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A characterization of the identity function
with an equation of Hosszú type

By BUI MINH PHONG (Budapest)

Abstract. The functional equation

f : R → R, f(x + y − xy) + f(xy) = f(x) + f(y) for all x, y ∈ R

was first presented by M. Hosszú (1967) and now it is referred to as the Hosszú
equation. The aim of this note is to consider an equation of Hosszú type on the
domain N. We prove that if a completely multiplicative function f satisfies the
equation

f(p + q + pq) = f(p) + f(q) + f(pq)

for all primes p, q and f(p0) �= 0 for some prime number p0, then f(n) = n for all
positive integers n.

1. Introduction

Let N, R and P denote the set of all positive integers, all real numbers
and all prime numbers, respectively. Let M (M∗) be the set of all complex-
valued multiplicative (completely multiplicative) functions.

The functional equation

f : R → R, f(x + y − xy) + f(xy) = f(x) + f(y) for all x, y ∈ R (1)
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was first presented by M. Hosszú (1967) and now it is referred to as the
Hosszú equation. It follows from a result of Z. Daróczy [3] that if f

is a solution of (1), then there exists a function F : R → R such that
f(x) = F (x) + f(0) (x ∈ R) and

F (x + y) = F (x) + F (y), (2)

for all x, y ∈ R. The equation (2) is the Cauchy functional equation
and it is well-known that continuity along with the functional equation
(2) characterizes F in the form F (x) = cx for all x ∈ R, where c is an
arbitrary real number.

In 1992, C. Spiro [7] considered the equation (2) in the case F ∈ M
and restricted the domain from R to N. She showed that if a function
F ∈ M satisfying (2) for all primes x and y, then F (n) = n for all n ∈ N.
In [4] the identity function was characterized as the multiplicative function
F for which F (p + n2) = F (p) + F (n2) holds for all primes p and for all
n ∈ N. For other results in this topic we refer to works [1], [2], [5] and [6].

The aim of this note is to consider an equation of Hosszú type on the
domain N. We prove the following

Theorem 1. If the function f ∈ M∗ satisfies the equation

f(p + q + pq) = f(p) + f(q) + f(pq) for all p, q ∈ P (3)

and

f(p0) �= 0 for some prime p0, (4)

then f(n) = n for all n ∈ N.

2. Lemmas

The proof of our theorem is based on Lemmas 1–2.

Lemma 1. If f ∈ M∗ satisfies (3) and (4), then f(2) �= 0.

Proof. In order to prove Lemma 1, we proceed by contradiction.
Assume that f(2) = 0.
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Let

P0 := {p ∈ P | f(p) = 0} and P1 := {p ∈ P | f(p) �= 0}.

We note from our assumptions that

if p ∈ P1 then f(p + 2) = f(p) + 2. (5)

Indeed, using (3) and the fact that f ∈ M∗, we have

f(p)f(p + 2) = f(p + p + p2) = f(p) + f(p) + f(p)2 = f(p) [f(p) + 2] ,

from which (5) follows immediately.
We now prove that

{p ∈ P | p ≤ 23} ⊂ P0. (6)

By the assumption f(2) = 0 and by (3), we have

f(3p + 2) = f(p) for all p ∈ P. (7)

Repeated use of (7) gives f(7) = f(23), f(5) = f(17) = f(53) = f(161) =
f(7)f(23) = f(7)2, f(3) = f(11) = f(35) = f(5)f(7) = f(7)3, f(13) =
f(41) = f(125) = f(5)3 and f(19) = f(59) = f(179) = f(539) =
f(7)2f(11). If f(7) �= 0, then f(3)f(5) �= 0, and so one can deduce from
(5) that f(7)3 = f(3) = f(5) − 2 = f(7)2 − 2, f(7)2 = f(5) = f(7) − 2,
which is impossible.

We must therefore have that {p ∈ P | p ≤ 23} ⊂ P0 and the proof of
(6) is completed.

From (4) we have p0 ∈ P1, P1 �= ∅. If 2 ∈ P1, then we are done.
Otherwise, let T := minP1, i.e.

T is a prime such that f(T ) �= 0 and f(n) = 0 for all 1 < n < T. (8)

We prove the following assertions:

f(T ) = −2, (9)

|f(π)| ≥ 2 for all π ∈ P1, (10)



222 Bui Minh Phong

and

3nT + 3n − 1 ∈ P1, f (3nT + 3n − 1) = −2 for all n ∈ N. (11)

Since f(T ) �= 0, we get from (5) that f(T ) = f(T + 2) − 2 and (9) is
true if f(T + 2) = 0. If f(T + 2) �= 0, then T + 2 ∈ P, T ≡ 2 (mod 3),
therefore f(T + 4) = f(3)f(T+4

3 ) = 0. Hence it follows from (5) that
f(T + 2) = f(T + 4) − 2 = −2, f(T ) = f(T + 2) − 2 = −4. In this case

7 · (T + 3) + T + 2 ≡ 7 · (2 + 3) + 2 + 2 = 39 ≡ 0 (mod 3),

consequently we infer from (3) and (6) that

f (7 · (T + 3) + T + 2) = f(3)f
(

7 · (T + 3) + T + 2
3

)
= 0

and

f(7 · (T + 3) + T + 2) = f(7) + f(T + 2) + f(7 · (T + 2))

= f(T + 2) = −2,

which are impossible. Thus f(T + 2) = 0, and (9) is proved.

By (9), we have |f(T )| = 2. Assume that q ∈ P1, f(q) �= 0 and (10) is
true for all π ∈ P1, π < q. Since q ∈ P1, f(q) �= 0, we get from (5) that
f(q) = f(q + 2) − 2 = −2 if f(q + 2) = 0. Assume that f(q + 2) �= 0 and
q + 2 /∈ P. Then

q + 2 = πα1
1 · · · παr

r ,

where π1 < . . . < πr < q, πi ∈ P1 (i = 1, . . . , r) and α1, . . . , αr are
non-negative integers with α1 + · · · + αr ≥ 2. Therefore we have

|f(q)| = |f(q + 2) − 2| ≥ |f(q + 2)| − 2 ≥ 2α1+···+αr − 2 ≥ 2.

Assume now that f(q + 2) �= 0 and q + 2 ∈ P. Then 3 | q + 4 and

|f(q)| = |f(q + 2) − 2| = |f(q + 4) − 4| =
∣∣∣f(3)f

(
q + 4

3

)
− 4

∣∣∣ = 4.

The proof of (10) is finished. �
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Now we prove (11). By (7), we have −2 = f(T ) = f(3T + 2) and so
(11) holds for n = 1. Assume that −2 = f(T ) = f(3nT + 3n − 1) with
some n ∈ N, n ≥ 1 and 3nT + 3n − 1 ∈ P, i.e. (11) is true for n. Then by
(5), (7) and (9) we have

−2 = f(T ) = f(3nT + 3n − 1) = f(3n+1T + 3n+1 − 1).

Assume that Qn+1 := 3n+1T + 3n+1 − 1 /∈ P. Then

Qn+1 = πα1
1 · · · παr

r , (π1, . . . , πr ∈ P1),

where α1, . . . , αr are non-negative integers, α1 + · · · + αr ≥ 2. This con-
tradicts (10), because

2 = |f(Qn+1)| = |f(πα1
1 )| · · · |f(παr

r )| ≥ 2α1+...+αr ≥ 4.

Thus we have Qn+1 = 3n+1T + 3n+1 − 1 ∈ P and so (11) is proved.

Now we complete the proof of Lemma 1. If T − 2 has a prime divisor
π �= 3, then

3π−2T + 3π−2 − 1 ≡ 3π−1 − 1 ≡ 0 (mod π).

This contradicts (11), since 3π−2T + 3π−2 − 1 ∈ P and 3π−1 − 1 > π.
If T − 2 = 3m, m ∈ N, then (T + 1, 11) = (3m + 3, 11) = 1. Hence we

can choose a prime p ≤ 23 such that

p + T + pT = (T + 1)p + T ≡ 0 (mod 11).

Indeed, since {T + 1 ≡ 3m + 3 (mod 11)} = {4, 6, 1, 8, 7}, we can choose p

as p = 2, 23, 11, 17, 7, respectively. Thus we infer from (6) that

0 = f(11)f
(

p + T + pT

11

)

= f(p + T + pT ) = f(p) + f(T ) + f(p)f(T ) = f(T ) = −2,

which is a contradiction.
Hence we must have f(2) �= 0, and Lemma 1 is proved.

Lemma 2. If f ∈ M∗ satisfies (3) and (4), then f(n) = n for all

n ∈ {1, 2, 3, . . . , 31}.
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Proof. By using Lemma 1 and (5), we have
f(2)2 = f(2) + 2.

Thus, we have either f(2) = −1 or f(2) = 2. If f(2) = −1, then repeated
use of (3), (5) and (6) gives f(11) = f(2)+ f(3)+ f(2)f(3) = −1, f(53) =
f(2) + f(17) + f(2)f(17) = −1 and f(5)f(11) = f(55) = f(53) + 2 = 1.
Therefore we have f(5) = −1, f(7) = f(5)+2 = 1 and f(9) = f(7)+2 = 3.
The last relation shows that f(3) �= 0 and so f(3) = f(5)− 2 = −3, which
contradicts to f(9) = f(3)2 = 3. We must therefore have that f(2) = 2.

We note that f(2) = 2 implies f(3)f(5) �= 0. Indeed, if f(3) = 0,
then we infer from (3) and (5) that f(11) = f(2) + f(3) + f(2)f(3) = 2,
f(13) = f(11) + 2 = 4 and f(15) = f(13) + 2 = 6. This is impossible,
because f(15) = f(3)f(5) = 0. Now assume that f(3) �= 0 and f(5) = 0.
Then we get from (3) and (5) that f(3) = −2, f(11) = f(2) + f(3) +
f(2)f(3) = −4. Hence 0 = f(35) = f(2) + f(11) + f(2)f(11) = −10,
which is a contradiction.

Since f(3) �= 0 and f(5) �= 0, we have f(5) = f(3) + 2, f(7) =
f(5) + 2 = f(3) + 4, f(11) = f(2) + f(3) + f(2)f(3) = 3f(3) + 2 and
f(35) = f(2) + f(11) + f(2)f(11) = 3f(11) + 2 = 9f(3) + 8. These imply
that

9f(3) + 8 = (f(3) + 2)(f(3) + 4) = f(3)2 + 6f(3) + 8.

Therefore we get by using the fact f(3) �= 0 that f(3) = 3, consequently
f(5) = 5, f(7) = f(5) + 2 = 7, f(11) = 3f(3) + 2 = 11, and f(13) =
f(11) + 2 = 13, f(17) = f(2 + 5 + 2 · 5) = 17, f(19) = f(17) + 2 = 19 and
f(23) = f(2 + 7 + 2 · 7) = 23.

Finally, we infer from (3) and (5) that
7 · 17 = f(7)f(17) = f(119) = f(3 + 29 + 3 · 29) = 4f(29) + 3,

consequently f(29) = 29 and f(31) = f(29) + 2 = 31. Lemma 2 is proved.
�

3. The proof of the theorem

Assume that f(n) = n for all positive integers n < N . By Lemma 2
we may suppose that N ≥ 37. We shall prove that f(N) = N , which
proves our theorem.
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If N /∈ P, then it is obvious from our assumption that f(N) = N .
Assume that N ∈ P.

Case I: f(N) �= 0. Since N ∈ P and f(N) �= 0, we have by (5) that
f(N + 2) = f(N) + 2, consequently f(N) = N if N + 2 /∈ P.

Assume that N + 2 ∈ P and f(N + 2) �= 0. Then N ≡ 2 (mod 3),
therefore from (5) we get f(N + 2) = f(N + 4) − 2 = N + 4 − 2 = N + 2,
which implies f(N) = N .

Assume now that N + 2 ∈ P and f(N + 2) = 0. In this case we have
N ≡ 2 (mod 3) and f(N) = −2. Hence

f [(N + 3)p + N + 2] = f [p + (N + 2) + p(N + 2)]) = f(p)

holds for all primes p. This with p = 7 gives

f

(
8N + 23

3

)
=

7
3
.

Therefore, by using the facts (8N + 23, 2) = 1, N ≥ 37, we have Q :=
8N+23

3 ∈ P. This implies that

f(Q + 2) = f(Q) + 2 =
7
3

+ 2 =
13
3

,

consequently Q + 2 ∈ P and Q ≡ 2 (mod 3). This is impossible, because

f(Q + 4) = 3f
(

Q + 4
3

)
= 3f

(
8N + 35

9

)
=

8N + 35
3

and
f(Q + 4) = f(Q + 2) + 2 =

19
3

.

Case II: f(N) = 0. In this case we have

f [(N + 1)p + N ] = f(p + N + pN) = f(p)

holds for all primes p. Hence

f(3N + 2) = f(2) = 2,

which shows that 3N + 2 ∈ P and f(3N + 4) = f(3N + 2) + 2 = 4. Hence
we infer that 3N + 4 ∈ P and

f(3N + 6) = f ((3N + 4) + 2) = 6 and
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f(3N + 6) = f(3)f(N + 2) = 3f(N + 2).

Thus we have f(N + 2) = 2, N + 2 ∈ P and f(N + 4) = f(N + 2) + 2 = 4.
This is impossible, because N,N + 2 ∈ P imply that 3 | N + 4 and

f(N + 4) = f(3)f
(

N + 4
3

)
= 3 ·

(
N + 4

3

)
= N + 4.

Hence the theorem is proved.
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