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Abstract. Many results show how restrictions on the values of the irre-
ducible characters on the identity element (that is, the degrees of the irreducible
characters) of a finite group G, influence the structure of G. In the current article
we study groups with restrictions on the values of a nonidentity rational element
of the group. More specifically, we show that S3 is the only nonabelian finite
group that contains a rational element g such that χ1(g) �= χ2(g) for all distinct
χ1, χ2 ∈ Irr(G). We comment that the dual statement is also true: S3 is the
only finite nonabelian group that has a rational irreducible character that takes
different values on different conjugacy classes.

1. Introduction

There are no finite groups in which all the irreducible characters have
distinct degrees (see, e.g., [1]). Our first result is a variation of this situa-
tion, in which we replace the degrees by “another” rational column of the
character table. We show that:
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Theorem 1. Let G be a finite nonidentity group with a rational ele-

ment g such that χ1(g) �= χ2(g) for every distinct χ1, χ2 ∈ Irr(G). Then

G � S2, or S3.

A dual statement is:

Theorem 2. Let G be a finite nonidentity group with a rational χ ∈
Irr(G) such that χ(g1) �= χ(g2) for any non-conjugate elements g1, g2 ∈ G.

Then G � S2 or S3.

Compare this to the conjecture (proved for solvable groups in [14]
and independently in [12]) that S3 is the only finite group for which the
conjugacy character x → |CG(x)| takes on different values on different
conjugacy classes.

Our notation is standard (see [9]). We use the notation classG(x) for
the conjugacy class of the element x in the group G. The set Lin(G) is the
set of all linear characters of G.

2. Proof of Theorem 1

Proof. Let G be a counter-example of minimal order. If 1 �= M � G

where M is a subgroup with g /∈ M , then θ(gM) �= φ(gM) for every
distinct θ, φ ∈ Irr(G/M). By induction we get that G/M ∼= S2 or S3.

First we show that G is a rational group. Indeed, if χ ∈ Irr(G) then
χσ ∈ Irr(G) for all σ ∈ Gal(Q( |G|√1 )/Q). Since g is rational we have
that χσ(g) = χ(g), and by our assumption we get that χσ = χ for all
χ ∈ Irr(G). Thus G is rational.

Assume first that G = G′. Then G has a proper normal subgroup
N such that G/N is a nonabelian rational simple group. By [6], G/N ∼=
SP (6, 2) or O+

8 (2)′. If g ∈ N , then g ∈ Ker(η) for all η ∈ Irr(G/N). Each
of the groups SP (6, 2) and O+

8 (2)′ have two distinct irreducible characters
χ1 and χ2 of the same degree (see [4]), so N = ker(χi) and we get that
χ1(g) = χ1(1) = χ2(1) = χ2(g), contradicting our assumption. Thus
g /∈ N . Since G/N � S2, S3 we get that N = 1. Again, [4] shows
neither SP (6, 2) nor O+

8 (2)′ has an element on which different irreducible
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characters take on distinct values. So we may assume that G �= G′. Note
that g /∈ G′ because otherwise at least two linear characters will include g

in their kernel and so both will have value 1 on g.
Let λ ∈ Lin(G)−{1G}. Since 1G(g) = 1, we get that λ(g) is a rational

root of unity different from 1. Thus λ(g) = −1 for all λ ∈ Lin(G) − {1G}.
Our assumption now implies that Lin(G) = {1G, λ}, so that |Lin(G)| =
|G : G′| = 2. In particular, G = G′〈g〉. Then λ(y)= λ(yG′)= λ(gG′)= −1
for all y ∈ G − G′.

Let χ ∈ Irr(G)−Lin(G). There are two possibilities, either λχ = χ or
λχ �= χ. If λχ = χ, then λ(g)χ(g) = −χ(g) = χ(g) and so χ(g) = 0. Our
assumption implies that there is at most one χ ∈ Irr(G) with λχ = χ and
this χ, if exists, vanishes on g (and in fact on G − ker λ = G − G′).

The second possibility is that λχ �= χ. All but possibly one member of
Irr(G) satisfy this. No χ with λχ �= χ can vanish on g, because otherwise
there will be distinct irreducible characters λχ, χ vanishing on g, contrary
to our assumption.

In this case

λχ(y) =




χ(y) if y ∈ G′ = ker(λ)

−χ(y) if y /∈ G′.

We show that this implies that χG′ ∈ Irr(G′). For if not then χG′ = α1+α2

with α1, α2 ∈ Irr(G′) two distinct characters, and α1 is not G-invariant.
So the inertia group IG(α1) < G forcing IG(α1) = G′. It follows ([9] p. 95
problem 1) that (α1)

G is irreducible, with χ an irreducible constituent.
Hence (α1)

G = χ. Thus χ vanishes on G − G′ and in particular χ(g) = 0,
a contradiction.

We can now write Irr(G) = {1G, λ, χ, χ1, λχ1, χ2, λχ2, . . . , χs, λχs}
where s is a non-negative integer. Note that χ may not exist, but if it
does, it vanishes on G − G′. The other χi’s and λχi’s restrict irreducibly
to G′ and never vanish on g. Also χ (if exists) either restricts irreducibly
or to a sum of two irreducible characters of G′. Since each element of
Irr(G′) is a constituent of a restriction of some member of Irr(G) we get
that all but possibly two members of Irr(G′) − {1G′} are G-invariant. By
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the Brauer permutation lemma ([9], Theorem 6.23, p. 93), all but possibly
two nonidentity G′-conjugacy classes are in fact G-conjugacy classes.

Suppose that s = 0. If χ does not exist, then G ∼= S2, a contradiction.
If χ does exist, G has exactly three conjugacy classes so that G ∼= S3 (see,
e.g., [13]), a contradiction again. So s ≥ 1. In particular G′ > 1.

We now break the proof into two cases: G′ = G′′ and G′ �= G′′.

Case 1. G′ = G′′.
Let L be a proper subgroup of G′ maximal subject to being normal

in G. Then G′/L is a minimal normal subgroup of G/L. As G′ has no
abelian factor groups, we get that G′/L = T1 × T2 × . . . × Tr where the
Ti’s are isomorphic nonabelian simple groups. In particular G/L � S2, S3.
Induction implies that L = 1, so that G′ = T1 × T2 × . . .×Tr. Set T = T1.
As T � G′, we have that T g � G′. Suppose that T �= T g, then T ∩T g � T

and as T is simple we get that T ∩T g = 1. Since G = G′ 〈g〉 with g2 ∈ G′,
we get that T × T g � G. But G′ is a minimal normal subgroup of G, so
G′ = T × T g. As T is a nonabelian simple group, |T | has at least three
prime divisors, say p1, p2, p3. Fix p = pi and let xp ∈ T be an element of
order p. Then xg

p ∈ T g and so classG(xp) � T (since T∩T g = 1). However,
G′ = T × T g and T g ⊂ CG′(xp), so every G′-conjugate of xp has the form
xt

p for some t ∈ T and hence classG′(xp) ⊂ T . So G′ has more than two
nonidentity G′-conjugacy classes which are not G-conjugacy classes. This
is a contradiction as we have at most two such classes in G′. We conclude
that T = T g and so G′ is a nonabelian simple group.

Suppose that C = CG(G′) �= 1. Then C � G so that C ∩ G′ � G′.
As G′ is a nonabelian simple group, either C ∩ G′ = G′ or C ∩ G′ = 1. In
the former case G′ ⊆ C = CG(G′) which is impossible as G′ is nonabelian.
Thus C ∩ G′ = 1 and as |G : G′| = 2 we conclude that G = C × G′ with
|C| = 2. It follows that G′ ∼= G/C is a rational nonabelian simple group,
so by [6] G′ ∼= SP (6, 2) or O+

8 (2)′. In particular G/C � S2 or S3, and
induction implies that g ∈ C = ker(σ) for all σ ∈ Irr(G/C). Each of
the groups SP (6, 2) and O+

8 (2)′ have two distinct irreducible characters
χ1 and χ2 of the same degree (see [4]), so g ∈ ker(χi) and we get that
χ1(g) = χ1(1) = χ2(1) = χ2(g), contradicting our assumption.
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Thus CG(G′) = 1 and so G ⊂ Aut(G′). Recall that all but at most
one element of Irr(G) − {1G} restrict irreducibly to G′.

Since G is a rational group, [6] implies that G′ is isomorphic to one
of the groups: An, n > 4; PSP (4, 3); SP (6, 2), SO+(8, 2), PSL(3, 4),
PSU(3, 4). We now discuss each of these cases.

Suppose that G′ = An. Suppose first that n ≥ 8. Then G = Sn. Now
by [10] p. 66, an irreducible character of Sn does not restrict irreducibly to
An if and only if the partition of n corresponding with it is self-associate.
For n even the following partitions are self associate:

• • n−4
2

• •

n−4
2

• • • n−8
2

• • •
• •

n−8
2

For n odd the following partitions are self associate:

• n−1
2

n−1
2

• • • n−9
2

• • •
• • •

n−9
2

So we have at least two nonlinear irreducible characters of G which do
not restrict irreducibly to G′, a contradiction. For n = 5, 6, 7, Sn does not
satisfy the assumption of the theorem (see tables of [10], p. 349).

If G′ ∼= Sp(6, 2), then Out(G′) = 1, a contradiction. If G′∼= PSP ((4, 3),
SO+(8, 2), PSL(3, 4) or PSU(3, 4) then by looking in the fusion column
for each of the groups of the type G′ · 2 in [4], we see that each has at
least two nonlinear irreducible characters which do not restrict irreducibly
to G′, a contradiction.

Case 2. G′ �= G′′.
For each i, the characters χi and λχi are rational, non-linear and re-

strict irreducibly to G′, so their restrictions to G′ are rational and nonlin-
ear. However G′ �= G′′ and so G′ must have nonprincipal linear characters.
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As each element of Irr(G′) is a constituent of a restriction of some element
of Irr(G), and since λG′ = 1G′ we get that χ does exist and χG′ must have
a nonprincipal linear constituent. As χ is nonlinear, χG′ is reducible and
so χG′ = δ1 + δ2 with δi ∈ Lin(G′) and hence Lin(G′) = {1G′ , δ1, δ2}. So
|G′ : G′| = 3 and G/G′ ∼= S3.

Now take u ∈ G′ − G′′. Then δi(u) = δi(uG′′) is a cubic root of
unity. It particular δi(u) is not rational. So δ1, δ2 are not rational, and
all other elements of Irr(G′) are rational. So every irreducible nonlinear
character of G′ is rational. Next take χi for some i. Then χi|G′ is an
irreducible nonlinear rational character of G′. Therefore δ1χi|G′ is also
an irreducible nonlinear character of G′. So δ1χi|G′ is rational. Thus
δ1χi|G′(u) = δ1(u)χi(u) is rational. But χi(u) is rational and δ1(u) is not
rational. This implies that χi(u) = 0. Clearly λχi(u) = 0 as well.

It follows that every nonlinear character of G′ vanishes on u. Hence

|CG′(u)| = |1G′(u)|2 + |δ1(u)|2 + |δ2(u)|2 = 3.

So u commutes in G′ only with its powers. In particular |u| = 3 and
u acts with no fixed points on G′′. Thus the group G′ = 〈u〉G′′ is a
Frobenius group with G′′ the Frobenius kernel. A theorem of Thompson
implies that G′′ is nilpotent. In particular, Z(G′′) �= 1. By induction
we get that G/Z(G′′) = S2 or S3. But |G/Z(G′′)| ≥ |G/G′′| = 6. We
conclude that G/Z(G′′) = S3, so |G/Z(G′′)| = |G/G′′| = 6 which implies
that G′′ = Z(G′′), namely, G′′ is abelian.

By a theorem of Ito ([9], Theorem 6.15, p. 84) every irreducible char-
acter of G′ has degree dividing |G′/G′′| = 3. So χi(1) = 3 for all i.

So Irr(G) contains two linear characters, one character of degree 2,
and all the rest have degree 3.

Let us get back to the element g ∈ G − G′ on which the irreducible
characters assume distinct values. Fix an i. As χi(1) = 3 the rational
number χi(g) is a (nonzero) sum of three roots of unity. As |χi(g)| ≤ 3 we
get that χi(g) = −3, 3,−2, 2,−1, 1. Since λ(g) = −1 and 1G(g) = 1 we
obtain that χi(g) = −3, 3,−2, 2.

If χi(g) = a then λχi(g) = −a. If s > 2 let χ1(g) = a1, χ2(g) = a2,
χ3(g) = a3 where a1, a2, a3,−a1,−a2, − a3 are six different rationals on
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one hand, and each has to be either −3, 3,−2 or 2 on the other hand.
This is a contradiction. It follows that s ≤ 2. If s = 1 then G has five
conjugacy classes, and if s = 2 then G has seven conjugacy classes (two
linear characters, s χi’s, s λχi’s and one χ). We now use [13]. From the
list of groups G with five or seven conjugacy classes only S4 and S5 are
rational groups satisfying |G : G′| = 2. But (S5)

′′ = (S5)
′ and S4 does not

satisfy the assumption of the theorem. This is the final contradiction. �

3. Proof of Theorem 2

Proof. Recall that χ ∈ Irr(G) is rational, and χ(g1) �= χ(g2) for
any non-conjugate elements g1, g2 ∈ G. Let y1, y2 ∈ G# be such that
〈y1〉 = 〈y2〉. By Lemma 5.22 of [9], χ(y1) = χ(y2), so our assumption
implies (among other things) that y1, y2 are conjugate. Thus G is a rational
group. Our assumption implies that χ is faithful.

If |CG(y)| = 2 for some y ∈ G then G is a Frobenius group with an
abelian Frobenius kernel K of odd order and a Frobenius complement of
order 2 (see, e.g., Lemma 2.3 of [3]). Thus, every nonlinear character of
G has degree equal to 2, and it vanishes outside K. It follows that χ is
nowhere zero on K and χ(1) = 2. Let w ∈ K#, then |χ(w)| ≤ χ(1) = 2
and since χ(w) is rational, the assumption implies that χ(w) = −2,−1, 1.
Thus K# is a union of no more than three G-conjugacy classes, each of
size equal to two. Hence |K| ≤ 7. However, if |K| = 5 or 7, then G is not
rational, so |K| = 3 and G � S3.

Therefore we may assume that |CG(y)| > 2 for all y ∈ G.
If χ is linear then G has at most two conjugacy classes, so G � S2.
Thus we may assume that χ is nonlinear, so G is non-abelian and χ

must vanish on some element of G. Suppose that C is the unique conjugacy
class of G on which χ vanishes. Further, if χ assumes the value 1 we denote
by D the unique conjugacy class of G on which χ takes on the value 1.
Similarly, if χ assumes the value −1 we denote by E the unique conjugacy
class of G on which χ takes on the value −1. If D (respectively E) does
not exist we set D = ∅ (respectively E = ∅). A variation of a theorem of
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Thompson ([2] p. 147) now implies that |C ∪ D ∪ E| ≥ 3
4 |G|, and equality

forces |G| = 8. As the only nonlinear irreducible character of a non-abelian
group of order 8 vanishes on more than one conjugacy class, we conclude
that |C ∪ D ∪ E| > 3

4 |G|. Consequently either |C|, |D| or |E| is bigger
than 1

4 |G|. It follows that there exist g ∈ C ∪ D ∪ E with |CG(g)| < 4.
Since |CG(g)| > 2, we get that |CG(g)| = 3. Then 〈g〉 is a Sylow

subgroup of order 3. A theorem of Feit and Thompson [5] implies either
G ∼= PSL(2, 7) or G has a nilpotent subgroup N such that G/N is isomor-
phic to either A3, S3 or A5. Since PSL(2, 7), A3 and A5 are not rational,
we get that G/N = S3.

We need to show that N = 1. Suppose the contrary, then N �= 1.
Now 3 divides |G/N | so that g /∈ N and gN is an element of order 3 in
G/N . Therefore 3 ≤ ∣∣CG/N (gN)

∣∣ ≤ |CG(g)| = 3 forcing
∣∣CG/N (gN)

∣∣ =
|CG(g)| = 3. It follows that every irreducible character of G that does
not contain N in its kernel must vanish on g. As χ is faithful we get that
χ(g) = 0 and so g ∈ C and C ⊂ G−N . As 〈g〉 ∈ Syl3(G) and g is rational,
every element of order three of G is conjugate to g.

We now show that N is a 2-group. Suppose the contrary, and let p be
an odd prime divisor of |N |. Since N is nilpotent, p divides |Z(N)|. Let
v ∈ Z(N) be of order p. Since v is rational we get that NG(v)

CG(v) is a cyclic

group of order p − 1. As N ⊆ CG(v) we have that NG(v)
CG(v)

∼= NG(v)/N
CG(v)/N ⊆

G/N
CG(v)/N . But G/N = S3 and no factor group of S3 has a cyclic subgroup
of order p − 1 for p �= 3. We conclude that p = 3. But |G|3 = |G/N |3 = 3
so that (3, |N |) = 1, a contradiction. Hence N is a 2-group.

If N has a characteristic subgroup M of order two, then M � G so
that M ⊆ Z(G) contradicting the fact that |CG(g)| = 3. Thus N has
no characteristic subgroup of order two. It particular N is not cyclic and
|Z(N)| > 2.

Now |C ∪ D ∪ E| > 3
4 |G| so |D ∪ E| > 3

4 |G| − |C| = 5
12 |G|. So either

|D| or |E| is bigger than 5
24 |G|. Thus there is an element h ∈ D ∪ E with

|CG(h)| < 24
5 so that |CG(h)| ≤ 4. As |N | = 1

6 |G|, we get that h ∈ G−N .
Again |CG(h)| > 2. Also, |CG(h)| = 3 implies that h has order three

and so h ∈ C, a contradiction. We conclude that |CG(h)| = 4. Then h
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is a 2-element. Let S be a Sylow 2-subgroup of G containing h. Clearly
N ⊆ S with |S : N | = 2, and as |N | > 2 we have that |S| ≥ 8. By [8]
(p. 375, Satz 14.23) S has maximal class and by [8] (p. 339, Satz 11.9b),
we get that S is either Dihedral, generalized Quaternion or Quasidihedral
group.

Suppose that |S| > 8, then |N | ≥ 8. Now, N is maximal in S so [7]
(Theorem 4.3, p. 191) implies that either N is cyclic or |Z(N)| = 2, a
contradiction. Therefore |S| = 8 and so |G| = 24. As |G : G′| = 2 we
get that G ∼= S4 (see, e.g., [11], p. 304). Finally S4 does not satisfy our
assumption, a final contradiction. �
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