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Some results related to the Laplacian on vector fields

By FAZILET ERKEKOGLU (Ankara), DEMIR N. KUPELI (Ankara)
and BULENT UBNAL (Ankara)

Abstract. A characterization of Euclidean spheres out of connected, com-
pact, Einstein Riemannian manifolds of constant scalar curvature is made by a
characterization of a vector field with an eigenvalue equation for the Laplacian
on vector fields.

1. Introduction

In analysis, mostly the existence of a nontrivial solution to a differ-
ential equation on a certain domain is argued. But in geometry, one can
also argue the existence of a domain manifold for a differential equation to
possess a nontrivial solution. This may be considered as an analytic char-
acterization (or representation) of a manifold by a differential equation if
this manifold serves as a unique domain for this differential equation to pos-
sess a nontrivial solution in a certain class of manifolds. In the literature,
some characterizations of rank-one symmetric Riemannian manifolds by
differential equations can be found. For example, some known characteri-
zations of Euclidean spheres, complex projective spaces and quaternionic
projective spaces by differential equations can be found in [9], [10], [6],
[14], [13], [3], [8], [1], and also a survey of these results can be found in [5].
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It seems that one of the most significant example of such a character-
ization of Euclidean spheres is a result of OBATA [9], that is, a necessary
and sufficient condition for a connected, complete, n(>2)-dimensional
Riemannian manifold (M, g) to be isometric with the Euclidean sphere
of radius 1/ VA, A > 0, is the existence of a nonconstant function f on
M satisfying the differential equation Hy + Afg = 0, where Hy is the
Hessian form of f on (M,g). In other words, the differential equation
Hy + Afg =0, A > 0, on a connected, complete, Riemannian manifold
(M, g) has a nontrivial solution if and only if its domain (M, g) is the
Euclidean sphere of radius 1/v/A. Also, in this particular example, on
the domain connected, complete Riemannian manifolds (M, g), the differ-
ential equation H;y + Afg = 0, A > 0, can be considered as an analytic
characterization (or representative) of Euclidean spheres. As well, if we
take the trace of the differential equation Hy + Afg = 0 on an n(>2)-
dimensional Riemannian manifold (M, g) with respect g then we obtain
another differential equation (in fact, an eigenvalue equation) Af = —nAf
on (M, g), where Af is the trace of Hy with respect to g. It is shown in [9]
that, if (M, g) is a connected, compact, Einstein n( > 2)-dimensional Rie-
mannian manifold with constant scalar curvature 7 > 0 and there exists
a nonconstant function f on M satisfying Af = —nAf then A < —m,

and in particular, A = — if and only if (M, g) is isometric with the

1)
Euclidean sphere of radius y/n(n —1)/7. Also, in [6], there is stated an-
other differential equation (which is “equivalent” to Hy +Afg =0, A # 0)
on connected, complete Riemannian manifolds (M, g) characterizing Eu-
clidean spheres by the existence of a nontrivial solution to that differen-
tial equation. More precisely, it is shown that, a necessary and sufficient
condition for a connected, complete n( > 2)-dimensional Riemannian man-
ifold to be isometric with the Euclidean sphere of radius 1/v/X, A > 0,
is the existence of a nonzero vector field Z on (M, g) satisfying the dif-
ferential equation (VVZ)(-,-) + A\g(Z,-)- = 0 on (M, g), where VVZ is
the second covariant differential of Z. Hence, in the class of domain con-
nected, complete Riemannian manifolds (M, g), the differential equation
(VVZ)(-,-) + Xg(Z,)- = 0, A > 0, also serves as an analytic charac-
terization (or representative) of Euclidean spheres. Now, if we take the
trace of the differential equation (VVZ)(-,-) + Ag(Z,-)- = 0 on an n(>2)-
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dimensional Riemannian manifold (M, g) with respect g then we obtain
another differential equation (in fact, an eigenvalue equation) AZ = —\Z
on (M,g), where AZ is the trace of VVZ with respect to g. In fact,
the subject of this paper is the differential equation (in fact, the eigen-
value equation) AZ = —AZ on a connected, compact, Einstein n(>2)-
dimensional Riemannian manifold of constant scalar curvature 7. We first
investigate the general analytic properties of the operator A on the space of
vector fields on compact Riemannian manifolds. Secondly we give results
related to the operator A on the space of vector fields on a connected,
compact Einstein n(>2)-dimensional Riemannian manifold (M, g) with
constant scalar curvature 7 > 0. We show that the eigenvalues of the
operator A on the space of vector fields on a connected, compact, Ein-
stein n(>2)-dimensional Riemannian manifold (M, g) with 7 > 0 are
bounded from above by —ﬁ, and this upper bound is achieved by
A only on Euclidean spheres. That is, a necessary and sufficient condi-
tion for a connected, compact, Einstein n( > 2)-dimensional Riemannian
manifold (M, g) with 7 > 0 to be isometric with an Euclidean sphere of
radius \/n(n — 1)/7 is the existence of a nonzero vector field Z on (M, g)
satisfying the differential equation AZ = —mZ . As well, we com-
pletely determine the eigenvector fields satisfying this eigenvalue equa-
tion and in turn, we show that the differential equations Af = —-T5
and AZ = —mZ are “equivalent” on a connected, compact, Einstein
n( > 2)-dimensional Riemannian manifold (M, g) of constant scalar curva-

ture 7 > 0, provided that dim M =n > 3.

2. Preliminaries

Here, we briefly state the main concepts and definitions used through-
out this paper.

Let (V, g) be an n-dimensional inner product space and £(V, V') be the
space of linear transformations on V. We define an inner product (,) on
L(V.V) by

(T, S) = trace(*SoT),
where *S'is the adjoint of S on (V, g). Note that (T, S) = > "7 | g(Te;, Se;),
where {ej,...,e,} is an orthonormal basis for (V,g).
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Moreover, let |T|| = (T, T)'/? denote the norm of a linear transforma-
tion T"in L(V, V). A linear transformation 7" in £(V, V') can be irreducibly
decomposed with respect to g as

T trace T’

I+0+w,
n

where I, 0 and w are, respectively, the identity linear transformation, trace-
less self-adjoint part of T" and the skew-adjoint part of 7. Note that, in
the above decomposition, I, 0 and w are mutually orthogonal with respect
to (,) and hence,

T2 = (trace T')?

2 2
+ o] + [l
Thus ||T|]* > M and, in particular, ||T|> = M iffo=0=w
. _ traceT
iff T = =22=1.
Next we define the Laplacian of a vector field on a Riemannian man-
ifold. Let Z be a vector field on an n-dimensional Riemannian manifold

(M, g) with Levi-Civita connection V. The second covariant differential
VVZ of Z is defined by

(VVZ)(X,Y)=VxVyZ - Vy,vZ,
where X,Y are vector fields on (M, g). We define the Laplacian AZ of Z
on (M, g) to be the trace of VVZ with respect to g, that is,
AZ = trace VVZ = Y (VVZ)(X;, X;),
i=1

where {X7,..., X, } is a local orthonormal frame for TM.
Also, if (M, g) is a compact Riemannian manifold then we can define
an inner product (,) on the vector space I'TM of vector fields on M by

(X,Y) = /Mg<X,Y>,

where X, Y are vector fields on (M, g). Then it can be similarly seen
by following page 158 of [7] that the Laplacian A : I'TM — I'TM is
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a linear, self-adjoint, negative semi-definite operator with respect to (,).
(Also see [2].)

Finally, if Z is a vector field on a Riemannian manifold (M, g) then
the affinity tensor LzV of Z is defined by

(LzV)(X,Y)=LzVxY — Vi, ,xY — VxLzY,

where Ly is the Lie derivative with respect to Z and X, Y are vector fields
on (M, g). (See, for example page 109 of [11].) We define the tension field
OZ of Z on (M, g) to be the trace of Lz V with respect to g, that is,

0Z = traceL;V = » (LzV)(X;, X)),
i=1
where {X1,..., X, } is a local orthonormal frame for TM.

By a straightforward computation, it can be shown by using the tor-
sion-free property of V that

(LyV)(X,Y)=R(Z,X)Y +(VVZ)(X,Y)
(see page 110 of [11]) and hence,
0Z =Ric(Z) + AZ,

where R is the curvature tensor of (M, g), Ric is the Ricci operator of
(M, g) and X, Y are vector fields on (M, g). (See page 40 of [15] and [4].)
A vector field Z on (M, g) is called affine if L;zV = 0, and is called geodesic
if OZ = 0. (See, for example, page 108 of [11], [16] and [4].)

3. Some results related to the Laplacian

First we consider the eigenspace of A corresponding to the zero eigen-
value on a compact Riemannian manifold, that is, the solutions of AZ = 0.

Lemma 3.1. Let (M, g) be a Riemannian manifold and Z be a vector
field on (M, g). Then

1

where A = div 'V also denotes the Laplacian on functions on left.
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PROOF. See page 158 of [11] or [2]. O

Theorem 3.2. Let (M,g) be a compact Riemannian manifold and
Z be a vector field on (M,g). Then, AZ = 0 iff VZ = 0, that is, Z is
parallel on (M, g).

PROOF. “Only if” part is obvious. For the “if” part, since
Ja Bg(Z, Z) = 0, it follows from Lemma 3.1 that [,, g(AZ, Z)+ [, [V Z]?
= 0. Hence by g(AZ, Z) =0, we obtain [}, [|[VZ|*=0, thatis, VZ =0. O

In conclusion, we can say that, on a compact Riemannian manifold
(M, g), the eigenspace corresponding to the zero eigenvalue of A consists
of parallel vector fields on (M, g). Also note here that, since Ric(Z,Z) =0
for a parallel vector field Z, where Ric is the Ricci tensor of (M, g), the
eigenspace corresponding to the zero eigenvalue of A does not exist if
Ric(z,z) # 0 for every 0 # x € T,M at some p € M.

Remark 3.3. Note that, on a compact Riemannian manifold (M, g),
A :TTM — I'T'M is a linear, self-adjoint, negative semi-definite operator.
Furthermore, it can be easily observed that A is an elliptic operator. Thus,
by the spectral theorem, the eigenvalues \; of A are of the form

—00 — N << AL < A =0

Thus, if Ric(z,z) # 0 for every 0 # x € T,M at some p € M, then the
largest eigenvalue of A on the vector space of vector fields on (M, g) is
negative.

Lemma 3.4. Let (M,g) be a compact n-dimensional Riemannian
manifold and Z be a vector field on (M, g). Then

g(AZ,Z)g—l Ric(Z,Z) + | trace(VZ)?|,
M nlJm M

where Ric is Ricci tensor of (M, g).
PrOOF. To prove this, we use the following two facts: [|[VZ|? >

. 2
% (see the Preliminaries) and

/M Ric(Z,Z) + /M trace(VZ)? — /M(div Z)2=0
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(see p. 170 of [11]). Now by Lemma 3.1, since [,, Ag(Z,Z) =0,

/Mg(AZ, 7) = —/M IV Z|? < —%/M(din)Z

= _% [/M Ric(Z,Z) + /M trace(VZ)ﬂ : O

Recall that a Riemannian manifold (M, g) is called Einstein if Ric =
cg, where ¢ is constant. It can be easily shown that, then ¢ = 7/n, where
7 is the scalar curvature of (M, g). Now we state a relation between the
eigenvalue and eigenvector field in the eigenvalue equation AZ = AZ for
compact Einstein Riemannian manifolds.

Theorem 3.5. Let (M, g) be a compact, Einstein n( > 2)-dimensional
Riemannian manifold with scalar curvature = and Z be a nonzero vector
field on (M, g) satisfying the eigenvalue equation AZ = \Z. Then

2
A< T 1 Jys trace(VZ)

2 n [,9Z2)

The equality holds iff VZ = (div Z/n)I, and in this case, A = —n(nT_l) and
hence 7 > 0.

PRrROOF. By Lemma 3.4, since AZ = A\Z and Ric = g, we have

/\/Mg(Z, 7)< —% [% /Mg(Z, Z) +/Mtrace(VZ)2] .

< T 1 [, trace(VZ)?
- n?2 on [,92,2)

Also note that, in the proof of Lemma 3.4, equality holds iff |[VZ|?> =

(div Z)?/n iff VZ = (div Z/n)I by the Preliminaries. In this case,

trace(VZ)? = (div Z)?/n and it follows from

/M Ric(Z,Z) + /M trace(VZ)? — / (divZ)?2 =0

M

Thus

that
Z/ 9(Z, Z)—l—/ trace(VZ)Q—n/ trace(VZ)? = 0.
nJm M M
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Thus
Sy trace(VZ)2 1
and hence
[
 n2 nan(n-1)
- T
n(n—1)

Also, since A is negative semi-definite on the vector space of vector fields
on (M, g), it follows that 7 > 0. O

Theorem 3.6. Let (M, g) be a compact, connected, Einstein n( > 2)-
dimensional Riemannian manifold with 7 # 0. If there exists a nonzero
vector field Z on (M, g) satisfying the eigenvalue equation AZ = \Z and

T 1 [, trace(VZ)?

A= 2 M P
n? n fMg(Z,Z) ’

then, 7 > 0 and (M, g) is isometric with the Euclidean sphere of radius
r=+/n(n—1)/t.

ProOOF. By Theorem 3.5, A = —m and 7 > 0. Then by Theo-
rem 3.2, Z is not parallel and it follows that 0 < ||VZ||? = (div Z)?/n
at some point p € M because VZ = %] by Theorem 3.5. Now, let
{X1,...,X,} be an adapted moving frame near p € M, that is, {Xy,...,
Xy} is a local orthonormal frame for TM near p with (VX;), = 0, (see

page 152 of [11]). Then at p € M,

n

AZ =3 (Vx,Vx.Z = Vi x.Z)
i=1

= % Y Vx,((div 2)X;)
=1

1 n
= Y g(VdivZ, X)X,
=1

= lV div Z.
n



Some results related to the Laplacian on vector fields 145

Thus from -
AN, =————7
nn—1)"
we have -
VdivZ = — Z
n—1
and it follows that
AdivZ = ——1 _divZ
n—1

Hence by Theorem 5 of [9], (M, g) is isometric with the Euclidean sphere
of radius r = y/n(n—1)/7. O

Now, we give an example of a vector field Z on an n( > 2)-dimensional
Euclidean sphere S™(r) of radius » = y/n(n —1)/7 which satisfies the
assumptions of Theorem 3.5. (See page 117 of [11] for details.) Let x :
S™(r) — {south pole} — R™ be the stereographic projection and Z be a
vector field on R™ defined by Z, = (p,p). Let g be the metric tensor on
R™ such that x*g is the usual metric tensor on S™(r) — {south pole}. Note
that g is conformally equivalent to the standard metric tensor g on R”,

2
g =r2<—2 )y
Y L+pl2) 7"

at each p € R™, where || || is the Euclidean norm. Hence if we denote the

specifically,

Levi-Civita connection of g by V, it can be shown that, at each p € R",

= 1—|p|l?
vz =" 7
1+ [|pl?

Also by a straightforward computation, it can be shown that

KZ:—%Z
where A is the Laplacian on (R",§). Since (S"(r) — {south pole}, x*§)
and (R", g) are isometric by the stereographic projection, the vector field
on S™(r), obtained by taking the lift of Z on S™(r) — {south pole} and
defining its value as the zero vector at the south pole, also satisfies the
above eigenvalue equation on S™(r). Also, by the form of vZ , the equality
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in Theorem 3.6 holds. Note that, this way we can construct n + 1 linearly
independent such vector fields on S”(r). (See also Remark 3.15.)

Remark 3.7. Let (M,g) be a compact, Einstein n(> 2)-dimensional
Riemannian manifold with scalar curvature 7 and Z be a vector field on
(M, g). Note that, by OZ = ﬁE(Z) + AZ (see the Preliminaries), Z is a
geodesic vector field iff

Az=-1z
n
When we consider the equations AZ = —mZ and AZ = —~Z in
the case of dimM = n = 2, then they are equivalent, that is, AZ =
—57. Thus, on a compact, Einstein 2-dimensional Riemannian manifold
(M, g) with scalar curvature 7, the vector fields in the eigenspace of A
corresponding to the eigenvalue —7 are the geodesic vector fields. In the
case of Euclidean spheres, the vector field Z on S?(r) in the above example
is really a geodesic vector field which is not Killing. This also provides
an explicit example of a geodesic vector field on a compact Riemannian
manifold which is not Killing (see [4]). Moreover a further observation can
also be made here. If we consider the eigenspace of A corresponding to
the eigenvalue —% on I'TS?(r), there are also Killing vector fields Z in this
eigenspace, and since trace(VZ)? < 0 for a Killing vector field Z,
r o1 fSQ(T) trace(VZ)?

——<
2 4 2 fSQ(T)g(Z,Z)

Thus we conclude that, on S?(r), every vector field Z satisfying AZ = —57
does not necessarily satisfy the equality in Theorem 3.6. In fact, the ex-
istence of such vector fields is a special property of Euclidean spheres
as we see in Theorem 3.13. On the other hand, it is known that, on
a compact n(>2)-dimensional Riemannian manifold (M, g), a necessary
and sufficient condition for a vector field Z to be conformal is that (07 +
12V div Z = 0. (See page 47 of [15].) Thus, if (M, g) is a compact, Ein-
stein, 2-dimensional Riemannian manifold with scalar curvature 7, it can
be observed that, a vector field Z is geodesic iff Z is conformal. Thus the
eigenspace of A corresponding to the eigenvalue —7 consists of conformal
vector fields on (M, g). Later in Remark 3.15, we will provide the complete
view of dim M =n = 2.
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Now, it is natural to ask whether — is the largest eigenvalue can

-

n—1)
be achieved by the Laplacian A on I'TM of a compact, Einstein n( > 2)-
dimensional Riemannian manifold (M, g) with scalar curvature 7 > 0, and
when it is achieved, whether (M, g) is isometric with an Euclidean sphere.

Next we provide affirmative answers to these questions.

Lemma 3.8. Let (M,g) be an Einstein n-dimensional Riemannian
manifold with scalar curvature T and Z be a vector field on (M, g). Then

AdivAZ = LdivZ + AdivZ
n

where A denotes both Laplacians on vector fields and functions on (M, g).

ProoOF. This can be obtained from the commuting properties of A
with div and V. (See, for example, pages 154 and 168 of [11]).) O

It is shown in [9] that, if (M,g) is a compact, connected, Einstein
n( > 2)-dimensional Riemannian manifold with 7 > 0 then the eigenvalues
A of the Laplacian A on the vector space of functions on (M, g) are bounded
from above by ——T, that is, if Af = A\f with f # constant on (M, g) then
A < ——T=. In particular, a necessary and sufficient condition for (M, g) to
be isometric with the Euclidean sphere of radius r = y/n(n — 1)/7 is the
existence of an eigenfunction f of A on (M, g) with eigenvalue A = —
that is, Af = -5 f.

Now, we prove an analogue of this result for the Laplacian on vector
fields on a compact, Einstein n( > 2)-dimensional Riemannian manifold
with 7 > 0.

_T_
n—1’

Theorem 3.9. Let (M, g) be a compact, connected, Einstein n( > 2)-
dimensional Riemannian manifold with = > 0. If Z is a nonzero vector
field satisfying the eigenvalue equation AZ = A\Z on (M,g) then A <
—m. In particular, a necessary and sufficient condition for (M, g) to
be isometric with the Euclidean sphere S™(r) of radius r = y/n(n — 1)/7 is
the existence of a nonzero vector field Z with div Z # 0 on (M, g) satisfying

the eigenvalue equation AZ = —mZ.

PROOF. Let AZ = A\Z for a nonzero vector field Z on (M, g). Then
divAZ = Adiv Z and by Lemma 3.8,

Adiv Z = %din—i—Adin.
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Thus AdivZ = (A - I) din If div Z # 0, then from Theorem 3 of [9],
we obtain that A — 7 < ——7= that is, A < — In particular, if
A= —m then Adle = —m
for (M, g) to be isometric with the Euclidean sphere S™(r) of radius r =
vn(n —1)/7 follows from Theorem 5 of [9]. The necessary condition for
(M,g) to be isometric with the Euclidean sphere S™(r) of radius r =
/n(n —1)/7 follows from the example of the vector field Z on S"(r) which
is given below Theorem 3.6. To complete the proof of the first part of the

T

n(n=1)"

n(nT 1)°
div Z and the sufficient condition

theorem, we now show that, if divZ = 0 then we still have A < —
From the identity

/MRic(Z,Z)+/M (AZ,Z) /HLZg||2 /M(din)2:0

for a vector field Z on a compact Riemannian manifold (M, g) (see p. 170
of [11]), we obtain for our case that

; R —
— Z,7) + = Lzg|* =
(Z+2) [ azz)+ 5 [ Izl

Thus, this does not lead to a contradiction only if =~ + A < 0, that is,
A< -2 (§ — ﬁ) in completing the proof. O

Remark 3.10. Note that, if dim M = n > 3 in Theorem 3.9, then we
can remove the assumption that div Z # 0 on the vector field Z satisfying

the eigenvalue equation AZ = Z in the statement of the theorem

_n(n 1)
above. Indeed, again by using the identity

/MRic(Z,Z)+/M (AZ,Z) /HLZg||2 /M(din)2:0

for a vector field Z on a compact Riemannian manifold (M, g), we obtain
for our case that

(o) sz [ 1gzae - [ @vzp-o

Thus, if div Z = 0 then this leads to a contradiction when dim M =n > 3.
That is, if dim M = n > 3 then necessarily div Z # 0.
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Now we state the special case of Theorem 3.9 for dim M = n = 2 below
in terms of geodesic vector fields. Recall that, on a compact, Einstein 2-
dimensional Riemannian manifold, a vector field Z is geodesic iff Z is
conformal. (See Remark 3.7.)

Corollary 3.11. Let (M, g) be a compact, connected, Einstein 2-di-
mensional Riemannian manifold with 7 > 0. A necessary and sufficient
condition for (M,g) to be isometric with the 2-dimensional Euclidean
sphere S%(r) of radius r = \/2/—7' is the existence of a geodesic vector
field Z on (M, g) with div Z # 0 (that is, Z is not Killing).

PrRoOOF. Note that, on a compact, Einstein 2-dimensional Riemannian

manifold, a vector field Z is geodesic iff AZ = —7Z, and a geodesic vector
field Z is Killing iff divZ = 0 (see [4]). Hence the proof follows from
Theorem 3.9. U

Recall that, on a compact Einstein n(> 2)-dimensional Riemannian
manifold (M, g) with 7 > 0, the eigenspace of A corresponding to the
eigenvalue — = consists of geodesic vector fields by their definition. In [16],
it is shown that these vector fields are of the form Z = X+ V f, where X is
a Killing vector field and f is a function satisfying Af = —2= f on (M, g),
and X and f are uniquely determined. Now we determine the form of the
vector fields satisfying AZ = —mZ on a compact Einstein n(>2)-
dimensional Riemannian manifold. (Note that we already know their form
from the above for dim M = n = 2 since they are geodesic vector fields in

this case.)

Lemma 3.12. Let (M,g) be an Einstein n-dimensional Riemannian
manifold with scalar curvature T and Z be a vector field on (M, g). Then

AV div Z = %v div Z + VA div Z,
where A denotes both Laplacians on vector fields and functions on (M, g).
PrRoOOF. Note that, by Lemma 3.8,
VdivAZ = ZVdivZ + VAdivZ.

Hence it suffices to show that VdivAZ = AV divZ. Again this can be
shown by a straightforward computation similar to the proof of Lemma 3.8.
O
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Theorem 3.13. Let (M,g) be an Einstein n( > 2)-dimensional Rie-
mannian manifold with scalar curvature 7. If Z is a vector field satisfying
the eigenvalue equation AZ = A\Z on (M, g) then V div Z also satisfies the
eigenvalue equation AV divZ = AV divZ on (M, g).

PrOOF. If AZ = AZ then, as in the proof of Theorem 3.9, we obtain
by Lemma 3.8 that AdivZ = (A — 7)divZ. Hence by Lemma 3.12, we
have

AV div Z = ()\— %) v div Z + %Vdin

= A\Vdiv Z. t

Theorem 3.14. Let (M,g) be a compact, Einstein n(> 3)-dimen-
sional Riemannian manifold with 7 > 0. Then every nonzero vector field
7 satisfying the eigenvalue equation AZ = —mZ on (M, g) is of the
form Z = V f, where f is a function on (M, g) satisfying the eigenvalue

equation Af = — T3 f, and the function f is uniquely determined.

PROOF. Let Z be a nonzero vector field satisfying the eigenvalue
equation AZ = —mZ and W be a vector field on (M, g) defined by
W = Z+ 2=VdivZ. Then it follows from Theorem 3.13 that W sat-
isfies the eigenvalue equation AW = —ﬁw on (M, g). Furthermore,
since AdivZ = —-T5divZ (see the proof of Theorem 3.9), we obtain
that divW = 0. Now if W # 0, the vanishing divergence of W leads to
a contradiction by Remark 3.10 since dimM =n > 3. Thus W = 0 and
hence Z = —"T_IV divZ. That is Z = V[, where f satisfies the eigen-
value equation Af = ——T= f. Conversely, let Z = V f, where f satisfies
the eigenvalue equation Af = —-T= f. Note that, then by [9], the Hessian
tensor of f is scalar, that is, VVf = —mfl. Now it can be shown
as in the proof of Theorem 3.6 that AV f = —ﬁVf. Finally, to show
that f is uniquely determined, let Z be a nonzero vector field satisfying
AZ = —ﬁZ with Z = Vf; = V/fs, where Af; = —-T5f;,i = 1,2.
Then V(f1 — f2) = 0 and consequently, f; — fo = constant on each con-
nected component of M. Now by applying A to this equation, we obtain

——5(f1 — f2) = 0, and consequently, fi = f on M. O
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Remark 3.15. Note that the above Theorem indicates that an eigen-

vector field of A on I'TM corresponding to the eigenvalue — on a

-
n(n—1
compact Einstein n( > 3)-dimensional Riemannian manifold (]E4 , g% with
7 > 0 is more than a conformal vector field, in fact, a special confor-
mal vector field-that is a conformal vector field whose covariant differen-
tial consist of only expansion factor-we obtained in Theorem 3.6. Now
we determine the dimension of the eigenspace of A corresponding to the
eigenvalue —ﬁ on a compact, connected, Einstein n( > 3)-dimensional
Riemannian manifold (M, g) with 7 > 0. Now note that, by the above
Theorem, the dimensions of the eigenspaces of A corresponding to the
eigenvalues —m and ——=5 on the vector spaces of vector fields and
functions on (M, g) respectively, are equal. (Indeed, this can be easily seen
from the fact that; if f; and fy are eigenfunctions of A corresponding to
the eigenvalue — 5 then, f; and fy are linearly independent iff V f; and
V fo are linearly independent). Hence, if the eigenspace of A correspond-
ing to the eigenvalue —ﬁ on I'TM exists, then by Theorem 3.9, (M, g)
is isometric with the Euclidean sphere of radius r = \/n(n — 1)/7, and it
follows that the dimension of this eigenspace is equal to n + 1 since the
dimension of the eigenspace of A on the vector space of functions on S™(r)
is n + 1. (See page 272 of [12].) Now let (M, g) be a compact, connected,
Einstein 2-dimensional Riemannian manifold. Then as we discussed in
Remark 3.7, the eigenspace of A corresponding to the eigenvalue —3 on
I'TM consists of geodesic vector fields by their definition. (Recall that,
in this dimension, a vector field is geodesic iff it is conformal.) In [16],
the form of a geodesic vector field Z on a compact Einstein 2-dimensional
Riemannian manifold with 7 > 0 is given by Z = X 4+ V f, where X is a
Killing field on (M, g) and f is a function on (M, g) satisfying the eigen-
value equation Af = —7f, and X and f are uniquely determined. (Recall
from Corollary 3.11 that, (M, g) is isometric to the Euclidean sphere S?(r)
of radius r = \/2/—7' iff there exists a geodesic vector field Z on (M, g)
with div Z # 0.) On the other hand, we have two possibilities for (M, g)
as the Euclidean sphere S?(r) or real projective space RP2(r) with radius

r=+/2/7. If (M, g) is S*(r) then the eigenspace of A corresponding to the
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eigenvalue —5 on I'TS?%(r) is 6-dimensional since the eigenspace of A cor-
responding to the eigenvalue —7 on the vector space of functions on S?(r)
is 3-dimensional and the vector space of Killing vector fields on S?(r) is
3-dimensional. (Note that the vector fields of the form V f and Killing vec-
tor fields are linearly independent on compact Riemannian manifolds.) If
(M, g) is RP2(r) then the eigenspace of A corresponding to the eigenvalue
—Z on I'TRP?(r) is 3-dimensional since there is no nonconstant function
satisfying the eigenvalue equation Af = —7f on RP?(r) and the vector
space of Killing vector fields on RP?(r) is 3-dimensional. (Also note that,
on S§™(r), where n > 3, all geodesic vector fields are Killing since —27 is
not an eigenvalue of A on the space of functions on S™(r) (see page 272
of [12])) and hence, the vector space of geodesic vector fields on S™(r) is
n(n+1)

(%5%)-dimensional.)

Remark 3.16. Let (M, g) be a compact n( > 2)-dimensional Riemann-
ian manifold. Recall that the tension operator [ on I'TM given by
0z = P/{E(Z) + AZ is also a linear, self-adjoint, elliptic operator with
respect to the inner product (,) on I'TM defined in the Preliminaries.
Hence furthermore, if (M, g) is Einstein with 7 > 0 then it follows from
Theorem 3.9 that the eigenvalues of [J on I'TM are bounded from above

by T(n("n—__Zl)), that is, if Z is a nonzero vector field on (M, g) satisfying the

n—2
n(n—1)

the eigenvalue 7'(71(7;—__21)) only on Euclidean spheres by giving another

eigenvalue equation 17 = puZ then pu < 7'( ) Clearly, [ achieves
necessary and sufficient for a compact, connected, Einstein Riemannian
manifold with 7 > 0 to be isometric with the Euclidean sphere of radius
r = y/n(n —1)/7, provided that dim M = n > 3. See Corollary 3.11 when
dimM =n = 2.

Remark 3.17. Let (M, g) be an n( > 2)-dimensional Riemannian man-
ifold. The Hodge Laplacian AZ of a vector field Z on (M, g) is defined
by AZ = AZ — P/{E(Z) A vector field Z on (M, g) is called harmonic if
AZ = 0. Note that A is also a linear elliptic operator on I'T'M, and if
(M, g) is compact, it is self-adjoint with respect to the inner product (,) on
I'TM defined in the Preliminaries. Furthermore if (M, g) is Einstein with
7 > 0 then it follows from Theorem 3.9 that the eigenvalues of AonTTM
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are bounded from above by —-75, that is, if Z is a nonzero vector field

on (M, g) satisfying the eigenvalue equation AZ = wZ then yp < ——T=

’
n—1"

Clearly, A achieves the eigenvalue — "5 only on Euclidean spheres by giv-

ing another necessary and sufficient for a compact, Einstein Riemannian

manifold with 7 > 0 to be isometric with the Euclidean sphere of radius
r = y/n(n —1)/7, provided that dim M = n > 3. See Corollary 3.11 when
dimM =n = 2.
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