutions in the following form:

f(z) = /Kga(k: -x)dk for all x € G,

where ¢ : G — C\{0} is a continuous homomorphism of the abelian group
G, (cf. [27] Corollary 3.12). BADORA’s functional equation is considered
in [4]:

//f(a:—i—t—l—k'y)dkdu(t):f(a:)f(y), z,y € G. (1.8)
GJK

The non-zero essentially bounded solutions of equation (1.8) are of the
form

f(x):/K(go*uk.x)(e)dk, req, (1.9)

where ¢ is a character of G and e is the identity element of the abelian
group G (cf. [4]). For G non necessarily abelian and p a K-invariant gen-
eralized Gelfand measure, the non-zero continuous and bounded solutions
of (1.8) are given by

f(x):/Kgp(k-:L‘)dk, z € G,
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where ¢ is a p-spherical function on G (cf. [13]).

We shall notice here that the additional assumption that every closed
ideal of the commutative Banach algebra u * L1(G,dz) % p is contained
in some maximal ideal of p * Lq(G,dx) * p, used in Section 3 of [13], is
superfluous, because the commutative Banach algebra u x L1(G,dz) * p
approximates the identity.

Equation (1.4) contains also the functional equation of u-spherical
functions

/G Flaty)du(t) = (@) f(y), 2y € G, (1.10)

which was studied in [2] and [3]. It should be motioned here that if u €
M(G), then the continuous solutions of (1.10) are only given when G is
compact (cf. [3]). They are of the form

f(x) = (nx(2)€,m), (1.11)

where (7, H) is an irreducible, continuous and unitary representation of G
such that 7 (u) is of rank one, n € H\{0} and £ is a unit vector in (7 (u)),
the range of the operator 7(u).

The classical examples of equation (1.4) with K = {I,—I} and y =1
are: D’ALEMBERT’s equation [25], [7], [10]

and WILSON’s equation [37], [38]

flx+y)+ flx—y) =2f(2)g(y), =z,y€G. (1.13)

Other references and informations on detailed discussions of classical equa-
tions can be found in the monographs by AczEL and DHOMBRES (cf. [1]).
An example of transformation groups K other than those two, and an ex-
ample of homomorphisms other than x = 1 in connection with functional
equation (1.4) is K = Z, acting on G =C

n—1
LS fetwiy) = f@)i), wyeC (1.14)
j=1
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where w = exp(27i/n). This functional equation occurs in FORG-ROB and
SCHWAIGER [18] and STETKZR [30].

Our discussion in the present paper is organized as follows. In Section 2
we establish some general properties of the solutions of (1.4). We show how
they are closely related to the solutions of Badora’s equation. This is an
extension of STETKA&R's results ([30], III, Theorem 1). The conclusion is
the same if we replace the functional equation of spherical functions in
[30] by BADORA’s functional equation, but the assumptions are weaker.
K is not assumed to act by homomorphisms only, but by homomorphisms
and also antihomomorphisms, and f satisfies K(u). In the case when K
is a compact subgroup of the group Aut(G) of all mappings of G onto G
that are simultaneously automorphisms and homeomorphisms and p is a
Gelfand K-invariant measure, we prove that the solutions ¢g and h of (1.4)
are associated to p ® dk-spherical functions on the semi-direct product
group K « G. In Section 3 we treat examples. In Section 4 we study the
functional equation

/G /K Stk -y ®)dkdu(t) = g(2)[(y), .y € G, (1.15)

as a particular case of (1.4). In Section 5, G is a connected Lie group and
i is a K-invariant idempotent measure with compact support. We show
that the solutions of (1.4) are the eigenfunctions of a system of operators
associated to left invariant differential operators on GG. This extends the
previous results obtained by STETKAR for equation (1.4) ([30], II, Theo-
rem 2) and those of the authors in [13] to BADORA’s equation. In the last
section we deal with the stability of Badora’s functional equation and of
the equation (1.15).

The results obtained in this paper may be viewed as a continuation and

a generalization of BADORA’s work [4], [5], FORG-ROB’s and SCHWAIGER’s
work [18], [19] and STETKER’s work [30].
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2. On the second generalization of functional equations
of Stetkaer type

In this section we study the properties of the functional equation

/G /K f(ath - X (B)dkdp(t) = g(0)h(y), wyeG.  (21)

The ideas are inspired by the STETKZER’s work [30] just mentioned.
By easy computation, we get the following

Proposition 2.1. Let u be a K-invariant measure. Let f,g,h €
Cy(G) be a solution of (2.1) such that f satisfies the Kannappan type
condition K(u), g # 0 and h # 0. Then, for all z,y € G, we have

|ty = [ bgto)dute
G G

and g satisfies K ().

Theorem 2.2. Let 1 be a K-invariant measure. Let f,g,h € Cy(Q)
be a solution of (2.1) such that f satisfies the Kannappan type condition
K(u), g # 0 and h # 0. Then

i) h(k-z)= x(k)h(z) for all k € K, z € G,
ii) there exists a function ¢, solution of Badora’s functional equation,
such that

/ / g(atk - y)dkdu(t) = g(x)o(y), 2.y € G (2.2)
GJK

and

/ / Fwth - y)dkdi(t) = h(2)d(y), @y € G. (2.3)
GJK

iii) If G is a unimodular group, K a compact subgroup of automorphisms
of G and p a Gelfand K -invariant measure, then ¢ is a u®uw g-spherical
function and g (resp. h) is associated to ¢ (resp. ¢).

PROOF. Let z,y € G and let kg € K, then we have

g(@)h(ko - y) = /G /K f(athko - y)x(k)dkdu(?)
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= [ fGathxskgdikdit) = (ko) @hiv)
from which we deduce (i).

Let xg,yo € G such that g(z¢) # 0 and h(yp) # 0, then by using K(u),
the K-invariance of p and equation (2.1), we get

h(yo) /G /K gtk - )dkdu(t)

= /G/K /G /K f(zotk - xsky - yo)X(k1)dk1du(s)dkdu(t)
— /G/K/G r f(JJOtk - xsky - yﬁ)mdk’ldk‘du(g)du(t)

+ /G /K /G . f(zotky - yosk - x)x(k1)dkydkdu(s)du(t)
= / / / f(fl:(]tk’l . [kl—lk‘ . xsyg])X(kl)dk‘ld,u(s)dk‘du(t)
GJKJGJK+
+ /G /K /G o Fxotky - (k7 'k - zsyo] )X (k1 )dky dkdpu(s)dp(t)
= / / / / f(zotky - (k- xsyo))x(k1)dkidu(t)dkdu(s)
GJKJGJK
= g(l’o) /G /K h(k . xSyQ)dkdu(s),

Now, in view of Proposition 2.1 and the K-invariance of y, we obtain

= gtan) [ [ nk-wspo)ardn(s)

=gtao) [ [ hloe @tk o)kt
+g(a:0)/G/_h(k:-(k_1 -yotz))dkdu(t)

= gfan) [ [ (et yo)didute)
+atea) [ [ B ota)dkdu(o)
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= gtan) [ [ Xt go)didutr)
= gfan) [ | Xtk - yo)dkdu(r)

from which we get

/G/Kg(“k ~y)dkdu(t) = g(x)o(y), .y € G,

where ¢ is given by
/ / g(xotk - z)dkdpu(t)
otr -
9(xo) Ja Jk

1 —
A(yo) /G/K hath - yo)X (k) dkdu().

Now, using Proposition 2.1 and the definition of ¢, we show that ¢ is a
solution of Badora’s functional equation.

¢(z) =

/ / o(ath - y)dkdu(t) = $(@)d(y), 2.y € G,
GJK

and h, ¢ satisfy the equation

/ / Ratk - y)dkdji(t) = h(z)d ().
KJG

This proves (ii). For iii), let K be a compact subgroup of Aut(G), and let
K x G be the semi-direct product group with the group law

(k1,x)(k2,y) = (kikg,xky - y), ki,k2 € K, 2,y € G.

A function F : K «x G — C that is bi-yu ® dk-invariant can be regarded
as a function F'(k,z) = f(z) on G such that f is both bi-p-invariant and
K-invariant. Accordingly, we obtain the bijection

L™K « G) — LY(G) N LE(G)
F — f7
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where LK(G) = {f € Li(G) : k- f = f, k € K}, so that L/*"(K
G) = L“(G) NLE(G) = p* LE(G) » p = Mg(u * Li(G) * p), where
Mg (f = [ f(k-z)dk, z € G, and f € L1(G). Then p®dk is a Gelfand
measure on K « G. Furthermore, by using ([13], Theorem 2.2), we get
that the p ® dk-spherical functions are solutions of Badora’s functional
equation. ]

Remark 2.3. In Theorem 2.2 it is not necessary to assume that f

satisfies the condition K (p) if K is a compact subgroup of homomorphisms
of G.

Corollary 2.4. Let G be a locally compact group and let H be a
compact subgroup of G such that H is K-invariant (i.e. K- H C H). Let
(f,9,1) € Cp(G) be a solution of

/ / f(xhk - y)x(k)dkdh = g(z)l(y), x,y € G, (2.4)

such that g # 0, | # 0 and f satisfies a Kannappan type condition

//f(zhlxhgy)dhldhgz//f(zhlyhgx)dhldhg, x,y,z € G.
HJH K JK

Then
i) (k-x) =x(k)l(x) forall ke K, x € G,

ii) there exists a function ¢ solution of the functional equation

| [ otatk-yyardn = s(@)otu). <G (2.5)
HJK
such that
//g(xhk‘-y)dkdh:g(x)gb(y), z,y € G, (2.6)
HJK
and
// (zhk - y)dkdh = [(x)d(y), z,y € G. (2.7)

iii) If G is a unimodular group and K a compact subgroup of Aut(G),
then ¢ is a K o H-spherical function.
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Corollary 2.5. Let G be a locally compact group and H a compact
subgroup of G such that K.H C H. Let T be a continuous, unitary and
irreducible representation of H and let x, be a normalized character of T

such that x; * xr = Xr and u, = xrdh. Moreover, let (f,g,l) € Cy(G) be
a solution of

| [ stan s (ardn = o) (28)
such that g # 0, h # 0 and f satisfies a Kannappan type condition
/ / f(zhlxhgy)xT(hl)xT(hg)dhldhg
HJH

— / / J (zhayhoz)xs ()Xo (ho)dhdhs.
KJK

Then
i) l(k-x)=x(k)l(x) forall k € K, z € G,

ii) there exists a function ¢, solution of the functional equation

/ / o(ahk - y)x- (Wdkdh = $(@)é(y), ©yeG,  (2.9)
HJK

such that
/ / g(zhk - y)xr(W)dkdh = g(2)é(y), 2,y € G, (2.10)
HJK
and
/ / [(zhk - y)E(h)dkdh = [(2)3(y), zyeG.  (211)
HJK

ili) If G is unimodular and K a compact subgroup of Aut(G), then ¢ is a
K « H-spherical function of type 7.

Corollary 2.6. Let G be an unimodular group and p a K-invariant
Gelfand measure on G. Then the corresponding pu® dk-spherical functions
have the form

o(x) = /Kw(k‘ ~x)dk, = €@,



106 Bouikhalene Belaid and Elqorachi Elhoucien

for some p-spherical function w. Furthermore, if ¢ is integrable or G is a
compact group, then ¢ has the form

@) = [ (w06 ak. @€ G,
where (mw,Hr) is an irreducible, continuous and unitary representation

of G, such that w(u) is a rank one operator and £,m € H,
PROOF. By using [3] and [13], we derive the proof. O

3. Examples

The next examples extend those obtained by STETKAR in [30].

3.1. Let K be a compact subgroup of morphisms of G. Let u be a K-
invariant measure, w € Cp(G) a solution of (1.1), and a € C(G). Put

o) = /K a(k)w(k - ) X(k)dk, € G,

h(z) = /Kw(k ~x)Xx(k)dk, =z €G.

Then (f, g, h) is a solution of (2. 1) and the corresponding function ¢ given
by Theorem 2.2 has the form ¢(z) = [, w(k - z)dk, € G.

3.2. Let y=1and let f #0bea rlght p-invariant function which satisfies
the condition K (u), and (f,g,h) € Cy(G) a solution of (2.1). By putting
y=-ein (2.1) we get f(z) = g(z)h(e). So h(e) # 0, and (2.1) becomes

/ / f(xtk-y)dkdu(t)ZQ%h(y)zﬁ(fc)é(y), nyeG.  (3.1)

By Theorem 2.2, ¢ = 7 is a solution of Badora’s functional equation.
An example of (2.1) w1th K = {I,0}, where o is a continuous involution
of G, is

/f xty)du(t) /f (xto(y))du(t) = 2g(x)h(y), =,y € G, (3.2)
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which reduces to the generalized form of Wilson’s functional equation

/ F(aty)du(t) / f(ato@)du(t) = 2/(2)6(y), z.yeG,  (3.3)

where ¢(y) = ZE‘Z%, for all y € G. The solutions of (3.3) and (3.2) are

described in [12] and [16].
3.3. By taking G an abelian locally compact group and p = d. we may
derive other examples (see [1]).

4. On the first generalization of a functional equation
of Stetkeaer type

In this section we will study a functional equation of the form

/ / Fath - )X dkdu(t) = o(2)f(y), wyeG. (A1)

This equation is a special case of the equation (2.1) in which f = h. Using
Theorem 2.2, we deduce the following

Theorem 4.1. Let u be a K-invariant measure. Let (f,g) € Cy(Q)
such that g # 0 and f satisfies K(u). Then

(1) If (f,qg) is a solution of (4.1) and f # 0 then g is a solution of (1.3).
(2) (f,g) is a solution of (4.1) if and only if
i) f(k- x(k)f(z) for all k € K, xz € G, and

if) / / Flath - y)dkdi(t) = f()aly), .y € G. (4.2)

Corollary 4.2 ([12]). Let o be a continuous involution of G. Let
be a o-invariant measure. Let (f,g) € Cy(G) \ {0} such that f satisfies
K (u). The solutions of the functional equation

/fa:ty dp(t) /fa:ta Vu(t) = 20(x)f(y), zyeG  (43)

are given as follows:
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i) there exists a fi-spherical function ¢ such that g = %,

ii) if poo # ¢, then there exist o, 3 € C such that f = a“ﬁfw + 382,
iii) if ¢ 0o 0 = ¢, then there exists v € C such that f = ~p + [, where

loo = —l and [ is a solution of the functional equation

/G Waty)dilt) = lx)p(y) + 1()p(a), 2.y € G. (4.4)

PROOF. By taking x = 1in (4.1) and by using Theorem 4.1 and ([12],
Theorem 3.1), we get the proof. O

5. On generalized functional equations of Stetkeer type
on Lie groups

In this section we characterize the solutions f,g € C*°(G) of the func-
tional equation

/ / Fath - ) X(E)dkdu(t) = g(0)h(y), wyeG  (5.1)
GJK

on a connected Lie group G as joint eigenfunctions of certain operators
associated to the left invariant differential operators, where in this case
K is a compact subgroup of the group Aut(G) of all mappings of G onto
GG that are simultaneously automorphisms and homeomorphisms. This
extends the previous results obtained by STETKZR in [30] to equation
(1.7) and those of the authors in [13] to Badora’s functional equation.
To formulate our results, we need the following notations:

Let G be a connected Lie group and K a compact subgroup of the group
Aut(G) of all mappings of G onto G that are simultaneously automor-
phisms and homeomorphisms. D(G) denotes the algebra of the left invari-
ant differential operators on G, i.e. for all D € D(G), a € G, and for all
f € C>(G) we have (L,D)f = D(Lyf), where (L,f)(x) = f(a~lz) for
all z € G. We recall (see [30], Proposition I1.3) that K has a Lie group
structure, the canonical map K x G — G sending (k,x) onto k.x is C*°,
and if f € C* then so does k- f for any k € K, because continuous
homomorphisms between Lie groups automatically are C'°°. Throughout
the rest of the present section, we assume that p satisfies the following
conditions:
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i) p is a K-invariant measure with compact support on G and

i) p*p=p.
The symbol C3°(G) = fi* C*(G) x Afi will stand for all functions f €
C*°(G) which are p-invariant on G. The subspace of C°(G) consisting
of the functions which are K-invariant will be denoted C7%(G). For any
D € C*°(G), we define the new operator fof by

(D F)(x) = D{Mx (Ly-1f),} (e)

for all f € C°(G) and x € G [13]. In view of ([13] Proposition 4.1 and
Proposition 4.2), fo has the following properties:
Theorem 5.1. i) D/If is left invariant.

ii) k- DN f=DEk-f, forallk € K and f € C*(G),

iii) (D{ff)(e) = D(Mk f,)(e). In particular if f is a bi-p-invariant and
K-invariant function on G, then we have (D/Iff)(e) = (Df)(e).

iv) g and h € C**(G).

v) If (f,g, h) is a solution of (5.1), such that g # 0, h # 0 and satisfying
Jo h(zt)dp(t) = h(z) and Jo g(xt)du(t) = g(x), then fog = (D¢)(e)g
and fog = (D¢)(e)g, where ¢ is a solution of the functional equation
(3.1). Consequently g and h are analytic.

vi) If D € D(G), then for all f € C%(G) we have
DI f = My(Df = Af).

In particular, the restriction of lef to EOK (@) is an endomorphism.

The next theorem extends the result obtained by the authors to Bado-
ra’s functional equation ([13]).

Theorem 5.2. Let ;1 € M(G) be a K-invariant, idempotent measure
on G with compact support. If (f,g) € C(G) \ {0}, then the following
statements are equivalent:

(1) (f,g) is a solution of

/ / fath - )X dkdu(t) = 9(2)f(y), myeG,  (52)
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flk-y) =x(k)f(y),
b) f and g € C*(G),

(2) a)

)

¢) f and g are analytic,
)

)

d) [ f(at)dju(t) = f(z) for all z € G,
¢) DE f = (Dg)(e)f for all D € D(G).

PROOF. (1) = (2) follows directly from Theorem 5.1. Conversely,
suppose that (a), (b), (c), (d) and (e) hold. For a fixed x € G, we define
the function

_ / / Flath - y)dkdi(t), y e G.
GJK

It is easy to verify that F' is K-invariant. Furthermore, since p * pu = u,
w is K-invariant and f is right p-invariant hence F' is bi-y-invariant. Now
F(y) can be written

Fly) = /G /K (Lemr.at) ™ F) (o)X () AR (1).

Consequently, for all D € D(G) we have
(DEF)(y) = D(3)(e)F(y).
In particular, for y = e we have
(D F)(e) = D(g)(e)F(e).
Hence, by Theorem 5.1, it follows that

‘ (DF)(e) = D(g)(e)F(e)
D(F — F(e)g)(e) = 0

for all D € D(G). Since F'— F'(e)g is an analytic function on the connected
Lie group G, by [21] we obtain
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on GG. We conclude that
/ / Fath - y)dkdji(t) = f(2)3(y), @,y € G,

Finally, by using (a) we obtain

//f“k y)xX(k)dkdp(t) = 9(x)f(y), w,y€G.

This ends the proof of the theorem. ]

6. Hyers—Ulam stability of generalized equations
of Stetkeaer type

In 1940 S. M. Ulam posed the following problem on the stability of
homomorphisms:

Given a group G1, a metric group (Ge,d), and a positive number
€, does there exist a A > 0 such that if a mapping f: G; — Gs
satisfies the inequality

d(f(zy), [(x)f(y) <e

for all x,y € G, then a homomorphism a : G; — G exists with
d(f(x),a(z)) <X forall x € G?

See S. M. ULAM [35] or [36] for a discussion of such problems, as well as
D.H. Hyers [22], D. H. HYERS and S. M. UrAM [24], TH. M. RASSIAS
[26], D. H. HYERS, G. I. Isac and T. M. Rass1As [23]. Later, the above
question became a source of stability theory in the Hyers—Ulam sense. The
first affirmative answer to Ulam’s question was given by D. H. HYERS in
[22], under the assumption that G; and G are Banach spaces. The Hyers—
Ulam-Rassias stability was taken up by a number of mathematicians and
the study of this area has grown to be one of the central subjects in math-
ematical analysis. There is a strong stability phenomenon which is known
as superstability. An equation is called superstable if for any approximate
homomorphism, (i.e. d(f(zy), f(z)f(y)) < ), either f is bounded or f is a
true homomorphism. This property was first observed when the following
theorem was proved by J. BAKER, J. LAWRENCE, and F. ZorzITTO [8]:
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Theorem. Let V be a vector space. If a function f : V — R satisfies
the inequality

flx+y)— f@)fy)|<e

for some € > 0 and for all x,y € V, then either f is a bounded function or
fl@+y) = f(x)f(y), for all z,y € V.

Later this result was generalized by J. BAKER [7] and L. SZEKELYHIDI
[33], [34].

The aim of the present section is to investigate the stability of the
following family of functional equations:

/ / f(ath - y)dkdu(t) = f(2)g(y), .y € G, (6.1)
K JG

/K /G f(ath - X ®)dkdu(t) = fW)g(z), zyeG  (62)

where p € M(G) is a K-invariant measure with compact support on G.
Particular cases of (6.1) and (6.2) are

/K flz+k-y)dk = f(z)g(y), =yeq (6.3)

and

/K f(@+ k- y)x®dk = f@)g(x), =,y € G, (6.4)

where G is a commutative group and g = d., the Dirac measure con-
centrated at the identity element of GG. The stability properties of the
equations (6.3), (6.4) have been obtained by BADORA [5]. For K-spherical
functions (i.e. (6.3) with f = g) with K finite this problem was solved by
W. FORG-ROB and J. SCHWAIGER in [19] and by R. BADORA in [6], and
for K = {Id, —Id},i.e. d’Alembert’s functional equation, by J. BAKER [7].

For the noncommutative case, some results for some particular equa-
tions of type (6.1) where obtained by ELQORACHI and AKKOUCHI [14],
[15], [17]. The stability of the classical examples

fle+y)=f@)fy), (6.5)
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flety)+ fl@—y) =2f(2)f(y) (6.6)

of equations (6.1) and (6.2) has attracted the attention of many mathe-
maticians. The interested reader should refer to [23] for a thorough account
on the subject of stability of functional equations.

Throughout this section p is assumed to be a compactly supported
measure on G which is K-invariant, and f satisfies the Kannappan condi-
tion K (p).

Theorem 6.1. Let f,g : G — C be continuous functions. Assume
that there exists 6 > 0 such that

| / / f(ath - y)dkdp(t) — f(@)g(w)| <6, zyeG, — (67)
K JG

and f fulfills K(u). Then either
i) f, g are bounded or

ii) f is unbounded and g satisfies Badora’s equation

/ / glatk - y)dkdu(t) = g(@)g(y), =y € G, (6.8)
K JG

or

iii) g is unbounded and f satisfies the equation (6.1) (if f # 0, then g
satisfies (6.8)).

PROOF. The proof of the theorem is related to the one in [15], (see
Theorem 3.1), where K = {Id,o} and o is a continuous involution of G.
If f is unbounded, then by using the inequality (6.7), we get

G| [ [ st p)itdutt) = o()a(v)
’f // (xtk - y)dkdu(t) — g(y //fztk‘ xdkdu()’

+lo | [ [ stk o)dkdue) - £ :)ala)

// (xtk - y)dkdu(t) //f (2tk - xdkdu()’+|g( )]0,
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for all z,y,z € G. Since

‘/K/K/G/Gf(ﬁk-xsk"-y)dkdk"du(t)du(s)

_/ /f(ztk‘-x)dk‘du(t)g(y)
KJG

< /K /G | /K /G F(eth - wsk! - y)dk'dp(s) — f(zth - 2)g(y)| dkd]ul ()

< 8l dk(K) = ]l
‘ / / / / Fth - (zsk’ - y))dkdk du(t)du(s)
KJKJGJG
) /K /G gk - y)dk' du(t)du(s)
< /K /G | /K /G F(eth - (ask’ - y))dkdp(t) — £(2)g(wsk - )| dkdlul(s)
< Ol

and from the relation

/K /K /G /G F(sth - (ask - y))dhdk du()du(s)
_ /K /K ) /G /G Flath - ok - s(kK') - y)dkdk du(t)dpu(s)
+ /K /K ) /G /G FOARR) - yk - sk - 2)dkdk dp(t)du(s)
_ /K /K ) /G /G Flath - as(kk) - y)dkdk du(t)du(s)
n /K /K ) /G /G F(oth - s (kK') - y)dkdk du(t)du(s)

_ /K /K /G /G otk - 2s(kE') - y)dkdk du(t)dp(s)
_ /K /G /G otk - wsk - y)dkdk du(t)du(s)
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we obtain

// (wth - y)ddp(t) //fztk 2)dkdu(t)| < 2],

and finally

| [ [ otath wyidute) = g@laton| < 230l + law) 1.

Since f is unbounded, it follows that

/ / g(xtk - y)dkdu(t) = g(x)g(y), foral z,y € G,
K JG

which ends the proof in this case.

If g is unbounded, equation (6.1) holds if f = 0. Let us assume now
that f # 0. Then there exists z € G such that f(z) # 0. From inequality
(6.7), we obtain

[ Jo Stk - 2)dbdptt) s

Since g is unbounded, the function defined by

h(z) = I o f z;lzz)fc dkdu(t)

for all x € G.

is also unbounded.
On the other hand h satisfies the following inequality:

gl
|f(2)]
Now, by the preceding discussion, we conclude that g satisfies the equation

(6.8). To see that f, g satisfy (6.1), let x,y, 2z € G. Using inequality (6.7)
and the fact that g satisfies the equation (6.8), we get

] / / h(atk - y)dkdu(t) — h(z)g(y)| < for all z,y € G. (6.9)
KJG

| [ [ sGatk-gardut - @)a)

g’/K/K/G/Gf(fctk-ysk"-z)dkdk"du(t)d,u(s)
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~9) [ [ sttt yyavdu(o)
+‘ /K /K /G /G flwth - ysk' - 2)dkdk du(s)du(t)

~ 1@ [ [ atosk - 2)ar'du(o)] < 200,

Hence f, g satisfy the equation (6.1) and the proof of the theorem is
complete. ]

As a consequence, we have the superstability of the equation (6.8).

Corollary 6.2 ([17] Theorem 2.1). Let f : G — C be a continuous
function. Assume that there exists 6 > 0 such that

[ [ rtatk pavantt) - r@)f )| <5 wyec @)

Then either

2
ey < EVIHEED e (6.11)

or f is a solution of the equation (6.8).

Remark 6.3. In Theorem 6.1 it is not necessary to assume that f
satisfies the condition K (u) if K is a compact subgroup of homomorphisms
of G.

In the following theorem we shall investigate the stability of the func-
tional equation (6.2), under the additional condition that f satisfies the
Kannappan type condition K;(u):

//fztxsy dpu(t)dp(s //fztys:c dp(t)dp(s),

/ f(zsy)du(s / flysx)du(s for all z,y,z € G.

Theorem 6.4. Let f,g : G — C be continuous functions. Assume
that there exists § > 0 such that

‘/ /f:l:tk‘ y)x(k)dkdu(t) — f(y)g(z)| <6, z,yeq, (6.12)

and f fulfills Ky(p). Then either
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i) f, g are bounded or

ii) f is unbounded and g satisfies

/ / aath - y)dkdi(t) = §(2)i(y). =y € G, (6.13)
K JG

or

iii) g is unbounded and f, g satisfy the equation (6.2).

PROOF. In the proof, we use ideas and methods that are analogous to
those used in [5].

In order to apply Theorem 6.1, we recall the following formula proved
for ;1 = d. by BADORA (see [5]).

/ / flask' )X (&)dk du(s) — x(B)f (9)g ()
- / / Fwsk' - (k- y))X(R)dk dp(s) + g(x) f(k - )
K JG
— g(@)(F(k - 9) — x (k) f (1), (6.14)

for all z,y € G.
On the other hand, by using the condition K (u), the K-invariance of
w and some computations used in [5], we prove that

o) [ [ stoth o Tdbaus) - o0
[ [ I/ /G F sk - (yth - )X RV AK dp(t)dp(s)

-1 [ gluth- x)du(tﬂ Rk

-/ [ | st 0yt Xk du( 0yt

— f(z )/ g(k™t - ytx)du(t )]dk
[/ / JO yta)dkdu(t) - g(y)f(fc)} (6.15)
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Now we are ready to prove the theorem. If f is unbounded, f = 0 satisfies
the equation (6.13). If g # 0, then in view of (6.15), there exists some
constant ¢’ > 0 such that

[ [ 167t pt)dkdu® - g f@)] <8 wyec (o0
KJG
which can be written
[ [ fath - pirdat) - faa)| <8, ayec.  (617)
K JG

It follows from Theorem 6.1, that g satisfies the equation (6.13). If g is
unbounded, then by (6.14)

flk-z)=x(k)f(x), foralzed. (6.18)

By using the equation (6.15), we obtain that f, g satisfy some inequality
like (6.17) and hence by Theorem 6.1 we deduce that f, g are solutions of
the equation

/ / Fath - y)dkdp(t) = F(2)g(y), 2,y € G. (6.19)
K JG

Now from Theorem 4.1 of the section 4, we deduce that f, g are solutions
of (6.2) and the proof is completes. O
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