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Semigroup algebras of certain partial monomorphisms

By VLASTIMIL DLAB (Ottawa) and TOMAS POSPICHAL (Windsor)

In memoriam Edith Szabd

Abstract. The paper describes explicitly the semigroup algebras of all order-
preserving partial monomorphisms of a disjoint union of two finite chains.

1. Preliminaries

Let X be a finite set of n elements and p a relation on X. Denote by
M (X, p) the subsemigroup of partial monomorphisms f of X satisfying the
following condition of compatibility with p: if f:Y — Z (with Y, Z C X)
is a one-to-one map, then

x1pxo implies f(z1)p f(x2) for all 21,29 €Y.

Thus, M (X, p) is a subsemigroup of the well-known symmetric inverse
semigroup M (X) of all partial monomorphisms of X, introduced more
than 50 years ago by V. V. VAGNER [4]. Recall that the product of
two partial monomorphisms f : Y — Z and g : U — V is the partial
monomorphism

gof:fHZnU)—g(ZNU).
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Now, the (contracted) semigroup algebra KM (X) (whose dimension is
oy (?) 2t!) is known to be, under suitable restrictions on the character-
istic of the field K, semisimple. The semigroup M (X) contains, for each
subset Y of X, the respective group of all permutations of Y, and it is this
fact that imposes the restrictions on the characteristic of the field K.

It is equally well-known that the semigroup algebra KM (X, <) of
the subsemigroup M (X, <) of M(X) of all “monotone” partial monomor-
phisms (that is, the semigroup M (X, p) where the relation p is a total order
< of X and thus the dimension of KM (X, <) is Y ", (?)2 = (2:) —1)is
always semisimple and has the form

KM(X,<) =[] A
t=1

where A; = Mat(n)(K ) are the algebras of all (') x (') matrices over
t
the field K. In fact, it is easy in this case to write down the respective
canonical basis of KM (X, <) as follows.
Fix ¢, 1 <t < n, and consider the sequence
T3S 3T D 2T

t

of all subsequences of X of length ¢ in the lexicographical order. Thus,
n={l<2<---<t}

and
T(n):{n—t—|—1<n—t—|—2<---<n}.
t

Write 7, = {i1 < ig < -+ <it}, 7s = {j1 < j2 < -+ < j¢} and denote the

monomorphism f : 7, — 75 of M (X, <) simply by [;1 ;,2 o ;t]
1J2 .. t

Moreover, for each 7., 1 < r < (7;), we define the primitive idempotent

€irig.ir = (—1)'7! Z [Z:p] + (-1)t72 Z [il’ iq]

7 1y 1

1<p<t VP 1<p<q<t WP 74
+(_1)t—3 iplg? T 2112 ...
2 ipiq il ivda ...

1<p<qg<i<t
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Now A; is the algebra of all (7) x (%) matrices whose r X s entries (cor-
responding to 7, and 1) are all K-multiples of the following linear combi-

nation b,s(t) of the elements of M (X, <):

bro() = (=1)7 D7 mﬂ‘”t_g 2 [ipiq}

1<p<t 1<p<g<t P4

SIS [ipiqil}_i_"‘_'_[ilig...Z'-t:|'

1<p<q<i<t Jp Ja Ji 102 - gt

Let us point out that the above idempotents form a complete set of
primitive orthogonal idempotents of K M (X, <). Moreover, the sum of all
possible e;,4,. 4, is a central idempotent of KM (X) for each 1 < t < n.
As M(X, p) contains all idempotents of M (X), the semigroup algebra
KM(X, p) splits into n blocks

KM(X, :0) = H KMt(X> :0)7
t=1

where the semigroups M;(X, p) are subfactors of M (X, p) determined by
the monomorphisms between subsets of ¢ elements. M;(X, p) is the semi-
group whose elements are all the rank-t maps from M (X, p), together with
the ‘empty’ map, which is the zero element of the semigroup. The mul-
tiplication in M;(X, p) is given by the “restricted product” of maps: the
product of f and g is their composition if the range of f equals the domain
of g, otherwise the product is the empty map.

The present note demonstrates that already the case when the rela-
tion p is a product of two chains, i.e., the case when (X, p) is a disjoint
union of two linearly ordered sets (X1, <) and (X2, <), leads, with a few
exceptions, to the wild representation type of the respective semigroup
algebra. The general case when (X, p) is a finite union of chains brings
new more involved features, and will be treated in a forthcoming paper by
T. PospicHAL [3].
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2. Theorems

Let (X, p) = (X1,<) U (X2,<) be a disjoint union of two chains of
n1 and no elements, respectively. Thus n = ny 4+ no, and we may assume
ny > ng > 0.

We are going to describe the quiver of the semigroup algebra KM(X, p);
clearly, it is a union of the quivers of A, = KM (X, p), 1 <t <n.

For a given 1 < t < n, each subset Y of X of ¢ elements is a pair
of chains (one chain is possibly empty), and thus characterized by a pair
[t1,t2], t = t1+ta, t1 >ty > 0, where t; denotes the length of the respective
chain. Let us call [tq,t5] the type of Y.

Let Ni(X, p) denote the set of all the elements of M;(X, p) whose
domain and range do not have the same type. For each [ti,t3] such that
t =t +ta, t1 > t2 > 0, we denote by My, 4,1(X, p) the set of all elements
of My(X, p) whose domain and range are both of the type [t1,t2]. Note
that each nonzero element of M;(X, p) belongs either to N;(X, p) or to
precisely one of the sets My, ;,/(X, p). It is convenient to consider the
empty map as belonging to Ny(X, p) and each of My, ,, (X, p), as this
allows us to treat them as subsemigroups of M;(X, p).

Note that N¢(X, p) is a semigroup with zero multiplication. More-
over, N¢(X, p) is actually an ideal of M;(X, p). Considering the factor
semigroup M;(X, p)/N¢(X, p), we observe that it is the 0-disjoint union
of semigroups (isomorphic to) My, ;,1(X, p).

We now turn our attention to the structure of My, ;,/(X, p). Notice
that every (nonzero) idempotent of My, 4,1(X, p) is the partial identity
map Idy on a subset Y of type [t1,t2]. The properties of the restricted
product immediately imply that if ¢; # t5 then Idy is the only element of
My, 1,1(X, p) (or My(X, p), for that matter) with domain and range equal
to Y. If t; = to, however, there is another element with such property,
namely, the map that “swaps” the two chains of length ¢;. We denote this
map by Swy. This fact leads to the dichotomies in what follows.

The semigroups My, ;,1(X, p) are instances of Brandt semigroups (con-
sult [1] for all semigroup-related terminology). More specifically, one can
see that M[tlh](X , p) is isomorphic to an elementary matriz units semi-
group if t1 # to, while if t; = ta, M, ;,)(X, p) is an elementary matrix
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units semigroup with the coefficients in the symmetric group on two ele-
ments. The order of matrices is established by straightforward counting.
We summarize this result in the following lemma.

Lemma 1. Let [t1,t2] be the type of a nonempty subset of X. Suppose
(X, p) itself is of the type [n1,n2]. The number n([t1,ts]) of subsets of X
whose type is [t1,ta] with to > 0 is

n n
< 1) < 2) if 1> ng or (t1=13 and t1<ny),

ty to
n([t1,ta]) =
ni no no ni .
It t dt1 <
<t1> <t2>+<t1> <t2> if 1y 7ty and iy <y,
while for [t1,ts] = [t,0] we have

<nl> if t> ng,
¢
<"tl> T (712> if <o

It is now straightforward to express our findings in terms of the semi-
group algebra K M;(X, p). For brevity, we denote the algebra K M(X, p)
by A; and the algebra K N;(X, p) by I;. I; is an ideal of A; and I? = 0.
In order to describe A;/I;, we need to iterate over all the types which can
occur for subsets of (X, p) of size t. We utilize the symbols m and £ in the
theorem below to make such indexing possible. The symbol | | denotes
the integer part of a number.

n([t1,t2]) =

Theorem 2. Let (X, p) be a finite set of type [n1,ns] and let 1 <t <
ny + ng. Put m = min(|t/2],n2) and ¢ = max(0,t — ny).
(1) A¢/I; decomposes as a direct product of matrix algebras:

1 Matn([t—i,ﬂ)(K) if t#2m,
m—1
H Matn([t—i,i])(K) X Matn([m’m})(KSymz) if t= 277’L,
i=/

At/It =

where Sym, is the symmetric group on two elements.



314 Vlastimil Dlab and Toméas Pospichal

(2) The Jacobson radical of Ay is

dA, & I if t# 2m or char K # 2,
ra &
! Ii + Mat, () (rad KSymy) if ¢ = 2m and char K = 2.

PRrROOF. The argument follows closely the line of reasoning which re-
vealed the structure of M (X, p).

(1) The semigroup algebra of a 0-disjoint union is a product of the semi-
group algebras of the corresponding subsemigroups. Furthermore, the
semigroup algebra of a Brandt semigroup is the (full) algebra of ma-
trices with the coefficients in the group algebra of the structure group.
These two facts together with the preceding discussion yield the claim.

(2) Since I? = 0, the ideal I; is a part of rad K M;(X, p). The structure
of A;/I; shows that this algebra is not semisimple only if ¢ = 2m and
char K = 2 due to the non-semisimplicity of KSym, in this character-
istic. Using the general fact that rad Maty(B) = Maty(rad B) for any
k > 0 and arbitrary algebra B allows us now to express the radical in
the stated form. g

We remark here that if we denote the elements of Sym, by Id and Sw,
then the vector Id + Sw forms a basis of rad KSym, if char K = 2. As
(Id + Sw)? = 0, we have KSym, = K[z]/(z?).

Corollary 3. The algebra K M;(X, p) is not hereditary if and only if
t = 2m and char K = 2.

Corollary 4. Ift = 2m and char K # 2, there are m — { + 2 (isomor-
phism types of) simple modules of the algebra KM(X, p). In all other
cases, K My(X, p) has precisely m — ¢ + 1 simple modules.

PRrROOF. There is precisely one simple module associated to each possi-
ble type [t1,t2] with ¢; # ta that can occur. In case t; = to (which happens
only when ¢ = 2m), there are two possibilities. When char K = 2, KSym,
has only one simple module, thus this type yields one simple module too.
In the case char K # 2, however, KSym, splits as K x K, yielding two
simple modules corresponding to the partition [m, m)]. ]

This argument has an important consequence for the dimension of
simple modules.
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Corollary 5. Let S[t1,t2] be any of the simple modules of the alge-
bra KM (X, p) associated with the type [t1,t2]. Then dimg S[t1,t2] =
n([t1,t2]), regardless of the characteristic.

See Lemma 1 for the values of n([t1, t2]).
Now we can formulate the main theorem describing explicitly the
structure of the semigroup algebra KM (X, p).

Theorem 6. Let (X, p) be a finite set of type [ni,ns| and K a field.
Suppose 1 <t < nqy+n9 =n.

As before m = min (|t/2],n2). Six cases have to be distinguished,
arising from the conjunction of the (mutually exclusive) conditions 1, 2.1
and 2.2 with the conditions A and B:

|A: t<m |B: t>ng

1: t#2m CAsE 1A Case 1B
2.1: t=2mandcharK #2 | CASE 2.1 A | CASE 2.2B
2.2: t=2m andchar K =2 | CASE 2.2 A | CASE 2.2B

The quiver of KM(X, p) is according to one of the six possibilities:

CAasE 1 A °0 CASE 1B
(1) T‘\&n)
(mil) *t—nq o *m—1 °m
°1 o *m—1 *m
CASE 2.1 A °0 CAsE 2.1B
() \ 3(5)
(mt—l) % rtn,) 't—n1 *m—1 .m/ .m//
] *m—1 om/ om//
CASE 2.2 A °0 CASE 2.2B
y 5(n)
(mt—l) . e .
o S 'm;) t—nq m—1 mD

A vertex marked i corresponds to the type [t —i,i]. An arrow with a
label h represents h arrows. In case t = 1, the quiver has a single vertex
marked 0 and no arrows. The only bounding relation comes from the loop
a in Cases 2.2, and that relation is a® = 0.
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Corollary 7. The semigroup algebra K M(X, p) is connected if and
only ift <nj,ort=mn,ort=n—1and ny = ne.

PROOF. As in Theorem 2, we will abbreviate K M;(X, p) to A; and
KNt(X, p) to It.

First, let ¢ > n; (Case B). There are no order-preserving monomor-
phisms between the subsets of ¢ elements of different types (the set Ny (X, p)
is essentially empty). The claim about the structure of A; follows from
Theorem 2 and the proof of Corollary 5. Only in the Case 2.2 is the al-
gebra non-hereditary, since it contains KSym, = K|[z]/(z?) as its direct
factor.

Second, let t < n; (Case A). Let us choose, for each 0 < i < m, a
subset Y; of type [t — ¢,i]. It follows from Theorem 2 that Idy,,...,Idy,,
are nonequivalent orthogonal idempotents (only the last one is possibly
non-primitive). Moreover, if e denotes the sum of these idempotents, then
eAqe is the basic algebra of A, its radical being ele (in Cases 1 and 2.1)
or elie + erad KSymye (in Case 2.2). From all the components of the
Pierce decomposition of el;e, only Idy,I;Idy, with 1 <14 < m are nonzero.
Nonempty maps of Idy, N¢(X, p)Idy, (the order-preserving maps from Y;
to Yy) form a basis of Idy,[;Idy,. There are precisely (f) such maps,
and since Ny(X, p)? = 0, these maps can be considered a basis of the
corresponding component of rad eAze/ rad? eA;e provided that i < m. If
t # 2m (Case 1), this is true also for i« = m, with nothing more to prove
in this case.

This leaves us to consider the component Idy, A;Idy, in Cases 2.1
and 2.2. In Case 2.1, the idempotent Idy,, splits into the sum of the
‘symmetrizing’ idempotent 1/2(Idy;,, + Swy,,) and the ‘antisymmetrizing’
idempotent 1/2(Idy,, — Swy;,, ), where Swy, is the map swapping the two
chains of Y;,. These idempotents in turn split the space Idy;, A;Idy, into
the ‘symmetric’ and ‘antisymmetric’ (with respect to the swap map) sub-
spaces, each having dimension %(T’;) Asrad? A; = 0, there is no possibility
for relations in the quiver and this brings Case 2.1 to conclusion.

Finally, in Case 2.2, the idempotent Idy;, is primitive as in Case 1,
but this time we have the element a = Idy, + Swy,, which is a basis
of erad KSymye. As a? = 0 and N;(X, p)? = 0, this element cannot
fall into rad? A;, therefore forming a loop in the quiver. We see that
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composing « with an arbitrary map from Idy, A;Idy, symmetrizes the
latter map. Conversely, any map which is symmetric (invariant under the
left composition with the swap map) can be factored as « followed by a map
from Idy, AiIdy,. Therefore rad? eAze is the subspace of all symmetric

maps. Its dimension is %( ;), hence Idy,, rad A; Idy,/Idy,, rad? A; T dy,

is also %(Ttn)-dimensional and no other relations (aside from a? = 0) are

possible. ]

The following theorem describing the representation type of each block
of KM (X, p) is an immediate consequence of Theorem 6.

Theorem 8. The algebra A, = KM (X, p) is of finite representation
type if and only if t > nq or t < 2. Otherwise, A; is of wild representation

type.

PrOOF. The algebra is representation finite if ¢ > n; or t = 1 or
t =2,n1 =1, as well as in the case t = 2 and nq > 2, when it is one of the
algebras from Example 1 (see the following section).

In all the other cases, we have ¢t > 3, hence ny > 3. Thus the algebra
KM (X, p) contains a hereditary algebra with the quiver « =—= ., as
a subalgebra and must be of wild representation type. O

Returning to semigroups, let us remark that the basic algebra of each
KM(X, p) is the semigroup algebra of a graph semigroup in the sense
of [2]. The semigroups M;(X, p) themselves are graph semigroups in the
sense of [3].

3. Illustrations

In this final section, we use a couple of small examples to demonstrate
the explicit structure of KM (X, p).

Ezample 1. Let (X, p) be of type [n1,n2] with ny > 2 and let ¢t = 2
(thus we are considering an instance of Case 2.A).

Writing S; for the simple module S[t—1i, i], we have two possibilities for
the quiver of the algebra Ay = K Ms(X, p), depending on the characteristic
of K:
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First, suppose that char K # 2 (Case 2.1). The algebra As has three
simple modules Sy, S/ and Sy», dim Sy = ("21) if no = 1 and dim .Sy =
(") + () if ng > 2, while dim Sy = dimSy» = (") ("?) = nina. The

algebra A, is hereditary, its quiver is given below.

N

Equivalently, the basic algebra of Ay = K My(X, p) is isomorphic to

.1//

K 0 K
0 K K
0 0 K

Second, assume that char K = 2 (Case 2.2). The algebra K Ms(X, p)
has two simple modules Sy and S, dim .Sy = ("21) if ng =1 and dim Sy =
(7121) + (H;) if no > 2, while dim S7 = nine. The quiver, shown below, is
bound by the relation o = 0, where a denotes the loop.

°0

.Tl O

Equivalently, the basic algebra of As is isomorphic to

[K[ﬂg(w K[x]é(x?)} |

Ezample 2. Let [n1,ng] = [3,2]. Then KM (X, p) = A; x---x A5 and
the quivers of A; are, assuming char K # 2, as follows.

Al A2 Ag A4 AS

(m=0) (m=1) (m=1) (m=2) (m=2)

Case 1A | Case 2A Case 1A | Case 2B Case 1B
°0 *0

I [

°0 o/ oy (3] °1 °2’ *2 °2
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Therefore KM (X, p) is a hereditary algebra in this case.
In case that char K = 2, the quivers of Ay and A4 are

°0

1 D and °1 2 D

the only bounding relation being that the square of the loop is zero, both
in A and in Ay.
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