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Abelian regular subgroups of the affine group
and radical rings

By A. CARANTI (Povo), F. DALLA VOLTA (Milano)
and M. SALA (Cork)

In memory of Edit Szabó

Abstract. We establish a correspondence between abelian regular subgroup
of the affine group, and commutative, associative algebra structures on the un-
derlying vector space that are (Jacobson) radical rings.

As an application, we show that if the underlying field has positive charac-
teristic, then an abelian regular subgroup has finite exponent if the vector space
is finite-dimensional, while it can be torsion free if the dimension is infinite.

We also give an example of an abelian, regular subgroup of the affine group
over an infinite-dimensional vector space, which intersects trivially the group of
translations.

1. Introduction

Cai Heng Li has described in [Li03] the finite primitive permutation
groups which contain an abelian regular subgroup. Among these we have
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the groups of affine type, where the translations form an abelian regular
subgroup which is normal. Li notes that there might well be other (non
normal) abelian regular subgroups in such groups, and as an example
describes the abelian regular subgroups of the group of affine type that
can be obtained as the split extension of an elementary abelian group of
order 2d by the symmetric group on d+ 1 letters.

The goal of this note is to record a simple description of the abelian
regular subgroups of the full affine group in terms of commutative, asso-
ciative algebra structures that one can impose on the underlying vector
space, so that the resulting ring is radical.

In Section 2 we establish the correspondence (Theorem 1). In Section 3
we give some examples.

As an application, we prove in Corollary 2 that if the underlying field
has positive characteristic, then an abelian regular subgroup has finite
exponent if the vector space is finite-dimensional. In Example 6 we show
that if the dimension is allowed to be infinite, then an abelian regular
subgroup can be torsion free.

An abelian regular subgroup of an affine group over a finite vector
space must intersect the group of translations nontrivially. Pál Hegedűs

has given an example [Heg00] of a nonabelian, regular subgroup of an
affine group over a finite vector space which has trivial intersection with
the group of translations. In Corollary 5 we show that the same setting
of Example 6 provides an example of an abelian, regular subgroup of the
affine group over an infinite-dimensional vector space which has trivial
intersection with the group of translations.

2. Abelian regular subgroups

Let F be an arbitrary field, and (V,+) be a vector space of arbitrary
dimension d over F .

Let GL(V ) be the group of invertible, F -linear maps on V , and N be
the group of translations, that is,

N = { ν(x) : x ∈ V } ,

where ν(x) : z �→ z + x. Let Aff(V ) be the affine group on V .
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Clearly we have

Fact 1. N is a normal subgroup of Aff(V ). Every element of Aff(V )
can be written uniquely as a product of an element of GL(V ) and an
element of N , so that we have the semidirect product decomposition

Aff(V ) = GL(V )N.

We also write M(V ) for the F -algebra of F -linear maps on V .
Recall that a group G of permutations on a set Ω is said to be regular

if, given any α ∈ Ω, then for each β ∈ Ω there exists a unique g ∈ G such
that αg = β.

Clearly N is an abelian regular subgroup of Aff(V ). The next result
describes them all.

Recall that a (Jacobson) radical ring [Jac64, Definition 2, p. 4] is a
ring (A,+, ·) in which every element is invertible with respect to the circle
operation x ◦ y = x + y + x · y, so that (A, ◦) is a group. Equivalently, a
ring is radical if it coincides with its Jacobson radical.

Theorem 1. Let F be an arbitrary field, and (V,+) a vector space

of arbitrary dimension over F .

There is a one-to-one correspondence between

(1) abelian regular subgroups T of Aff(V ), and

(2) commutative, associative F -algebra structures (V,+, ·) that one can

impose on the vector space structure (V,+), such that the resulting

ring is radical.

In this correspondence, isomorphism classes of F -algebras correspond

to conjugacy classes under the action of GL(V ) of abelian regular sub-

groups of Aff(V ).

Proof. Let T be an abelian regular subgroup of Aff(V ). Since T is
regular, for each x ∈ V there is a unique τ(x) ∈ T such that 0τ(x) = x.
(Our affine maps act on the right.) Thus

T = { τ(x) : x ∈ V } . (2.1)

Because of Fact 1, we can write τ(x) uniquely as

τ(x) = γ(x)ν(x), (2.2)
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where γ(x) ∈ GL(V ). We also introduce

δ(x) = γ(x) − 1 ∈ M(V ).

We have
τ(x)τ(y) = γ(x)ν(x)γ(y)ν(y)

= γ(x)γ(y)ν(x)γ(y)ν(y)

= γ(x)γ(y)ν(xγ(y))ν(y)

= γ(x)γ(y)ν(x+ y + xδ(y)).

(2.3)

As T is abelian, we have τ(x)τ(y) = τ(y)τ(x) for all x, y ∈ V . There-
fore (2.3) yields

γ(x)γ(y)ν(x + y + xδ(y)) = γ(y)γ(x)ν(y + x+ yδ(x))

for all x, y ∈ V . From Fact 1 we get

ν(x+ y + xδ(y)) = ν(y + x+ yδ(x))

for all x, y ∈ V . We get

Fact 2. xδ(y) = yδ(x) for all x, y ∈ V .

As the left-hand side of xδ(y) = yδ(x) is linear in x, so is the right-
hand side. We obtain

Fact 3. δ : V → M(V ) is F -linear.

Since T is a group, we have τ(x)τ(y) = τ(z) for some z ∈ V . Because
of (2.3) and Fact 1, we have z = x+ y + xδ(y), so that

Fact 4. τ(x)τ(y) = τ(x+ y + xδ(y)) for all x, y ∈ V .

Thus, again by (2.3) and Fact 1, γ(x)γ(y) = γ(x + y + xδ(y)). We
obtain, using Fact 3,

γ(x)γ(y) = 1 + δ(x) + δ(y) + δ(x)δ(y)

= γ(x+ y + xδ(y))

= 1 + δ(x+ y + xδ(y))

= 1 + δ(x) + δ(y) + δ(xδ(y)),
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that is,

Fact 5. δ(xδ(y)) = δ(x)δ(y) for all x, y ∈ V .

Now define on V a product operation by

x · y = xδ(y). (2.4)

This product is commutative, by Fact 2. It is F -linear in both variables
(in particular it distributes over +), for instance because δ(y) ∈ M(V ) is
an F -linear map, and because of Fact 3. The product is also associative
as for all x, y, z ∈ V one has, by definition (2.4) and Fact 5,

(xy)z = (xδ(y))z = xδ(y)δ(z) = xδ(yδ(z)) = xδ(yz) = x(yz).

Therefore (V,+, ·) is an F -algebra.
We can now consider the circle operation “◦” on V given by

x ◦ y = x+ y + xy, (2.5)

which makes (V, ◦) into a monoid. The map

τ : (V, ◦) → T

x �→ τ(x)

is an isomorphism of monoids, because Fact 4 can be rewritten, according
to Fact 5, (2.4) and (2.5), as τ(x)τ(y) = τ(x ◦ y). Since T is a group, so is
(V, ◦). We have obtained

Fact 6. (V, ◦) is an abelian group, and the map

τ : (V, ◦) → T

x �→ τ(x)

is a group isomorphism.

We have thus proved that the ring (V,+, ·) is radical.
We note also the following

Fact 7. zτ(x) = z ◦ x.
This follows from

zτ(x) = z(1 + δ(x))ν(x) = z + zδ(x) + x = z ◦ x.
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Fact 7 shows that τ(x) is also a translation, but with respect to “◦”, while
ν(x) is a translation with respect to “+”. (But note that (V, ◦) need not
be the additive group of a vector space, see e.g. Example 1 in the next
section.)

Conversely, suppose (V,+, ·) is a radical ring. For x ∈ V define a
map τ(x) on V by τ(x) : y �→ y ◦ x, with “◦” as in (2.5). Reversing the
above arguments, one sees that T = { τ(x) : x ∈ V } is an abelian regular
subgroup of Aff(V ) then.

We now pass to the statement about the isomorphism and conjugacy
classes.

Suppose first that (V,+, ·) and (V,+, ∗) are two commutative, associa-
tive F -algebra structures on the vector space structure (V,+), such that
they are radical rings. Suppose there is an F -algebra isomorphism

ϕ : (V,+, ·) → (V,+, ∗).

In particular, ϕ ∈ GL(V ). For x, y ∈ V we have two circle operations{
x ◦ y = x+ y + x · y,
x � y = x+ y + x ∗ y,

Since ϕ is an algebra isomorphism it follows

(x ◦ y)ϕ = (x+ y + x · y)ϕ
= (xϕ) + (yϕ) + (xϕ) ∗ (yϕ)

= xϕ � yϕ.
(2.6)

Let T1 = { τ1(x) : x ∈ V } and T2 = { τ2(x) : x ∈ V } be the corre-
sponding subgroups, so that{

zτ1(x) = z ◦ x,
zτ2(x) = z � x.

Now for x, y ∈ V we have, according to Fact 7 and to (2.6),

yϕ−1τ1(x)ϕ = (yϕ−1 ◦ x)ϕ = y � xϕ = yτ2(xϕ).

Thus for all x ∈ V we have τ2(xϕ) = ϕ−1τ1(x)ϕ, so that T2 = ϕ−1T1ϕ.
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Conversely, if T2 = ϕ−1T1ϕ for some ϕ ∈ GL(V ), let ψ : V → V be
the bijection such that

ϕ−1τ1(x)ϕ = τ2(xψ)

for all x ∈ V . We have

0ϕ−1τ1(x)ϕ = 0τ1(x)ϕ = xϕ = 0τ2(xψ) = xψ,

so that ϕ = ψ.
Now for x, y ∈ V we have, according to Fact 6,

τ2(xϕ � yϕ) = τ2(xϕ)τ2(yϕ)

= ϕ−1τ1(x)τ1(y)ϕ

= ϕ−1τ1(x ◦ y)ϕ
= τ2((x ◦ y)ϕ),

so that
(x ◦ y)ϕ = xϕ � yϕ,

and reversing the argument of (2.6) one gets that

ϕ : (V,+, ·) → (V,+, ∗)
is an isomorphism of F -algebras. �

As an application, we get

Corollary 2. Let F be a field of positive characteristic p, and let

(V,+) be a finite dimensional vector space over F .

Then every abelian regular subgroup of Aff(V ) has finite exponent,

which is a power of p.

The result does not hold when V is allowed to be infinite dimensional.
In Example 6 in the next section we give an example of an abelian regular
subgroup which is torsion free.

Proof. We first prove that any F -algebra (V,+, ·), which is radical
as a ring, is nilpotent. Clearly V is non-unital, because −1 would have
no inverse with respect to ◦, as (−1) ◦ a = −1 for all a ∈ V . Now a non-
unital finite-dimensional F -algebra A need not be an Artinian ring, as an
ideal need not be an F -subspace. (Think of the one-dimensional Q-algebra
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Qa, where a2 = 0. Its ideals correspond to the additive subgroups of Q.)
However, A can be embedded in the standard way in a unital F -algebra
B of dimension one more. If A is radical, then A is the Jacobson radical
of the artinian ring B, and so A is nilpotent.

For a ∈ N and x ∈ V , we write

a◦x = x ◦ . . . ◦ x︸ ︷︷ ︸
a times

.

One proves easily by induction

a◦x =
a∑

i=1

(
a

i

)
xi.

In particular
pj
◦x = xpj

. (2.7)

Suppose V n = 0 for some n. If pj ≥ n for some j, then V pj
= 0, so that

by (2.7), and Fact 6, the corresponding T has exponent dividing pj. �

3. Examples and comments

We begin with some examples in which V is finite, so that all algebra
structures (V,+, ·), which are radical as rings, are nilpotent. In this section
we use the notation of the proof of Theorem 1.

The first example is here as folklore.

Example 1. When F is the field with 2 elements, and V has dimension
2 over F , the affine group is isomorphic to the symmetric group Sym(4)
on four letters. We write V = { 0, a, b, a + b } for the underlying vector
space. The other abelian regular subgroups of Sym(4) are the three cyclic
subgroups, which correspond to the ring structures on (V,+) defined by

• a2 = b, b2 = 0, ab = 0;
• a2 = 0, b2 = a, ab = 0;
• a2 = b2 = ab = a+ b.

For instance in the first case we obtain the cyclic group (T, ◦) where
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• 2◦a = a+ a+ b = b,
• 3◦a = b+ a+ ab = a+ b,
• 4◦a = a+ b+ a+ (a+ b)a = b+ b = 0.

The three cyclic subgroups are conjugate here, and the three rings are
isomorphic.

A generalization of this for an arbitrary prime p is given by the fol-
lowing

Example 2. Let p be an arbitrary prime, and take V to have dimension
p over the field F with p elements. Then one can define a suitable ring
structure on V by declaring a base of V in the form

a, a2, . . . , ap,

and letting ap+1 = 0. The corresponding group T is abelian of type
(p2, p, . . . , p︸ ︷︷ ︸

p−2

), where the cyclic component of order p2 is generated by a

(one has p◦a = ap), and those of order p are generated by a2, . . . , ap−1.

The following non trivial ring structure on V satisfies xyz = 0 for all
x, y, z ∈ V .

Example 3. Let F be the field with 2 elements, and (V,+, ·) be the
exterior algebra over a vector space of dimension k, spanned by e1, . . . , ek,
truncated at length 2. That is, V has basis

e1, . . . , ek, e1 ∧ e2, . . . , ek−1 ∧ ek,
and satisfies x2 = 0.

This is relevant to the question whether N normalizes all abelian reg-
ular subgroups T . Note first the following interpretation of our product in
terms of the action of T on N .

Lemma 3. [ν(x), τ(y)] = ν(xy).

Proof.

[ν(x), τ(y)] = ν(x)−1ν(x)γ(y)

= ν(−x)ν(x(1 + δ(y)))

= ν(−x+ x+ xy) = ν(xy). �
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By assumption, T normalizes N . Now N normalizes T if and only if
ν(xy) ∈ T for all x, y, that is, δ(xy) = 0, that is xyz = 0 for all x, y, z ∈ V .
So in Example 3, N normalizes T . However, in the following example N
does not normalize T , as there is a nonzero threefold product.

Example 4. Let F be the field with 2 elements, and (V,+, ·) be the ex-
terior algebra over a vector space of dimension three, spanned by e1, e2, e3.
That is, V has basis

e1, e2, e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3, e1 ∧ e2 ∧ e3.
Clearly x2 = 0 for all x, but e1 ∧ e2 ∧ e3 	= 0.

In Examples 3 and 4, the ring is an exterior algebra over the field F

with two elements, or a quotient thereof. In characteristic 2, algebras that
are quotients of exterior algebras correspond to elementary abelian regular
subgroups of the affine group.

Before considering an example when V is infinite, let us define, for a
prescribed F -algebra structure (V,+, ·),

U = ker(δ) = {x ∈ V : x · y = 0 for all y ∈ V } .
Clearly we can choose the algebra structure on the finite dimensional vector
space (V,+) so that U has arbitrary dimension, for instance as in the next
example.

Example 5. Let 0 ≤ e < d, and we choose (V,+, ·) to be the quotient of
the ideal of the polynomial ring F [x0, x1, . . . , xe] generated by x0, x1, . . . , xe

modulo the relations 

xd−e+1

0 ,

x0xi, for i > 0,

xjxi, for i, j > 0.

Then V has dimension d, while U has basis xd−e
0 , x1, . . . , xe, and thus

dim(U) = e+ 1.

Now U corresponds to the intersection N ∩ T , as
N ∩ T = { ν(x) : τ(x) = ν(x) }

= { ν(x) : δ(x) = 0 }
= { ν(x) : x ∈ U } .

(3.1)
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Using Lemma 3, one recovers the well-known fact

Lemma 4. Let N be the group of translations in the affine group

Aff(V ), and let T be an abelian regular subgroup. Then

N ∩ T = CN (T ) = CT (N). (3.2)

When V , and thus Aff(V ), is finite, then U 	= 0, as (V,+, ·) is nilpo-
tent, so that the subgroup of (3.2) is nontrivial. (Alternatively, CN (T ) is
nontrivial, as T is a finite p-group acting on the finite p-group N ; here p
is the characteristic of the underlying field.) In other words, an abelian
regular subgroup of the affine group over a finite vector space intersects
the group of translations nontrivially.

It also follows from Example 5 that when V is finite, then N ∩ T has
arbitrary order, different from 1.

Pál Hegedűs has given an example [Heg00] of a nonabelian, regular
subgroup of an affine group over a finite vector space which has trivial
intersection with the group of translations.

Now we consider the following

Example 6. Let (V,+, ·) be the maximal ideal tF [[t]] of the F -algebra
F [[t]] of formal power series over an arbitrary field F . This is a radical
ring. Since F [[t]] is a domain, we have U = 0 here.

It follows from (3.1) that in this example the abelian regular subgroup
T intersects trivially the group N of translations.

Also, T is torsion-free. If F is a field of positive characteristic p, then
the group N of translations has exponent p. Thus Aff(V ) has two rather
different abelian regular subgroups here.

Summing up, we have

Corollary 5.

(1) In the affine group over a finite vector space, an abelian regular sub-

group intersects the group of translations nontrivially.

(2) There is an example [Heg00] of a nonabelian, regular subgroup of an

affine group over a finite vector space which has trivial intersection

with the group of translations.
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(3) There is an example (Example 6 above) of an abelian, regular sub-

group of the affine group over an infinite vector space which has trivial

intersection with the group of translations.

References
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