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The regular prism tilings and their optimal hyperball
packings in the hyperbolic n-space

By JENŐ SZIRMAI (Budapest)

Abstract. In this paper we investigate the n-dimensional (n ≥ 3) hyperbolic
prism honeycombs, which are generated by the “inscribed hyperspheres”.

The 3-dimensional prism tilings (mosaics) were classified by I. Vermes in
[V72] and [V73]. He found infinitely many prism tilings, whose optimal hyperball
packings and metric data are determined by the author in [Sz04].

In the hyperbolic 4-space H
4 there are only 2 analogous honeycombs whose

metric data and the densities of their optimal hyperball packings are determined
in this paper. In H

5 there are 3 types of these mosaics, whose analogous problems
will be discussed elsewhere. In the hyperbolic n-space H

n (n > 5) there are
no such regular prism tilings. Our method and computations are based on the
projective interpretation of the hyperbolic geometry.

1. Introduction

A honeycomb (or solid tessellation, or tiling) is an infinite set of con-
gruent polyhedra fitting together face-to-face to fill all space just once. At
present the space is the n-dimensional hyperbolic space H

n (n ≥ 3) and
the polyhedron is a prism.

In hyperbolic space H
n (n ≥ 3) a regular prism is the convex hull

of two congruent (n − 1) dimensional regular polyhedra in ultraparallel
hyperplanes, (i.e. n−1-planes), related by translation along the line joining
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their centres that is the common perpendicular of the two hyperplanes.
Each vertex of such tiling is either proper point or every vertex lies on
the absolute quadric of H

n, in this case the prism tiling is called totally
asymptotic. Thus the prism is a polyhedron having at each vertex one (n−
1)-dimensional regular polyhedron and some (n − 1)-dimensional prisms,
meeting at this vertex.

In H
3 (see [Sz04]) the corresponding prisms are called p-gonal prisms

(p ≥ 3) in which the regular polyhedra (the cover-faces) are regular p-
gons, and the side-faces are rectangles. Figure 1 shows a part of such a
prism where A2 is the centre of a regular p-gonal face, A1 is a midpoint
of a side of this face, and A0 is one vertex (end) of that side. Let B0,
B1, B2 be the corresponding points of the other p-gonal face of the prism.
These 3-dimensional prism tilings were classified by I. Vermes in [V72]
and [V73].
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In our case in H
n (n ≥ 4) the hyperspheres form locally optimal hy-

perball packings whose data can be determined by our method.
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The equidistant surface (or hypersphere) is a quadratic surface at a
constant distance from a plane in both halfspaces. The infinite body en-
closed by the hypersphere is called hyperball.

In [Sz04] the author has investigated these p-gonal prism tilings and
their optimal hyperball packings and determined the densities of each pack-
ing.

In this paper we shall investigate the n-dimensional (n ≥ 4) hyperbolic
prism honeycombs and their optimal hyperball packings. Our main results
are summarized in the following Theorems 1.1–4:

Theorem 1.1. The non-uniform compact prism tilings Ppqrs in H
4

with parameters {p, | q, r | s} are the following:

(1) {3 | 5, 3 | 3} : the vertex figure of the tiling is “120-cells”: {q, r, s} =
{5, 3, 3} and the cover faces are cosahedra {p, q, r} = {3, 5, 3}.

(2) {5 | 3, 4 | 3} : the vertex figure of the tiling is “24-cells”: {q, r, s} =
{3, 4, 3} and the cover faces are dodecahedra {p, q, r} = {5, 3, 4}.

The metric data and the densities of the optimal hyperball packings of

these tilings are summarized in Table 1.

Remark 1.1. The uniform compact tiling in H
4 with parameters

{p, q, r, s} is the regular cube honeycomb {4, 3, 3, 5} (according to the no-
tation of H. S. M. Coxeter [C56]). Here the prism is a cube but the
associated honeycomb tiling is not associated with any hyperball packing.
So we do not consider it in this work.

Remark 1.2. The optimal ball packing belonging to the 3-dimensional
regular Coxeter honeycombs have been investigated in [Sz03-2].

Theorem 1.2. There is no totally asymptotic prism tiling Ppqrs

in H
4.

Theorem 1.3. In the 5-dimensional hyperbolic space H
5 there are 3

regular prism tilings.

Theorem 1.4. There is no prism tiling in the hyperbolic space H
n,

(n ≥ 6).
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2. The projective model and the complete orthoschemes

Let X denote either the n-dimensional sphere S
n, the n dimensional

Euclidean space E
n or the hyperbolic space H

n, n ≥ 2. We use for H
n

the projective model in the Lorentz space E
1,n of signature (1, n), i.e. E

1,n

denotes the real vector space Vn+1 equipped with the bilinear form of
signature (1, n)

〈x,y〉 = −x0y0 + x1y1 + · · · + xnyn (2.1)

where the non-zero vectors

x = (x0, x1, . . . , xn) ∈ Vn+1 and y = (y0, y1, . . . , yn) ∈ Vn+1,

are determined up to real factors, for representing points of Pn(R). Then
H

n can be interpreted as the interior of the quadric

Q = {[x] ∈ Pn | 〈x,x〉 = 0} =: ∂H
n (2.2)

in the real projective space Pn(Vn+1,Vn+1).
The points of the boundary ∂H

n in Pn are called points at infinity of
H

n, the points lying outside ∂H
n are said to be (ideal) outer points of H

n

relative to Q. Let P ([x]) ∈ Pn, a point [y] ∈ Pn is said to be conjugate
to [x] relative to Q if 〈x,y〉 = 0 holds. The set of all points which are
conjugate to P ([x]) form a projective (polar) hyperplane

pol(P ) := {[y] ∈ Pn | 〈x,y〉 = 0}. (2.3)

Thus the quadric Q (defined by the symmetric bilinear form or scalar
product in (2.1)) induces a bijection (linear polarity Vn+1 → Vn+1)) from
the points of Pn onto its hyperplanes.

The point X[x] and the hyperplane α[a] are called incident if xa = 0
i.e. the value of the linear form a on the vector x is equal to zero (x ∈
Vn+1\{0}, a ∈ V n+1\{0}). The straight lines of Pn are characterized by
2-subspaces of Vn+1 or by n − 1-spaces of Vn+1, i.e. by 2 points or dually
by n − 1 hyperplane, respectively [M97].

Let P ⊂ H
n denote a convex polytope bounded by finitely many hy-

perplanes H i, which are characterized by unit normal vectors bi ∈ Vn+1

directed inwards with respect to P :

H i := {x ∈ H
n | 〈x, bi〉 = 0} with 〈bi, bi〉 = 1. (2.4)
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We always assume that P is acute-angled and of finite volume.
The Gram matrix G(P ) := (〈bi, bj〉)i, j ∈ {0, 1, 2, . . . , n} of the nor-

mal vectors bi associated to P is an indecomposable symmetric matrix of
signature (1, n) with entries 〈bi, bi〉 = 1 and 〈bi, bj〉 ≤ 0 for i �= j, having
the following geometrical meaning

〈bi, bj〉 =




0 if H i ⊥ Hj ,

− cos αij if H i,Hj intersect on P at angle αij ,

−1 if H i,Hj are parallel,

− cosh lij if H i,Hj admit a common perpendicular

of length lij.

A scheme Σ is a weighted graph whose nodes ni, nj are joined by an
edge with positive weight σij or are not joined at all; the last fact will be
indicated by σij = 0. The number |Σ| of nodes is called the order of Σ. To
every scheme of order m corresponds a symmetric matrix M(Σ) = (bij) of
order m with bii = 1 in the diagonal and non-positive entries bij= −σij ≤ 0,
for i not equal to j. The scheme Σ(P ) of an acute angled polytope P is
the scheme whose matrix M(Σ) coincides with the Gram matrix G(P ).

Definition 2.1. An orthoscheme O in X is a simplex bounded by n+1
hyperplanes H0, . . . ,Hn such that ([K91], [B–H])

H i⊥Hj, for j �= i − 1, i, i + 1.

Remark 2.1. This definition is equivalent to Definition 2.2:

Definition 2.2. A simplex O in X is an orthoscheme iff the n+1 vertices
of O can be labelled by A0, A1, . . . , An in such a way that

span(A0, . . . , Ai) ⊥ span(Ai, . . . , An) for 0 < i < n − 1.

Here we have indicated the subspaces spanned by the correspond-
ing vertices. A plane orthoscheme is a right-angled triangle, whose area
formula can be expressed by the well known defect formula. For three-
dimensional spherical orthoschemes, L. Schläfli about 1850 found the
volume differentials in terms of differential of the 3 variable dihedral an-
gles. Already in 1836, N. I. Lobachevsky found a volume formula for
three-dimensional hyperbolic orthoschemes O [B–H].
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The integration method for orthoschemes of dimension three was gen-
eralized by Böhm in 1962 [B–H] to spaces of constant nonvanishing cur-
vature of arbitrary dimension.

Definition 2.3. The complete orthoschemes of degree d in H
n are

bounded by n + d + 1 hyperplanes H0,H1, . . . ,Hn+d such that H i ⊥ Hj

for j �= i − 1, i, i + 1, where, for d = 2, indices are taken modulo n + 3.

For a usual orthoscheme we denote the (n + 1)-hyperface opposite to
the vertex Ai by H i (0 ≤ i ≤ n). An orthoscheme O has n dihedral angles
which are not right angles. Let αij denote the dihedral angle of O between
the faces H i and Hj. Then we have

αij =
π

2
, if 0 ≤ i < j − 1 ≤ n.

The n remaining dihedral angles αi,i+1, (0 ≤ i ≤ n − 1) are called the
essential angles of O.

Geometrically, complete orthoschemes of degree d can be described as
follows:

(1) For d = 0, they coincide with the class of classical orthoschemes
introduced by Schläfli (see Definitions 2.1 and 2.3). The initial
and final vertices, A0 and An of the orthogonal edge-path AiAi+1,
i = 0, . . . , n − 1, are called principal vertices of the orthoscheme (see
Definition 2.2).

(2) A complete orthoscheme of degree d = 1 can be interpreted as an
ideal orthoscheme with one ideal principal vertex, say An, which is
truncated by its polar plane pol(An) (see Figure 2). (If the vertex lies
outside the absolute quadric then this vertex is called ideal using the
projective model for H

n. In this case the orthoscheme is called simply
truncated with ideal vertex An.

(3) A complete orthoscheme of degree d = 2 can be interpreted as an ideal
orthoscheme with two ideal principal vertex, A0, An, which is trun-
cated by its polar hyperplanes pol(A0) and pol(An). In this case the
orthoscheme is called doubly truncated. (In this case we distinguish
two different types of orthoschemes but I will not enter into the details
(see [K89], [K91]).)
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For the schemes of complete Coxeter orthoschemes PC ⊂ X we adopt
the usual conventions and use them sometimes even in the Coxeter case:
If two nodes are related by the weight cos π

p then they are joined by a
(p−2)-fold line for p = 3, 4 and by a single line marked p for p ≥ 5. In the
hyperbolic case if two bounding hyperplanes of PC are parallel, then the
corresponding nodes are joined by a line marked ∞. If they are divergent
then their nodes are joined by a dotted line.

Our polyhedron A0A1A2P0P1P2 in H
3 belongs to the case 2, this is a

simple frustum orthoscheme with ideal vertex A3 (see Figure 1, 2).
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The principal minor matrix (cij) of G(PC ) is the so called Coxeter-
Schläfli matrix of the orthoscheme PC with parameters p, q, r, s:

(cij) :=




1 − cos π
p 0 0 0

− cos π
p 1 − cos π

q 0 0
0 − cos π

q 1 − cos π
r 0

0 0 − cos π
r 1 − cos π

s

0 0 0 − cos π
s 1


 . (2.5)
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3. Prism tilings and their optimal hyperball packings in H
4

3.1. The existence of the prism honeycombs. In this section we
consider the 4-dimensional prism honeycombs. The two regular 3-faces of
a prism are called cover-polyhedra, and its other 3-dimensional polyhedra
are called side-prisms.

Figure 3 shows such a part of our 4-prism where A3 is the centre of
a cover-polyhedron, A2 is the midpoint of a face of the cover-polyhedron,
A1 is a midpoint of an edge of this face, and A0 is one vertex (end) of that
edge.
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Let B0, B1, B2, B3 be corresponding points of the other cover-poly-
hedron of the 4-prism. The midpoints of the edges which do not lie in
the cover-polyhedra form a hyperplane denoted by π. The endpoints
Pi (i ∈ {0, 1, 2, 3}) of the perpendiculars dropped from the points Ai

on the plane π form the characteristic (or fundamental) simplex of the
a regular polyhedron with Schläfli symbol {p, q, r} in π (see Figure 3).
(3-dimensional case in which π = [P0, P1, P2] the characteristic simplex
P0P1P2 was a right-angled triangle with other angles π/p and π/q (see
Figure 1).)
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Analogously to the 3-dimensional case, it can be seen that A0A1A2A3

A4 is an complete orthoscheme with degree d = 1 where A4 is an ideal outer
vertex of H

4 and the points P0P1P2P3 form its polar 3-plane (Figure 3).
From the definitions of the prism tilings and the complete orthosche-

mes of degree d = 1, it follows that prism tilings exist in the n-dimensional
hyperbolic space H

n, n ≥ 3 if and only if exist complete Coxeter or-
thoschemes of degree d = 1 with two divergent faces.

The complete Coxeter orthoschemes were classified by Im Hof [IH85]
[IH90] by generalizing the method of Coxeter and Böhm appropriately.
He showed that they exist only for dimensions ≤ 9.

R. Kellerhals in [K89] derived a volume formula in the 3 dimen-
sional hyperbolic space for the complete orthoschemes of degree d, (d =
0, 1, 2) and she explicitly determined in [K91] the volumes of all complete
hyperbolic orthoschemes in even dimensions (n ≥ 4).

On the other hand, if a prism honeycomb exists, then it has to satisfy
the following two requirements:

(1) The orthogonal projection of the cover-polyhedra on the hyperbolic
3-plane π is a regular Coxeter honeycomb with proper vertices and
centres. Using the classical notation of the tesselations, each honey-
comb is given by its Schläfli symbol {p, q, r}. Such a tiling exists in
the 3-dimensional hyperbolic 3-space if and only if

{p, q, r} = {3, 5, 3}, {4, 3, 5}, {5, 3, 4}, {5, 3, 5}. (3.1)

(2) The vertex figures about a vertex of such a prism tiling has to form a
4-dimensional regular polyhedron which is given by its Schläfli symbol
as follows:

{q, r, s} = {3, 3, 3}, {3, 3, 4}, {3, 3, 5}, {3, 4, 3},
{4, 3, 3}, {5, 3, 3}. (3.2)

From the above mentioned works of [IH90] and [K89] it follows that in
the 4-dimensional hyperbolic space H

4 there are two types of the complete
orthoschemes of degree d = 1 which have two divergent faces. Thus in H

4

there are two prism tilings which are given by its schemes Σ3533 and Σ5343

as follows:
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5
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3.2. The hyperball packings of the prism tilings. The equidistant
surface (or hypersphere) is a quadratic surface at a constant distance from
a plane in both halfspaces. The infinite body enclosed by the hypersphere
is called hyperball.

The hypersphere with distance t to the plane π is denoted by HSt
π.

The optimal hypershere HSopt
π touches the cover-faces of our 4-prisms

whose union forms an infinite polyhedron denoted by F . The optimal
distance from the 3-midplane π will be topt

pqrs = P3A3 (Figure 3). F and its
images fill the hyperbolic space H

4 thus we obtain by the images of HSopt
π

the optimal hyperball packing for the parameters {p | q, r | s}.
For the density of the packing it is sufficient to relate the volume of the

optimal hyperball piece to that of its containing polyhedron A0A1A2A3P0

P1P2P3 (Figure 3) because the tiling can be constructed of such polyhe-
dron. This polytope and its images in F divide the HSopt

π into congruent
pieces whose volume is denoted by Vol(HSpqrs). We illustrate in the 3-
dimensional case such a hyperball piece A2A

′
0A

′
1P0P1P2 in Figure 1.

The volume of the polyhedron A0A1A2A3P0P1P2P3 is denoted by
Vol(Wpqrs).

Definition 3.1. The density of the optimal hyperball packing to the
prism tilings with scheme Σpqrs is defined by the following formula:

δopt
pqrs :=

Vol(HSpqrs)
Vol(Wpqrs)

. (3.3)

3.3. On the volumes. The volumes Vol(Wpqrs) were determined by
R. Kellerhals in [K91]:

Vol(W3533) =
41π2

10800
≈ 0.03746794, Vol(W5343) =

17π2

4320
≈ 0.03883872.
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The volume of the hyperball piece HSpqrs can be determined by the
formula (3.4) that follows from the classical method of J. Bolyai:

Vol(HSpqrs) =
1
8

Vol(Apqr)k

(
1
3

sinh
3topt

pqrs

k
+ 3 sinh

topt
pqrs

k

)
, (3.4)

where the volume of the hyperbolic polyhedron P0P1P2P3 is Vol(Apqr) and

topt
pqrs = P3A3. (The constant k =

√
−1
K is the natural length unit in H

n.
K will be the constant negative sectional curvature.) In the following we
can take the constant k = 1 (as in Kellerhals’ formulas above).

The points P3(p3) and A3(a3) are proper points of the hyperbolic 4-
space thus their distance topt

pqrs can be calculated by the following formula
[M89]:

cosh P3A3 =
−〈p3,a3〉√〈p3,p3〉〈a3,a3〉

. (3.5)

Inverting the Coxeter–Schläfli matrix cij (see (2.5)) of the orthoscheme we
get the matrix hij . By the machinery of the projective metric geometry
[M89] we have obtained the following result:

cosh topt
pqrs =

√
(h34)2 − h33 h44

h33 h44
. (3.5)

The volumes Vol(Apqr) have been determined by the classical formula
of Lobachevsky in [Sz].

Our main results on the regular prism tilings in the hyperbolic 4-space
H

4 are summarized in the Theorems 1.1–2 in the Introduction with the
following Table 1.

Table 1

Σ3533 Σ5343

Vol(Wpqrs)
41π2

10800
17π2

4320
topt
pqrs ≈ 0.48958213 ≈ 0.53063753

Vol(Apqr) ≈ 0.03905029 ≈ 0.03588506

Vol(HSpqrs) ≈ 0.02161163 ≈ 0.02200304

δopt
pqrs ≈ 0.57680322 ≈ 0.56652323
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4. Regular prism tilings in higher dimensions

Regular hyperbolic honeycombs exist only up to 5 dimensions [C56].
Therefore regular prism tilings can exist up to 6 dimensions. From the
definitions of the prism tilings and the complete orthoschemes of degree
d = 1 it follows that prism tilings exist in the n-dimensional hyperbolic
space H

n, n ≥ 3 if and only if there exist complete Coxeter orthoschemes of
degree d = 1 with two divergent faces. From the paper [IH90] it follows that
there are 3-different types of the regular prism tilings in the 5-dimensional
hyperbolic space H

5 which are given by its schemes Σ53333, Σ53343 and
Σ53334 as follows:

5

5

5

Figure 5
In the 6-dimensional hyperbolic space there is no such Coxeter or-

thoscheme, thus we obtain Theorems 1.3–4 in the Introduction. The met-
ric data and the optimal hyperball packings of the 5-dimensional regular
prism tilings we shall investigate with our projectiv method in a forthcom-
ing work.

Remark 4.1. The way of putting any analogous questions for higher
dimensions are interesting and timely for determining the optimal ball,
horoball and hyperball packings of tilings in hyperbolic n-space (n > 2).
Our projective method seems well suited to study and to solve these prob-
lems.

I thank Prof. Emil Molnár for helpful comments on this paper.

References
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