
Publ. Math. Debrecen
69/3 (2006), 261–269

Representing graphs by the non-commuting relation

By MIKLÓS ABÉRT (Chicago)
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Abstract. We determine the minimal k such that every graph on n vertices
can be represented in a group of size at most k by the non-commuting relation.

We also consider representing graphs by matrices and permutations. As a
byproduct we obtain a non-linearity criterion which can be applied to weakly
branch groups.

1. Results

Let (V,E) be a simple graph, that is, an undirected graph with no
loops and multiple edges. Let G be a group. We say that a map f : V → G

represents (V,E) if for all a, b ∈ V the pair (a, b) ∈ E if and only if f(a)
and f(b) do not commute in G.

For a natural number n let gr(n) denote the minimal k such that every
graph of size n can be represented in a group of order at most k. V. T. Sós

[Sos] has asked the asymptotics of gr. One can determine the precise value
as follows.
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Theorem 1. We have gr(1) = 1 and gr(2) = gr(3) = 6. For n ≥ 4 we

have gr(n) = 2n+1 if n is even and gr(n) = 2n if n is odd.

Note that the proof can be generalized to most other ‘nice’ algebraic
structures, like rings or Lie algebras without much difficulty.

In this paper we will further investigate two particular cases where the
target group is restricted.

The first case is when we try to represent our graph by permutations,
that is, the range of the representing map is a symmetric group. Let per(n)
denote the minimal k such that every graph of size n can be represented
in Sk, the symmetric group of degree k.

Theorem 2. We have (log3 8) �n/2� ≤ per(n) ≤ 3(n − �log2 n� + 1).

Most likely none of the linear coefficients is sharp.
The second case is when we try to represent our graph by matrices

over some field F . Note that if F is infinite then by adding suitable scalar
matrices we can assume that the representing matrices are invertible. Let
matF (n) denote the minimal k such that every graph of size n can be
represented in Mk(F ), the k by k matrix algebra over the field K.

Theorem 3. We have
√�n/2� ≤ matF (n) ≤ 2(n − �log2 n� + 1) for

an arbitrary field F .

Both in Theorem 2 and Theorem 3 we derive the upper bound from
a theorem of Tuza [Tuz] on the covering number of graphs by complete
bipartite subgraphs. Note that unlike in Theorem 1 and Theorem 2, we
do not obtain even an asymptotically sharp answer in Theorem 3. We put
our stakes on the linear end and ask the following.

Question 4. Does there exist a constant c> 0 such that matC(n)≥ cn

for all n?

Let Tn denote the 1-factor on 2n vertices, that is, a graph such that
every vertex has degree 1. In all the theorems above the lower bounds are
obtained by estimating the possible size of a representation of Tn. As the
following proposition shows, this is not a coincidence.

Proposition 5. Let G be a group. If Tn can be represented in G

then every simple graph on n vertices can be represented in G.
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In particular, it suffices to consider Tn in Question 4.
An immediate application of Theorem 3 is a linearity criterion for

groups. We call a group Γ linear over a field K if Γ can be embedded into
GL(n,K) for some n. Linearity is a finiteness condition on infinite groups
that is currently under intense investigation.

Corollary 6. Let Γ be a group. Assume that for every n there exist

subgroups H1,H2, . . . ,Hn ≤ Γ such that:

1) Hi is non-Abelian (1 ≤ i ≤ n);

2) Hi and Hj commute (1 ≤ i < j ≤ n).

Then Γ is not linear over any field.

A weakly branch group is a group acting spherically transitively on a
rooted tree such that for every vertex v there exists a nontrivial element
of the group which moves only descendants of v. Applying Corollary 6 to
weakly branch groups we get the following.

Corollary 7. Weakly branch groups are not linear over any field.

This generalizes a result of Grigorchuk and Delzant [DeG] who
proved the theorem for branch groups.

2. Proofs

We start with a theorem which will provide the lower bound in The-
orem 1.

Theorem 8. For n ≥ 2 let f : Tn → G be a representation. Then

|G| ≥ 22n+1. Moreover, equality holds if and only if G is an extraspecial

group.

Proof. We will use induction on n. Let a1, a2, . . ., an, b1, b2, . . ., bn∈G

denote the f -images of the vertices of Tn. That is, ai commutes with every
other element but bi and bi commutes with every other element but ai. We
can assume that 〈a1, a2, . . . , an, b1, b2, . . . , bn〉 = G. Let

H = 〈a1, a2, . . . , an−1, b1, b2, . . . , bn−1〉 ≤ G
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and let K = 〈an, bn〉. Then H and K commute. Let Z = H ∩ K. Since
〈H,K〉 = G, Z is central in G.

If n = 2 then H and K are non-Abelian so they have size at least 6.
If Z = 1 then this implies

|G| = |HK| = |H| |K| ≥ 36.

If Z 
= 1 then since H/Z and K/Z are not cyclic, they have size at least 4.
This implies

|G| = |HK| = |H| |K| / |Z| = |H/Z| |K/Z| |Z| ≥ 32.

Equality holds if and only if |Z| = 2 and |H| = |K| = 4. That is, both H

and K are non-Abelian groups of order 8 and G is their central product.
If n > 2 then by induction, H has size at least 22n−1. If Z = 1 then

the same way as above we get

|G| = |H| |K| ≥ 22n−16 > 22n+1.

If Z 
= 1 then again |K/Z| ≥ 4, which gives

|G| = |H| |K/Z| ≥ 22n+1.

By induction, equality holds if and only if |K/Z| = 4 and H is an ex-
traspecial group of size 22n−1. Using 1 < |Z| ≤ |Z(H)| = 2 we get |Z| = 2.
So |K| = 8 and G is the central product of H and K, that is, G is an
extraspecial group. �

Proof of Theorem 1. The equalities gr(1) = 1 and gr(2) = 6 are
trivial. Every graph on 3 vertices other than a triangle is the disjoint union
of a complete bipartite graph and an empty graph. This shows that they
can be represented in S3. At last, the triangle can also be represented in
S3 by, say, {(1, 2), (2, 3), (1, 3)}. So gr(3) = 6.

Theorem 8 shows that for k ≥ 2 we have gr(2k) ≥ 22k+1. Considering
Tk plus an isolated point we get gr(2k + 1) ≥ 22k+1 as well. This settles
the required lower bounds.

Now let (V,E) be a graph on n ≥ 2 vertices. Let F2 denote the field
of 2 elements and let W = F2V be the F2-vectorspace freely spanned by V .
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Let us define the map b : V × V → F2 by

b(v1, v2) =




1 if (v1, v2) ∈ E

0 if (v1, v2) /∈ E
(v1, v2 ∈ V ).

Let B : W × W → F2 be the bilinear extension of b to W . It is easy
to check that B is symplectic. This implies that there is an orthogonal
decomposition W = U ⊕ N where N is orthogonal to W and B is non-
degenerate on U . Also, the dimension dimU is even. Let ϕ : W → U

denote the orthogonal projection. Since N is orthogonal to W , we have

B(w1, w2) = B(ϕ(w1), ϕ(w2)) (w1, w2 ∈ W ).

Now we can build an extraspecial group using U and B. That is, there
exists a group G and a surjective homomorphism α : G → U+ such that
ker α = Z(G) ∼= F

+
2 and the commutator

[g1, g2] = B(α(g1), α(g2)) (g1, g2 ∈ G).

For each v ∈ V let f(v) ∈ G be an element such that α(f(v)) = ϕ(v).
We claim that f represents (V,E). Indeed, for v1, v2 ∈ V we have

[f(v1), f(v2)] = B(α(f(v1)), α(f(v2))) = B(ϕ(v1), ϕ(v2)) = b(v1, v2).

The size of G is 22k+1. If n is even then 2k ≤ n and if n is odd then
2k ≤ n − 1, which implies the required upper bounds on gr(n).

The theorem holds. �

Proof of Theorem 3. We first show that the upper bound holds.
Let (V,E) be a graph on n vertices. By a theorem of Tuza [Tuz] (V,E) can
be covered by k = n − �log2 n� + 1 complete bipartite subgraphs, that is,
there exist A1, . . . , Ak, B1, . . . , Bk ⊆ V such that Ai, Bi spans a complete
bipartite subgraph (1 ≤ i ≤ k). Let

P =
[
1 1
0 1

]
, Q = Pᵀ =

[
1 0
1 1

]
and I =

[
1 0
0 1

]
.
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Note that P and Q do not commute. Let us define fi : V → SL(2, F )
(1 ≤ i ≤ k) by

fi(v) =




P if v ∈ Ai;

Q if v ∈ Bi;

I if v /∈ Ai ∪ Bi.

Finally, let us define f : V → SL(2, F )k ≤ SL(2k, F ) as the diagonal sum
of the fi, that is, let the i-th coorfinate function of f be fi. We claim that
f represents (V,E). Indeed, if v1, v2 ∈ V and (v1, v2) /∈ E then for all i

if v1 ∈ Ai then v2 /∈ Bi and if v1 ∈ Bi then v2 /∈ Ai. Thus fi(v1) and
fi(v2) commute which implies that f(v1) and f(v2) commute as well. On
the other hand, if (v1, v2) ∈ E then the edge (v1, v2) is covered by one of
the bipartite subgraphs, that is, for some 1 ≤ i ≤ k we have v1 ∈ Ai and
v2 ∈ Bi or v1 ∈ Bi and v2 ∈ Ai. This means that fi(v1) and fi(v2) do not
commute and the same holds for f(v1) and f(v2). The claim holds and
shows that the upper bound mat(n) ≤ 2(n − �log2 n� + 1) is valid.

For the lower bound we will consider Tn. Let f : Tn → Mk(F ) be a
representation, that is, let a1, a2, . . . , an, b1, b2, . . . , bn ∈ Mk(F ) such that
ai commutes with every other element but bi and bi commutes with every
other element but ai. We claim that the set of matrices a1, a2, . . . , an is
linearly independent over F . Indeed, assume that for some 1 ≤ j ≤ n we
have

aj = λ1a1 + · · · + λj−1aj−1 + λj+1aj+1 + · · · + λnan

for some λi ∈ K. Now the right hand side commutes with bj but the left
hand side does not, a contradiction. The claim holds and shows that k2 =
dim Mk(K) ≥ n which leads to the lower bound mat(n) ≥ √�n/2�. �

Remark. Using Theorem 3 one can obtain lower estimates on the min-
imal degree of a faithful linear representation of certain finite groups, like
alternating groups or wreath products. While these estimates are easy to
beat using representation theory, it is worth mentioning that an affirma-
tive answer for Question 4 would imply asymptotically sharp bounds for
the above two classes.

Proof of Theorem 2. The proof for the upper bound is analogous
to the one in Theorem 3. Let (V,E) be a graph on n vertices, let k =
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n−�log2 n�+ 1 and let A1, . . . , Ak, B1, . . . , Bk ⊆ V such that Ai, Bi spans
a complete bipartite subgraph (1 ≤ i ≤ k). Let us define fi : V → S3

(1 ≤ i ≤ k) by

fi(v) =




(1, 2) if v ∈ Ai;

(2, 3) if v ∈ Bi;

( ) if v /∈ Ai ∪ Bi.

Finally, let us define f : V → Sk
3 ≤ S3k such that the i-th coordinate

function of f is fi. Just as in the proof of Theorem 3 it is easy to see that f

represents (V,E). This gives the upper bound per(n) ≤ 3(n−�log2 n�+1).
For the lower bound we will again consider Tn. Let f : Tn → Sk

be a representation, that is, let a1, a2, . . . , an, b1, b2, . . . , bn ∈ Sk be per-
mutations such that ai commutes with every other element but bi and bi

commutes with every other element but ai. Let H = 〈a1, a2, . . . , an〉. Then
H is Abelian and by the same argument as in Theorem 3 we see that no
aj is generated by the rest of the ai. This implies that the subgroup chain
Hi = 〈a1, a2, . . . , ai〉 (1 ≤ i ≤ n) is strictly increasing, which implies that
|H| ≥ 2n. On the other hand, any Abelian subgroup of Sk has size at most
3k/3 (see [BeM]). So we have 2n ≤ 3k/3 which implies k ≥ (log3 8)n. This
gives per(n) ≥ (log3 8) �n/2� as stated. �

Remark. Results of Rödl and Rucinski [RoR] show that one cannot
substantially improve Tuza’s theorem. This suggests that the ‘diagonal’
method used above will probably not lead to an improvement of the upper
bounds in Theorem 3 and Theorem 2.

Proof of Proposition 5. Since Tn can be represented in G, there
exist a1, a2, . . . , an, b1, b2, . . . , bn ∈ G such that ai commutes with every
other element but bi and bi commutes with every other element but ai

(1 ≤ i ≤ n).
Let (V,E) be a simple graph on n vertices. List the elements of V as

v1, v2, . . . , vn. Let f : V → G be defined as

f(vi) = ai

∏
i<j, (vi,vj)∈E

bj.

It is easy to check that (vi, vj) ∈ E if and only if f(vi) and f(vj) do not
commute (1 ≤ i, j ≤ n). That is, f represents (V,E). �
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Proof of Corollary 6. The assumptions of the corollary on n

subgroups imply that the graph Tn can be represented in Γ. Now if Γ
can be embedded into GL(m,K) for some field K and integer m then
Tn can also be represented in GL(m,K) which, by Theorem 3, implies
m ≥ √�n/2�. Since

√�n/2� tends to infinity with n, Γ cannot be embed-
ded into GL(m,K) for any m. �

Let T be an infinite rooted tree such that the number of vertices at
level n tends to infinity with n. Let Γ be a group acting on T faithfully.
For each vertex v ∈ T let us define the rigid stabilizer of v as

RistΓ(v) = {g ∈ Γ | g moves only descendants of v} .

We say that the action of Γ is weakly branch if Γ acts transitively on every
level of T and for every v ∈ T the rigid stabilizer RistΓ(v) is nontrivial.

Proof of Corollary 7. We will show that the assumptions of
Corollary 6 hold. For a natural number n let k be an integer such that T

has at least n vertices at level k. Let v1, v2, . . . , vn ∈ T be distinct vertices
at level k and let Hi = RistΓ(vi) (1 ≤ i ≤ n). Now for i 
= j the subgroups
Hi and Hj commute since they have disjoint support on T . On the other
hand, we claim that the Hi are non-Abelian (1 ≤ i ≤ n). To see this, let
1 
= g ∈ Hi and let v ∈ T be a descendant of vi such that vg 
= v. Let
H = RistΓ(v) ≤ Hi. Then the conjugate subgroup Hg = RistΓ(vg) which
implies H ∩ Hg = 1. Since H is nontrivial, this means that g and H do
not commute.

So the assumptions of Corollary 6 hold and thus Γ is not linear over
any field. �

Note that we did not even use that Γ acts transitively on every level
of T .
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