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Finitely generated Banach algebras
and local Nullstellensätze

By DOUGLAS BRIDGES (Christchurch), ROBIN HAVEA (Suva)
and PETER SCHUSTER (München)

Abstract. The spectrum of a separable, commutative, unital Banach alge-
bra with a finite set of topologically independent generators is characterised and
shown to be firm (in Bishop’s sense). This result is then used to provide local
Nullstellensätze for algebras of power series and polynomials over C. All results
in the paper are fully constructive.

1. Introduction

Throughout this paper we use the term Banach algebra to signify a
separable, commutative, unital Banach algebra over the complex field C.

Working within Bishop-style constructive mathematics (which is, essen-
tially, mathematics with intuitionistic logic), we discuss a strong property
– firmness (to be defined shortly) – of the spectrum (character space) of a
Banach algebra, show that a Banach algebra with a particular kind of finite
generating set has a firm spectrum, and then apply that result to prove
local versions of Hilbert’s Nullstellensatz for power series and polynomials
over C

m. This gives partial answers to a question raised by Schuster

in his discussion of the Nullstellensatz for polynomials over Heyting fields
[11]. Our approach should be compared with that found in [10], which is
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based on result in the constructive theory of commutative Banach algebras
that is more fundamental than our work on finitely-generated algebras.

A classical Banach-algebraic proof of the standard Nullstellensatz for
polynomials was given by Langmann [6], but his arguments depend heav-
ily on nonconstructive moves. Brownawell [2] produced estimates of the
maximal degree of the polynomials produced in the standard Nullstellen-
satz; but, despite his work being labelled as ‘constructive’ [9], since it
uses classical logic without Church’s thesis it does not actually tell us how
to find the polynomials in question.1 By staying within the bounds set
by intuitionistic logic, and in particular by excluding Zorn’s Lemma and
the full Axiom of Choice, our proofs are fully constructive: in principle,
we can extract an algorithm from such a proof, the proof itself showing
that this algorithm meets its specification. (For work on the extraction of
algorithms from constructive proofs, see [3], [4], [7].)

In order to set the topological scene for the paper, we first describe how
we deal with the weak∗ topology on the dual X∗ of a separable normed
linear space X. Given a dense sequence (xn)∞n=1 in X, we defined the
corresponding weak∗-norm (also called the ‘double norm’) on X∗ as follows:

|||φ||| =
∞∑

k=1

|φ(xk)|
2k(1 + ‖xk‖) (φ ∈ X∗).

Weak∗-norms arising from different dense sequences in X give rise to the
same metric topology – the weak∗ topology – on the unit ball of X∗ ([1],
pages 350–351).

The definitive constructive treatment of the elementary theory of Ba-
nach algebras is due to Errett Bishop and is presented in Chapter 9 of
[1]. That theory is based on two pillars. The first of these enables us to
overcome an inability to ensure that the spectrum Σ of a Banach algebra
A is weak∗ compact, by expressing Σ as the intersection of a descending
sequence of compact subsets of the unit ball A∗

1 of A∗. To be precise,
denoting the identity of A by 1, and given a dense sequence (xn)∞n=1 in A,
we say that a sequence (rn)∞n=1 of positive numbers is admissible relative
to (xn)∞n=1 if

1The ‘constructive’ proof found in [8] also uses classical logic and so is not constructive
in our sense.
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• r1 > r2 > · · · > rn → 0 as n → ∞ and
• for each n the nth associated set

Σn =
{
u ∈ A∗

1 : |u(1) − 1| � rn

∧ ∀j, k � n (|u(xjxk) − u(xj)u(xk)| � rn)
}

is nonempty and compact.

In that case, Σ =
⋂∞

n=1 Σn.
According to Proposition (2.7) on page 460 of [1], there exist admissi-

ble sequences relative to any given dense sequence in A. The connection
between two admissible sequences is provided by the following lemma,
whose routine, tedious proof we omit.

Lemma 1. Let (xn), (x′
n) be dense sequences in A, let (rn), (r′n) be

strictly decreasing sequences of positive numbers converging to 0 such that

for each n the sets

Σn =
{
u ∈ A∗

1 : |u(1)− 1| � rn ∧ ∀j, k � n (|u(xjxk)− u(xj)u(xk)| � rn)
}

and

Σ′
n = {u ∈ A∗

1 : |u(1) − 1| � r′n ∧ ∀j, k � n (|u(x′
jx

′
k) − u(x′

j)u(x′
k)| � r′n)}

are nonempty and compact. Then for each n there exists m such that

Σ′
m ⊂ Σn.

The second pillar of Bishop’s theory is

Theorem 2. Let A be a Banach algebra, and let (Σn)∞n=1 be as above.

Let x1, . . . , xm be elements of A, δ a positive number, and n a positive

integer such that

|u(x1)| + · · · + |u(xm)| � δ (u ∈ Σn).

Then there exist R > 0 (depending on only m,n, and δ) and elements

y1, . . . , ym of A such that ‖yk‖ � R for each k, and y1x1 + · · ·+ymxm = 1.

([1], page 459, Proposition (2.6)).

The background reference for our paper is Chapter 9 of [1], but we
have already stated the parts of that chapter that have most significance
for the work presented below.



174 Douglas Bridges, Robin Havea and Peter Schuster

2. Finitely generated Banach algebras

We say that the spectrum Σ of A is firm if

• it is compact and

• for some dense sequence in A, and some admissible sequence (rn) with
associated sets Σ1,Σ2, . . . ,

ρ(Σn,Σ) → 0 as n → ∞.

Here and elsewhere, ρ denotes the Hausdorff metric, corresponding to the
weak∗ norm, on the set of compact subsets of A∗

1.
It follows from Lemma 1 that the property of firmness of the spec-

trum is independent of the dense sequence and corresponding admissible
sequence.

In order to provide an important example of a Banach algebra with
firm spectrum, we need a couple of preliminaries, the first of which is set
in the more general context of a compact metric space.

Lemma 3. Let K1 ⊃ K2 ⊃ . . . be a decreasing sequence of compact

sets in a metric space, and let K =
⋂∞

n=1 Kn. Suppose that ρ(Kn,K) → 0
as n → ∞, in the sense that

∀ ε > 0 ∃N ∀x ∈ KN ∃ y ∈ K (ρ(x, y) < ε).

Then K is compact.

Proof. Given ε > 0, choose n such that for each x ∈ Kn there exists
y ∈ K with ρ(x, y) < ε. Let {x1, . . . , xm} be a finitely enumerable ε-ap-
proximation to Kn, and for each i (1 � i � m) construct yi ∈ K such
that ρ(xi, yi) < ε. Since K ⊂ Kn, it readily follows that for each y ∈ K

there exists i such that ρ(y, yi) < 2ε. Hence K is totally bounded. Being
the intersection of closed sets, it is a closed subset of K1; but K1, being
compact, is complete, as therefore is K. �

For each positive integer N and each z = (z1, . . . , zN ) in C
N , we define

‖z‖∞ = sup{|zk| : 1 � k � N}.
If v maps C into C, then we write

v(z) = (v(z1), . . . , v(zN )) (z ∈ C
N ).
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Writing X = (X1, . . . ,XN ), let C[X] denote the ring of polynomials
in the N variables Xi over C. For each positive real number r, let Ar〈X〉
denote the ring of formal power series

∑∞
|ν|=0 aνX

ν in the Xi over C such
that the r-norm ∥∥∥∥

∞∑
|ν|=0

aνXν

∥∥∥∥
r

=
∞∑

|ν|=0

|aν |rν

exists, where, for a multi-index ν = (ν1, . . . , νN ),

rν = rν1+···+νN .

Note that C[X] is r-norm dense in Ar〈X〉. Define the product of∑∞
|ν|=0 aνX

ν and
∑∞

|ν|=0 bνXν in Ar〈X〉 to be the element
∑∞

|ν|=0 cνX
ν ,

where

cν =
|ν|∑

|α|=0

aαbν−α.

With this multiplication operation, Ar〈X〉 is a separable commutative
Banach algebra.

We shall return to consider this special Banach algebra later. In the
mean time, let ξ1, . . . , ξN be elements of a general Banach algebra A.
Writing ξ = (ξ1, . . . , ξN ) and

‖ξ‖∞ = sup {‖ξi‖ : 1 � i � N} ,

we see that

C[ξ] = {p(ξ) : p ∈ C[X]}

is a subalgebra of A, and that the mapping p � p(ξ) is an algebra ho-
momorphism of C[X] onto C[ξ]. This homomorphism is a bounded linear
mapping relative to the product norm on AN and the r-norm on C[ξ]: for,
writing

p(X) =
d∑

|ν|=0

pνX
ν ,
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we have

‖p(ξ)‖∞ �
d∑

|ν|=0

|pν |‖ξν‖ �
d∑

|ν|=0

|pν |‖ξ‖ν

�
(

max
0�|ν|�d

r−ν‖ξ‖ν
)
‖p‖r.

We say that nonzero vectors ξ1, . . . , ξN are

◦ algebraically independent if

∀p ∈ C[X] (p(ξ) = 0 ⇒ ‖p‖1 = 0)

and

◦ topologically independent if

∀ε > 0 ∃δ > 0 ∀p ∈ C[X] (‖p(ξ)‖∞ < δ ⇒ ‖p‖1 < ε).

Topological independence clearly implies algebraic independence. If the
vectors ξi are algebraically independent, then p(ξ) � p is an algebra ho-
momorphism from C[ξ] onto (C[X], ‖ · ‖r). If they are topologically inde-
pendent, then this homomorphism is a bounded linear mapping between
these normed algebras; so

‖p(ξ)‖r = ‖p‖r (p ∈ C[X])

defines a new norm on C[ξ] that is equivalent to the one induced by the
original norm on A.

Recall that a generating set for the Banach algebra A is a set G such
that the set of polynomials in G is dense in A; we then say that A is
generated by the elements of G. For example, the Banach algebra Ar〈X〉 is
generated by the unit vectors X1, . . . ,XN . In general, if a Banach algebra
A is generated by the topologically independent vectors ξ1, . . . , ξN , then
we can extend the norm ‖·‖r from C[ξ] to A = C[ξ] by continuity, to obtain
a norm on A that is equivalent to the original one. Thus, for all practical
purposes, we may take such an A to be the Banach algebra Ar〈X〉 with
its standard norm.
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Proposition 4. Let A be a Banach algebra generated by vectors

ξ1, . . . , ξN that are topologically independent. For each z ∈ C
N with

‖z‖∞ � 1 there is a unique character uz of A such that

uz(p(ξ)) = p(z) for each p ∈ C[X]. (1)

Conversely, for each character u of A there exists a unique z ∈ C
N with

‖z‖∞ � 1 such that u = uz.

Proof. Since the vectors ξi, being topologically independent, are al-
gebraically independent, for each z ∈ C

N with ‖z‖∞ � 1, equation (1)
defines a function φ from C[ξ] to C[z]; in fact, φ is the composition of the
functions p(ξ)� p and p� p(z). It is easy to see that φ is multiplicative
and linear. Moreover, the hypothesis of topological independence ensures
that φ is a bounded linear functional and therefore a character of C[ξ].
Extending uz by continuity, we obtain a character of A.

Conversely, given any character u of A and writing

z = (u(ξ1), . . . , u(ξN )),

we see from the linearity and multiplicativity of u that

u(p(ξ)) = p(z) = uz(p(ξ))

for each p ∈ C[X]. �

Proposition 5. The spectrum of a Banach algebra with a finite set

of topologically independent generators is firm.

Proof. Let ξ1, . . . , ξN be topologically independent unit vectors that
generate the Banach algebra A. There is a sequence (pn)∞n=1 of polynomials
of determinate degree over C

N such that (pn(ξ))∞n=1 is dense in A. For
each positive integer k let sk(ξ) be the finite sequence of monomials ξν

with multi-index ν satisfying |ν| = k. Then the sequence

s1(ξ), p1(ξ), s2(ξ), p2(ξ), s3(ξ), p3(ξ), . . .

is also dense in A. Compute an admissible sequence (rn) of positive num-
bers relative to the latter dense sequence, and let (Σn) be the sequence of
associated sets in A∗

1. For convenience, we take the case N = 2. We first
prove that
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(i) for each ε > 0 and each positive integer k there exists nk such that

sup
v∈Σnk

max
1�i+j�k

∣∣v(ξi
1ξ

j
2) − v(ξ1)iv(ξ2)j

∣∣ < ε. (2)

The case k = 1 is trivial. Assuming that for some k � 1 we have found nk

such that (2) holds, let

δ = ε − sup
v∈Σnk

max
1�i+j�k

∣∣v(ξi
1ξ

j
2) − v(ξ1)iv(ξ2)j

∣∣ > 0.

Choose nk+1 > max{k, nk} such that rnk+1
< δ and

∣∣v(ξi
1ξ

j
2) − v(ξ1)v(ξi−1

1 ξj
2)

∣∣ � rnk+1

whenever v ∈ Σnk+1
and i, j are positive integers with i + j � k + 1.

Consider such v, i, and j. Since Σnk+1
⊂ Σnk

, to complete the induction
we may assume that i+j = k+1. By our choice of rnk+1

and our induction
hypothesis, we have

∣∣v(ξi
1ξ

j
2) − v(ξ1)iv(ξ2)j

∣∣ =
∣∣v(ξi

1ξ
j
2) − v(ξ1)v(ξi−1

1 ξj
2)

∣∣

+
∣∣v(ξ1)v(ξi−1

1 ξj
2) − v(ξ1)v(ξ1)i−1v(ξ2)j

∣∣

� rnk+1
+

∣∣v(ξ1)
∣∣∣∣v(ξi−1

1 ξj
2) − v(ξ1)i−1v(ξ2)j

∣∣

< δ +
∣∣v(ξi−1

1 ξj
2) − v(ξ1)i−1v(ξ2)j

∣∣

and therefore ∣∣v(ξi
1ξ

j
2) − v(ξ1)iv(ξ2)j

∣∣ � ε.

Since this last inequality holds trivially when i = 0 or j = 0, we have
completed the inductive proof of (i).

Next we prove

(ii) for each ε > 0 and each positive integer n there exists N such that

sup
v∈ΣN

max
1�k�n

|v(pk(ξ)) − pk(v(ξ))| < ε.
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Fixing ε > 0 and the positive integer n, choose a constant c greater than the
maximum of the moduli of all the coefficients of the polynomials p1, . . . , pn,
and let d be the maximum of the (determinate) degrees of those polyno-
mials. Let t be the number of polynomial terms ξν with |ν| � d. By (i)
above, there exists N such that rN < ε/2c and

∣∣v(ξi
1ξ

j
2) − v(ξ1)iv(ξ2)j

∣∣ <
ε

2ct
(v ∈ ΣN ; i, j � 0; 1 � i + j � d).

Consider any v ∈ ΣN and any pk with 1 � k � n. Writing z = (z1, . . . , zN )
and

pk(z) =
d∑

|ν|=0

cνzν ,

we have

|v(pk(ξ)) − pk(v(ξ))| =
∣∣∣∣

d∑
|ν|=0

cν(v(ξν) − v(ξ)ν)
∣∣∣∣

� |c0||v(1) − 1| +
d∑

|ν|=1

|cν ||v(ξν) − v(ξ)ν |

� crN + c
d∑

|ν|=1

ε

2ct
<

ε

2
+

(t − 1)ε
2t

< ε.

This completes the proof of (ii).
Given ε > 0, choose K so that

∑∞
k=K 2−k < ε; then choose N as in

(ii) above with n = K. For each v ∈ ΣN , noting that |v(ξ)| � 1, we have

|||v − uv(ξ)||| �
K∑

k=1

|v(pk(ξ)) − pk(v(ξ))|
2k(1 + ‖pk(ξ)‖) +

∞∑
k=K+1

|(v − uv(ξ))(pk(ξ))|
2k(1 + ‖pk(ξ)‖)

�
K∑

k=1

2−kε +
∞∑

k=K+1

2−k+1 < 2ε.

It follows from this and Proposition 4 that ρ(Σn,Σ) � 2ε for each n � N .
Hence, in view of Lemma 3, Σ is both compact and firm. �
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For completeness, we now prove the fundamental result about Banach
algebras with firm spectrum ([1], page 462, Problem 3).

Proposition 6. Let A be a Banach algebra with firm spectrum Σ,

let δ > 0, and let x1, . . . , xn be elements of A such that

|u(x1)| + · · · + |u(xn)| � δ (u ∈ Σ).

Then there exist y1, . . . , yn in A such that x1y1 + · · · + xnyn = 1.

Proof. Construct nonempty compact subsets Σ1 ⊃ Σ2 ⊃ . . . of A∗
1 as

in the definition of firm. Choose γ > 0 such that if φ ∈ A∗
2 and |||φ||| < γ,

then |φ(xk)| � δ/2n for 1 � k � n. Choose N such that ρ(Σ,ΣN ) < γ,
and let v ∈ ΣN . There exists u ∈ Σ such that |||u − v||| < γ; whence
|u(xk) − v(xk)| � δ/2n for 1 � k � n. Then

|v(x1)| + · · · + |v(xn)| �
n∑

k=1

(|u(xk)| − |u(xk) − v(xk)|)

=
n∑

k=1

|u(xk)| −
n∑

k=1

|u(xk) − v(xk)| � δ −
n∑

k=1

δ/2n = δ/2.

Since v ∈ ΣN is arbitrary, the desired conclusion follows from Theorem 2.
�

3. Local Nullstellensätze

We now show how the results of Section 2 can be applied to pro-
duce local Nullstellensätze for the algebras C[X] and Ar〈X〉, where X =
(X1, . . . ,XN ) (cf. [10]).

By the work in Section 2, the spectrum Σ of Ar〈X〉 is firm and consists
of all point-evaluations of the form

uz :
∞∑

|ν|=0

aνXν �
∞∑

|ν|=0

aνz
ν

with z ∈ C
N and ‖z‖∞ � r. Consider elements f1, . . . , fm of Ar〈X〉 such

that
|f1(z)| + · · · + |fm(z)| � δ > 0 (‖z‖∞ � r).
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We have
|uz(f1)| + · · · + |uz(fm)| � δ (‖z‖∞ � r)

and therefore
|u(f1)| + · · · + |u(fm)| � δ (u ∈ Σ)

It follows from Proposition 6 that there exist elements g1, . . . , gm of Ar〈X〉
such that

g1f1 + · · · + gmfm = 1.

Thus we have proved the implication (i) ⇒ (ii) in the following local Null-
stellensatz for Ar〈X〉.

Theorem 7. The following are equivalent conditions on elements

f1, . . . , fm of Ar〈X〉.
(i) inf‖z‖∞�r

∑m
i=1 |fi(z)| > 0.

(ii) 1 is in the ideal (f1, . . . , fm) of Ar〈X〉 generated by f1, . . . , fm.

The proof that (ii) ⇒ (i) is simple and is omitted; see also the proof
of Theorem 8 below. Note that Theorem 7 differs from its counterpart
in [10], inasmuch as the latter deals with the algebra C[X] rather than
Ar〈X〉.

Our first consequence of Theorem 7 is the following local Nullstellen-
satz for C[X]. As for Ar(X), let (f1, . . . , fm) stand for the ideal of C[X]
generated by polynomials f1, . . . , fm over C

N .

Theorem 8. The following are equivalent conditions on polynomials

f1, . . . , fm over C
N .

(i) inf‖z‖∞�r

∑m
i=1 |fi(z)| > 0.

(ii) There exists f in the ideal (f1, . . . , fm) such that inf‖z‖∞�r |f(z)| > 0.

(iii) 1 is in the ‖ · ‖r-closure of the ideal (f1, . . . , fm).

(iv) There exists f in the ideal (f1, . . . , fm) such that ‖1 − f‖r < 1.

Proof. Assuming (i), we see from the preceding theorem that there
exist functions g1, . . . , gm in Ar〈X〉 such that f1g1+ · · ·+fmgm = 1. Given
ε > 0, pick elements p1, . . . , pm of C[X] such that ‖gk−pk‖r < ε for each k.
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Then

‖1 − (p1f1 + · · · + pmfm)‖r �
m∑

k=1

‖(pk − gk)fk‖r

�
m∑

k=1

‖(pk − gk)‖r‖fk‖r � ε

m∑
k=1

‖fk‖r.

Thus (ii) holds.
Clearly, (ii) ⇒ (iii). To complete the proof, assume (iii) and choose

p1, . . . , pm in C[X] such that

‖1 − (p1f1 + · · · + pmfm)‖r = 1 − δ

for some δ ∈ (0, 1). Choose M > 0 such that ‖pk‖r � M for each k. For
any z ∈ C

m with ‖z‖∞ � r we have

δ �
∣∣∣∣

m∑
k=1

pk(z)fk(z)
∣∣∣∣ �

m∑
k=1

|pk(z)| |fk(z)|

�
m∑

k=1

‖pk‖r|fk(z)| �M
m∑

k=1

|fk(z)|.

Hence
m∑

k=1

|fk(z)| >
δ

M
(‖z‖∞ � r),

and so (iii) ⇒ (i). Finally, it is clear that (iii) ⇒ (iv). �

Conclusion (iii) of Theorem 8 is weaker than its counterpart in Theo-
rem 7: when the Banach algebra is Ar〈X〉, condition (i) is equivalent to 1

being in the ideal (f1, . . . , fm); whereas when the algebra is C[X], we get
1 in the closure of that ideal.

Corollary 9. For a given r > 0, the following are equivalent condi-

tions on polynomials f1, . . . , fm over C
N .

(i) inf‖z‖∞�r

∑m
i=1 |fi(z)| = 0.

(ii) inf‖z‖∞�r |f(z)| = 0 for each f in the ideal (f1, . . . , fm).
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(iii) 1 does not belong to the ‖ · ‖r-closure of the ideal (f1, . . . , fm).

(iv) ‖1 − f‖r � 1 for all f in the ideal (f1, . . . , fm).

Corollary 10. The following are equivalent conditions on polynomials

f1, . . . , fm over C
N .

(i) inf‖z‖∞�r sup1�i�m |fi(z)| > 0 for each r > 0.

(ii) inff∈(f1,...,fm) ‖1 − f‖r = 0 for each r > 0.

Conclusion (i) of Corollary 9 implies that for each ε > 0 there exists
z such that ‖z‖∞ � r such that |fi(z)| < ε for each i; in other words,
there exist in the ball with centre 0 and radius r in C

m numbers that
are arbitrarily close to being common zeroes of the polynomials fi. The
full classical Nullstellensatz replaces this condition with the existence of
a common zero for the polynomials fi somewhere in C

m ([5], Chapter 1,
Section 3).
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