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Ideals in distributively generated nearrings

By HENRY HEATHERLY (Lafayette) and GORDON MASON (Fredericton)

Abstract. If (R, S) is a distributively generated nearring then a fully invari-
ant subgroup of an ideal of R is an ideal of R. This permits the strengthening of
several results in the literature. Section 3 discusses unit distributively generated
nearrings and Section 4 deals with nearrings with chain conditions.

1. Introduction

Distributively generated nearrings have been widely studied ever since
the seminal work of Fröhlich ([5]). (Throughout this paper (R,S) will
denote a left distributively generated nearring with distributive generat-
ing set S. Often we will just use R for (R,S).) Apart from the fact
that important and natural examples of distributively generated nearring
arise from nearrings generated by certain sets of endomorphisms on non-
abelian groups, from the inception of the theory they were seen to be more
tractable than nearrings in general, in part because normal R-subgroups
are ideals. In [2] it was observed that fully invariant subgroups of (R,+)
are also ideals. In this paper, we show that, in fact, a fully invariant sub-
group of an ideal of R is also an ideal of R. We exploit this fact to improve
several results in the literature. In Section 3, we restrict the discussion to
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unit distributively generated nearrings, and in Section 4 to nearrings with
chain conditions.

2. Ideals in distributively generated nearrings

We begin by generalizing [15, Corollary 9.22] which states that a nor-
mal right S-subgroup of (R,S) is a right ideal.

Lemma 2.1. If W is a right R-subgroup of (R,S) and T is a normal

subgroup of (W,+) then:

(a) if TS ⊆ T , T is a right R-subgroup and a right ideal of W ;

(b) if TS ⊆ T and ST ⊆ T then T is a 2-sided R-subgroup and a ideal

of W .

Proof. This follows from [15, Theorem 9.21]. �

The next result follows directly from Lemma 2.1 and extends [2, Propo-
sition 1].

Lemma 2.2. If W is a right R-subgroup of (R,S) and Y is a fully

invariant subgroup of (W,+) then:

(a) Y is a right R-subgroup and an ideal of W , and

(b) if W is normal in R, Y is a right ideal of R.

Proof. (a) For each s ∈ S, the map given by w → ws, w ∈ W , is
an endomorphism of W . Hence Y S ⊆ Y . By Lemma 2.1 (a) Y is a right
R-subgroup and a right ideal of W . The map w → vw (v ∈ W ) is also an
endomorphism of W so WY ⊆ Y and hence Y is an ideal of W .

(b) If W is normal in R, then Y is normal in R so by part (a) Y is a
right ideal of R. �

The next result also extends [2, Proposition 1] but this time to the
other side:

Lemma 2.3. If L is a left R-subgroup of R and K is a fully invariant

subgroup of (L,+) then:

(a) K is a left ideal of L, and

(b) if L is also normal in (R,+), then K is a left ideal of R.
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Proof. The arguments are very similar to those used in Lemma 2.2.
�

These lemmas lead directly to the next theorem which is fundamental
for what follows.

Theorem 2.4. If I is a right ideal of R and T is a fully invariant sub-

group of (I,+), then T is a right ideal of R and an ideal of the nearring I.

If I is an ideal of R, then so is T .

Proof. The first part comes directly from Lemma 2.2 (b) and the
second from Lemma 2.3 (b). �

We apply these results to various generalized series of subgroups of
(R,+). Here we use [X,Y ] for the subgroup of (R,+) generated by {x +
y − x − y : x ∈ X, y ∈ Y }. Also, we use X ′ = [X,X].

Let W be a normal subgroup of (R,+). The following series, each
defined recursively for all ordinals, will be of interest:

(i) W (0) = W , W (1) = W ′, W (α+1) = [W (α),W (α)], and whenever α is a
limit ordinal, define W (α) =

⋂
α<β W (β);

(ii) Γ1(W ) = W , Γα+1(W ) = [Γα(W ),W ], and whenever α is a limit
ordinal, define Γα(W ) =

⋂
β<α Γβ(W ).

The terms in the generalized derived series, W (α), and the terms in the
generalized lower central series, Γα(W ), are each fully invariant in (W,+)
and hence normal in (R,+). For more on these generalized series, see [17].

With the above in mind we have the following immediate improve-
ments of [15, Corollary 9.34].

Corollary 2.5. Let W be a normal subgroup of (R,+) and let α be

any ordinal.

(i) If WR ⊆ W , then W (α) and Γα(W ) are right ideals of R and ideals

of the nearring W .

(ii) If WR ⊆ W and RW ⊆ W , then W (α) and Γα(W ) are ideals of R.

Corollary 2.6. If W is an ideal of R, then for each ordinal α both

W (α) and Γα(W ) are ideals of R. In particular, R(α) and Γα(R) are ideals

of R.
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Recall that R/R′ is a ring, [15, p. 165]. The next proposition improves
on that.

Theorem 2.7. Let I be a right ideal of (R,S).

(a) If T is an ideal of the nearring I and (I/T,+) is abelian, then I/T is

a ring.

(b) For each ordinal α, I(α)/I(α+1) is a ring.

Proof. (a) Note that for each a, b ∈ I, a+ b = b+a+ c, where c ∈ T .
Let x, y, t ∈ I, with t = Σ ± si, where si ∈ S. Then xsi and ysi are in I,
for each i, so

(x + y)t = (x + y)Σ ± si = Σ ± (x + y)si = Σ ± (xsi + ysi)

= Σ ± xsi + Σ ± ysi + c,

where c ∈ T . So

(x + y)t = xΣ ± si + yΣ ± si + c = xt + yt + c,

and hence the nearring I/T is a ring.

(b) By Corollary 2.5 (a), I(α+1) is an ideal of I(α). Also (I(α)/I(α+1),+)
is commutative. The desired result then follows from part (a). �

Corollary 2.8. If I is an ideal of R and K is a fully invariant subgroup

of (I,+), then K(α)/K(α+1) is a ring, for each ordinal α.

It is important to note that an ideal of a distributively generated near-
ring is not necessary itself distributively generated. Examples of this be-
havior are known in the literature and in the folklore. (For some examples
among endomorphism nearrings, see [15, Chapter 11].) So, in Theorem 2.7,
I (respectively, I(α)) is not necessarily distributively generated.

Define D(R) to be the set of distributive elements of R.

Corollary 2.9. Let I be a minimal ideal of R.

(a) (I,+) is an invariantly simple group; so either (I,+) is a perfect group

or I is a ring.

(b) Let I2 �= 0. Then either I is a simple ring and I ⊆ D(R), or I ′ = I ⊆
R(α), for each ordinal α.



Ideals in distributively generated nearrings 125

Proof. (a) This part follows immediately from Theorem 2.4 and
Proposition 2.7 (b).

(b) From [9, Lemma 2.4] we have that either I is a simple ring and
I ⊆ D(R), or I ⊆ R(n), for all n ∈ N. From the latter we immediately
get I ⊆ ⋂∞

1 R(n) = R(ω). Since I ′ = I we get I ⊆ R(ω+1). A routine
transfinite induction argument shows that I ⊆ R(α), for each ordinal α.

This corollary extends [9, Lemma 2.4]. The question of whether a
minimal ideal in a distributively generated nearring must be square zero
or simple has been open for a quarter of a century. (See [9], [12].) Corol-
lary 2.9 and the next corollary chip away at the problem. �

Corollary 2.10. Let I be a minimal ideal of R. If R(α) = 0 for some

α, then I is a simple ring.

Certain relationships between products and additive commutators have
been useful in the theory of distributively generated nearrings (see [15,
Chapter 9]). Here we extend those results and apply them to obtain re-
sults about prime and semiprime ideals, and to obtain structure theorems.
We will need the following from [15, Lemma 9.47].

Lemma 2.11. If G is an (R,S)-module and H = gp(GR), then

GR(n) ⊆ H(n), for all n ∈ N ∪ {0}.
This leads to a generalization of [15, Theorem 9.48].

Proposition 2.12. If A is a right ideal of R, then A(k)A(n) ⊆ A(k+n)

and (A′)n ⊆ A(n), for all k, n ∈ N ∪ {0}.
Proof. Use Lemma 2.11 with G = A(k). Then gp(GR) ⊆ A(k) and

A(k)R(n) ⊆ (A(k))(n) = A(k+n). Therefore A(k)A(n) ⊆ A(k+n). Using k = 1,
we have A′R(n) ⊆ A(n+1) and for n = 1, A′R′ ⊆ A(2); so (A′)2 ⊆ A(2).
Proceed by induction to get (A′)n ⊆ A(n). �

Recall that if (R,+) is solvable of length n, then (R′)n = 0, [15,
Corollary 9.49]. The next corollary extends that result.

Corollary 2.13. Let A be a right ideal of R and let I be an ideal

of R.

(a) If (A,+) is solvable of length n, then (A′)n = 0.
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(b) If I(ω) = 0, then the nearring I is a subdirect product of the nearrings

In = I/I(n), n ∈ N; each (In,+) is solvable of length n and (I ′n)n = 0.

Corollary 2.14. Let A be a nil right ideal of R. Assume the nearring

A has a.c.c. on right (left) ideals.

(a) There exist m ∈ N such that Am ⊆ A′.
(b) If (A,+) is solvable, then A is multiplicatively nilpotent.

Proof. (a) Using Theorem 2.7 (b) with α = 0 we have that A/A′ is a
ring. This ring inherits the a.c.c. condition from A and is nil. Consequently,
by Levitski’s Theorem, the ring A/A′ is nilpotent. So (A/A′)m = 0, for
some m, and hence Am ⊆ A′.

(b) Use Corollary 2.13 (a) and part (b) to get the desired result. �

See Corollary 4.3 for a more general result.

Corollary 2.15. Let (R,+) have the maximum condition on subnor-

mal subgroups and let A be a nil right ideal of R.

(a) There exists m ∈ N such that Am ⊆ A′.
(b) If (A,+) is solvable, then A is multiplicative nilpotent.

Proof. The maximum condition on subnormal subgroups of (R,+)
forces the nearring A to have the a.c.c. on right ideals. �

Recall that an ideal I of a nearring N is prime (1-prime) if whenever
X and Y are ideals (right ideals) of N such that XY ⊆ I, then X ⊆ I or
Y ⊆ I [7].

If (0) is a prime (1-prime) ideal we say that N is a prime (1-prime)
nearring.

The intersection of all the prime (1-prime) ideals of N is called the
prime (1-prime) radical of N , and is here denoted by P(N), (respectively,
P1(N)). If P(N) = 0, we say N is semiprime and if P1(N) = 0, we say
N is 1-semiprime. It is well-known that 1-prime implies prime, but not
conversely. (See [7] for more on various types of prime ideals and their
interactions.)

Theorem 2.16. Let X and I be, respectively, a right ideal and an

ideal of R.

(a) If R is semiprime, then either I is a ring or (I,+) is not solvable.
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(b) If the image of (I,+) in R/P(R) is solvable, then I ′ ⊆ P(R).

(c) If R is 1-semiprime, then (X,+) is either abelian or not solvable.

(d) If the image of (X,+) in R/P1(R) is solvable, then X ′ ⊆ P1(R).

Proof. Part (a) follows from Corollary 2.13 and Theorem 2.7. Part
(b) follows from part (a) and that R/P(R) is semiprime. Part (c) follows
from Corollary 2.13 and part (d) from part (c) and that R/P1(R) is 1-
semiprime. �

Corollary 2.17. If (R/P1(R),+) is solvable, then R′ ⊆ P1(R) and

R/P1(R) is a ring. If (R/P(R),+) is solvable, then R′ ⊆ P(R) and

R/P(R) is a ring.

This result improves [1, Theorem 2.2], which required (R,+) to be
solvable and R have unity and d.c.c. on R-subgroups.

For a group G, let T (G) be the set of all elements of finite order in G

and let Gp be the set of all elements in G which have order some power of
the prime p. In general T (G) and the Gp are not subgroups of G. However,
if T (G) is a subgroup it is fully invariant. If G′ is a torsion group, then
T (G) is a subgroup and if G is an FC-group (every element has finitely
many conjugates) then G′ is torsion ([21, p. 442]). Also, if G is locally
nilpotent, then T (G) and each Gp are fully invariant subgroups of G and
T (G) is the internal direct product of the Gp, where p ranges over all
primes ([17]).

Theorem 2.18. Let I be a right (two-sided) ideal of R and let K

be a fully invariant subgroup of (I,+). If (K,+) is locally nilpotent, then

T (K) and each Kp are right (two-sided) ideals of R and T (K) = ⊕Kp,

where p ranges over all primes, as a direct sum of right (two-sided) ideals.

Proof. Since fully invariant is a transitive property, T (K) and each
Kp are fully invariant subgroups of (I,+). The desired results then follow
from Theorem 2.4 and the above mentioned group properties of T (K) and
the Kp. �

Remark. This theorem improves and extends the results in [8, Theo-
rem 2.6] in three significant ways: from R itself to subgroups of ideals of
R; from distributive nearrings to distributively generated nearrings; and
from nilpotent additive groups to locally nilpotent ones.
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Corollary 2.19. Let X and I be, respectively, a right ideal of R and

an ideal of R and let (X,+) and (I,+) be locally nilpotent.

(a) If the nearring I is prime, then either (I,+) is torsion-free or (I,+) is

a p-group.

(b) If the nearring X is 1-prime, then either (X,+) is torsion-free or (X,+)
is a p-group.

Note that Theorem 2.16 and Corollary 2.17 extend Proposition 3 of
[2]. It is also worth recalling that locally nilpotent does not imply solv-
able, e.g., the McLain groups, [17, pp. 361–362], are locally nilpotent and
characteristically simple and perfect.

3. Unit distributively generated nearrings

In this section R will always have unity and U(R) is the set of all units
in R, i.e., the invertible elements in R.

Definition 3.1. R is unit distributively generated if there is a subset
S ⊆ D(R)∩U(R) such that R = gp(S), the subgroup of (R,+) generated
by S.

Obviously a unit distributively generated nearring is distributively
generated; there are, however, many distributively generated nearrings
with unity that are not unit distributively generated. We will give some
motivating examples of unit distributively generated nearrings and some
distributively generated nearring examples which are not unit distribu-
tively generated for contrast. Endomorphism nearrings are our main venue
for this.

Let G be a group and let Inn(G), Aut(G), End(G) be the sets of inner
automorphisms, automorphisms and endomorphisms on G, respectively.
Then I(G) = gp(Inn(G)), A(G) = gp(Aut(G)), and E(G) = gp(End(G))
are distributively generated nearrings with unity. Observe that I(G) and
A(G) are always unit distributively generated. Sometimes E(G) is unit
distributively generated; we consider this situation next.

It is worthwhile to recall the relationship between End(G) and D(E(G)).
The needed results are known; however, we collect them together as a
lemma for convenience of the reader.
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Lemma 3.2. Let E = E(G).

(a) End(G) ⊆ D(E).

(b) If φ ∈ D(E), then ((g)α)φ + ((g)β)φ = ((g)α + (g)β)φ, for each

α, β ∈ E, g ∈ G.

(c) If E acts transitively on G, then D(E) = End(G).

(c) φ ∈ D(E) if and only if φ ∈ End(gE), for each g ∈ G.

Some extreme situations that can occur are for G to be nonabelian,
yet E(G) = D(E(G)), in which case E(G) is a ring; or for E(G) to equal
A(G). In the former case, G is called an E-group (see [14] for examples).
In the latter case, when G is non-abelian and E(G) = A(G), G is called
an A−E group (see [15, p. 199] for some examples). Most drastically this
occurs when G is finite simple, non-abelian, in which case E(G) = A(G) =
I(G) = M0(G), the nearring of all zero preserving self maps on G [6].

If G is not an A − E group, then E(G) �= gp(Aut(G)); however, it
is possible that some other set of distributive units in E(G) will generate
E(G) additively. We give some conditions which aid in determining when
this does or does not occur. First, some terminology: G is a monogenic
E(G)-module if there exists g ∈ G such that G = gE(G).

The proof of the following lemma is immediate.

Lemma 3.3. Let E = E(G).

(a) φ ∈ D(E) ∩ U(E) if and only if φ ∈ Aut(gE), for each g ∈ G.

(b) If G is a monogenic E-module, then D(E) ∩ U(E) ⊆ Aut(G).

(c) If G is a monogenic E-module and G is not an A − E group, then E

is not unit distributively generated.

Thus if G is not an A−E group and G is a monogenic E(G)-module,
then gp (D(E) ∩ U(E)) is a unit distributively generated nearring which
is not A(G). We give some examples of such groups.

Let D2n be the dihedral group of order 2n, where n is even. This group
has presentation 〈a, b : an = b2 = abab = e〉. Malone and Lyons [13]
have shown that this is not an A − E group. However, D2n = bE(D2n).

Two other classes of examples are finite perfect groups [16] and a
direct sum or a wreath product of two non-abelian finite simple groups
([19, Theorem 7], [20, p. 255]).
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Every unit distributively generated nearring embeds in some A(G). To
see this observe that if R is distributively generated and R = gp X, where
X ⊆ D(R) ∩ U(R), then the right multiplication mappings, τa : r → ra,
for each r ∈ R, are in Aut(R,+) for a ∈ X. Hence the mapping r → τr is
an injective nearring homomorphism from R into A(G). (Injectivity holds
because R has unity.)

For the remainder of this section, R will be a unit distributively gener-
ated nearring and when we use (R,S) for R, then S will be in D(R)∩U(R).
Some analogues of the results of Section 2 can be obtained by changing
“fully invariant” to “characteristic”.

Theorem 3.4. Let W be a right R-subgroup of (R,S) and let K be

a characteristic subgroup of (W,+).

(a) KR ⊆ K and K is a right ideal of W . If W is also normal in (R,+),
then K is a right ideal of R.

(b) If RW ⊆ W , then RK ⊆ K and K is a left ideal of W . If also W is

normal in (R,+), then K is a left ideal of R.

(c) If W is an ideal of R, so is K.

Proof. (a) For s ∈ S, the right multiplication mapping, w → ws,
for each w ∈ W , is an automorphism on (W,+). Since K is characteristic
in (W,+), we have KS ⊆ K and hence KR ⊆ K. The rest of the proof
follows as in Lemma 2.2 (a).

(b) Each left multiplication mapping, w → sw is also an automorphism
on (W,+). Proceed similarly to before.

(c) This part follows immediately from parts (a) and (b). �

For each ordinal α, let Za(G) be the α-th term in the generalized upper
central series for G. (See [17, 12.2.2] for the definition and properties of
this series.) Recall that each Za(G) is a characteristic subgroup of G.
The series must terminate and the term for which it does is called the
hypercenter of G. If G is equal to its hypercenter, then G is said to be
hypercentral.

Corollary 3.5. Let I be an ideal of R and let K be a characteristic

subgroup of (I,+).

(a) Each K(α) is an ideal of R and K(α)/K(α+1) is a ring.
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(b) Each Zα(K) is an ideal of R.

(c) If H is the hypercenter of (I,+), then T (H) and each Hp, p prime, are

ideals of R, and T (H) = ⊕Hp, where the sum ranges over all primes p.

Proof. (a) Each K(α) is fully invariant, hence characteristic, in
(K,+) and thus characteristic in (I,+). Thus K(α) is an ideal of R and
K(α)/K(α+1) is a ring. (Use Corollary 2.6 and Theorem 2.7.)

(b) Use Theorem 3.4 to get that each Zα(K) is an ideal of R.

(c) The hypercenter of a group is locally nilpotent [17, 12.2.4]. Thus
T (H) and each Hp are fully invariant subgroups of (I,+). The desired
result follows immediately. �

The next result improves on Corollary 2.9 in the context of unit dis-
tributively generated nearrings.

Corollary 3.6. Let I be a minimal ideal of R.

(a) (I,+) is characteristically simple.

(b) Either (i) Z(I) = 0 and I ′ = I, or (ii) I is a ring and either I 
 Cp,

for some prime p, or (I,+) is torsion-free.

Various other special subgroups of a group are always characteristic
and hence may play a role in the structure of unit distributively generated
nearrings. Among them are the Frattini subgroup, the Fitting subgroup,
the socle and the FC-subgroup. (See [17] and [21] for definitions.) For
example, consider the Fitting subgroup of G, Fit(G), which is defined to
be the maximum normal nilpotent subgroup if one exists. If G is finite,
Fit(G) exists and moreover Fit(G) = ⊕Kp where for each prime p dividing
|G|, Kp =

⋂{Gp | Gp is a Sylow p-subgroup of G} ([21, p. 167]). Since
Fit(G) is characteristic so is each Kp (consider the orders of the elements).
Recalling that “characteristic” is a transitive property, we obtain the fol-
lowing results:

Proposition 3.7. Let I be an ideal of R and let G be a characteristic

subgroup of (I,+). If G is finite, then Fit(G) and the Kp are ideals of R

and Fit(G) =
⊕

Kp as a direct sum of ideals.

In the same spirit the socle of a group G can be decomposed as a
direct sum of the abelian and the non-abelian socles, both of which are
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characteristic subgroups of G [21, p. 169]. Thus, if G is a characteristic
subgroup of (I,+) for an ideal I of R, soc(G) is an ideal of R which is a
direct sum of ideals.

4. Chain conditions

We temporarily drop the requirement that our nearrings be distribu-
tively generated. If N is any (left) nearring, it is well known that if N

has d.c.c. on right N -subgroups, then every nil right N -subgroup is nilpo-
tent. Scott improved this for tame nearrings [18]. His results apply to
any endomorphism nearring on a group G which contains Inn(G), because
such nearrings are tame. In this section we establish several “nil implies
nilpotent” results for distributively generated nearrings, as well as some
extensions of these to a wider class of nearrings via moding out a certain
distributor ideal.

Define N to be chained if N satisfies either the a.c.c. on right (left)
ideals or the d.c.c. on right (left) ideals. Recall that if N is a chained ring,
then every nil one-sided ideal is nilpotent [4].

We begin with two technical lemmas. If S is a multiplicative semigroup
of N let �S(N) = {(x + y)s − ys − xs | x, y ∈ N, s ∈ S}.

Lemma 4.1. Let N be chained and let S ⊆ N such that gp(S) = N .

If X is a nil one-sided N -subgroup of N , then:

(a) Xn ⊆ N ′ + 〈�S(N)〉, for some n ∈ N.

(b) If N ′ is nilpotent, then Xk ⊆ 〈�s(N)〉, for some k ∈ N.

Proof. Observe that N = N/〈�s(N)〉 is distributively generated by
S and N is chained. (Here the bar indicates homomorphic images in N .)
So N/N

′ is a chained ring and since X is a nil one-sided N -subgroup of
N , its homomorphic image N/N

′ is a nil one-sided ideal in the ring N/N
′.

Thus X/N
′ is nilpotent and hence X

n ⊆ N
′, for some n ∈ N. Thus

Xn ⊆ N ′ + 〈�S(N)〉. If N ′ is nilpotent, then so is N
′, and hence X

k = 0,
for some k ∈ N. Thus Xk ⊆ 〈�S(N)〉. �

Lemma 4.2. Let N satisfy the a.c.c. on both left and right ideals

of N . If W is a nil subnearring of N , then:
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(a) W n ⊆ N ′ + 〈�S(N)〉, for some n ∈ N;

(b) if N ′ is nilpotent, then W k ⊆ 〈�S(N)〉 for some k ∈ N.

Proof. Recall that a nil subring of a ring which satisfies a.c.c. on
both left and right ideals must be nilpotent [11]. Proceed as in the proof
of Lemma 4.1 to obtain the desired results. �

For the remainder of this paper R will be distributively generated.

Corollary 4.3. Let R be chained and let X be a nil one-sided R-

subgroup of R. If (R,+) is solvable or if R satisfies a permutation identity,

then X is nilpotent.

Proof. It is known that if (R,+) is solvable or if R satisfies a per-
mutation identity, then R′ is multiplicatively nilpotent. (See [15, Corol-
lary 9.49] and [3, Theorem 1.13], respectively.) �

Corollary 4.4. Let R satisfy the a.c.c. on both left and right ideals

and let X be a nil subnearring of R. If either (R,+) is solvable or R

satisfies a permutation identity, then X is nilpotent.

In Corollaries 4.3 and 4.4 a moment’s reflection reveals that the appro-
priate chain condition could be imposed on R/R′ instead of R, weakening
the hypothesis.

Example 4.5. Let G be the infinite dihedral group and let R = E(G).
Then R is not chained, but R/R′ is. Of course, (R,+) is solvable. So every
nil one-sided R-subgroup of R is nilpotent.

Szele showed that if a ring A has both a.c.c. and d.c.c. on subrings,
then A is finite [22]. This result does not hold for nearrings, not even for
distributive nearrings.

A counter example is provided by starting with a Tarski group T

which is an infinite non-abelian group in which every proper non-trivial
subgroup has order p for some fixed prime p. The zero nearring on T has
both chain conditions on subnearrings but is infinite. However Heatherly

and Meldrum ([10]) were able to extend Szele’s result to distributively
generated nearrings with identity when (R,+) is solvable. We can extend
this further to the following:
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Theorem 4.6. If A is an ideal of (R,S) which has a.c.c. and d.c.c.

on subnearrings and if (A,+) is solvable, then A is finite.

Proof. By Proposition 2.6 A(k)/A(k+1) is a ring for all k. Since A

is solvable, A(n+1) = (0) for some n, so A(n) is a ring. A(n) inherits both
chain conditions, so is finite. Then A(n−1)/A(n) is also a ring with both
chain conditions so A(n−1) is finite. Continuing in this way, we eventually
get A(0) = A is finite. �
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