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Semigroup algebras of certain partial monomorphisms

By VLASTIMIL DLAB (Ottawa) and TOMÁŠ POSPÍCHAL (Windsor)

In memoriam Edith Szabó

Abstract. The paper describes explicitly the semigroup algebras of all order-
preserving partial monomorphisms of a disjoint union of two finite chains.

1. Preliminaries

Let X be a finite set of n elements and ρ a relation on X. Denote by
M(X, ρ) the subsemigroup of partial monomorphisms f of X satisfying the
following condition of compatibility with ρ: if f : Y → Z (with Y,Z ⊆ X)
is a one-to-one map, then

x1ρ x2 implies f(x1)ρ f(x2) for all x1, x2 ∈ Y.

Thus, M(X, ρ) is a subsemigroup of the well-known symmetric inverse
semigroup M(X) of all partial monomorphisms of X, introduced more
than 50 years ago by V. V. Vagner [4]. Recall that the product of
two partial monomorphisms f : Y → Z and g : U → V is the partial
monomorphism

g ◦ f : f−1(Z ∩ U) → g(Z ∩ U).
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Now, the (contracted) semigroup algebra KM(X) (whose dimension is∑n
t=1

(n
t

)2
t!) is known to be, under suitable restrictions on the character-

istic of the field K, semisimple. The semigroup M(X) contains, for each
subset Y of X, the respective group of all permutations of Y , and it is this
fact that imposes the restrictions on the characteristic of the field K.

It is equally well-known that the semigroup algebra KM(X,<) of
the subsemigroup M(X,<) of M(X) of all “monotone” partial monomor-
phisms (that is, the semigroup M(X, ρ) where the relation ρ is a total order
< of X and thus the dimension of KM(X,<) is

∑n
t=1

(
n
t

)2 =
(
2n
n

) − 1) is
always semisimple and has the form

KM(X,<) ∼=
n∏

t=1

At,

where At
∼= Mat(n

t)
(K) are the algebras of all

(n
t

) × (n
t

)
matrices over

the field K. In fact, it is easy in this case to write down the respective
canonical basis of KM(X,<) as follows.

Fix t, 1 ≤ t ≤ n, and consider the sequence

τ1 � τ2 � · · · � τr � · · · � τ(n
t)

of all subsequences of X of length t in the lexicographical order. Thus,

τ1 = {1 < 2 < · · · < t}

and
τ(n

t)
= {n − t + 1 < n − t + 2 < · · · < n}.

Write τr = {i1 < i2 < · · · < it}, τs = {j1 < j2 < · · · < jt} and denote the

monomorphism f : τr → τs of M(X,<) simply by
[
i1 i2 . . . it
j1 j2 . . . jt

]
.

Moreover, for each τr, 1 ≤ r ≤ (n
t

)
, we define the primitive idempotent

ei1i2...it = (−1)t−1
∑

1≤p≤t

[
ip
ip

]
+ (−1)t−2

∑
1≤p<q≤t

[
ip iq
ip iq

]

+ (−1)t−3
∑

1≤p<q<l≤t

[
ip iq il
ip iq il

]
+ · · · +

[
i1 i2 . . . it
i1 i2 . . . it

]
.
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Now At is the algebra of all
(
n
t

) × (
n
t

)
matrices whose r × s entries (cor-

responding to τr and τs) are all K-multiples of the following linear combi-
nation brs(t) of the elements of M(X,<):

brs(t) = (−1)t−1
∑

1≤p≤t

[
ip
jp

]
+ (−1)t−2

∑
1≤p<q≤t

[
ip iq
jp jq

]

+ (−1)t−3
∑

1≤p<q<l≤t

[
ip iq il
jp jq jl

]
+ · · · +

[
i1 i2 . . . it
j1 j2 . . . jt

]
.

Let us point out that the above idempotents form a complete set of
primitive orthogonal idempotents of KM(X,<). Moreover, the sum of all
possible ei1i2...it is a central idempotent of KM(X) for each 1 ≤ t ≤ n.
As M(X, ρ) contains all idempotents of M(X), the semigroup algebra
KM(X, ρ) splits into n blocks

KM(X, ρ) =
n∏

t=1

KMt(X, ρ),

where the semigroups Mt(X, ρ) are subfactors of M(X, ρ) determined by
the monomorphisms between subsets of t elements. Mt(X, ρ) is the semi-
group whose elements are all the rank-t maps from M(X, ρ), together with
the ‘empty’ map, which is the zero element of the semigroup. The mul-
tiplication in Mt(X, ρ) is given by the “restricted product” of maps: the
product of f and g is their composition if the range of f equals the domain
of g, otherwise the product is the empty map.

The present note demonstrates that already the case when the rela-
tion ρ is a product of two chains, i.e., the case when (X, ρ) is a disjoint
union of two linearly ordered sets (X1, <) and (X2, <), leads, with a few
exceptions, to the wild representation type of the respective semigroup
algebra. The general case when (X, ρ) is a finite union of chains brings
new more involved features, and will be treated in a forthcoming paper by
T. Posṕıchal [3].
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2. Theorems

Let (X, ρ) = (X1, <) ∪ (X2, <) be a disjoint union of two chains of
n1 and n2 elements, respectively. Thus n = n1 + n2, and we may assume
n1 ≥ n2 > 0.

We are going to describe the quiver of the semigroup algebra KM(X, ρ);
clearly, it is a union of the quivers of At = KMt(X, ρ), 1 ≤ t ≤ n.

For a given 1 ≤ t ≤ n, each subset Y of X of t elements is a pair
of chains (one chain is possibly empty), and thus characterized by a pair
[t1, t2], t = t1+t2, t1 ≥ t2 ≥ 0, where ti denotes the length of the respective
chain. Let us call [t1, t2] the type of Y .

Let Nt(X, ρ) denote the set of all the elements of Mt(X, ρ) whose
domain and range do not have the same type. For each [t1, t2] such that
t = t1 + t2, t1 ≥ t2 ≥ 0, we denote by M[t1,t2](X, ρ) the set of all elements
of Mt(X, ρ) whose domain and range are both of the type [t1, t2]. Note
that each nonzero element of Mt(X, ρ) belongs either to Nt(X, ρ) or to
precisely one of the sets M[t1,t2](X, ρ). It is convenient to consider the
empty map as belonging to Nt(X, ρ) and each of M[t1,t2](X, ρ), as this
allows us to treat them as subsemigroups of Mt(X, ρ).

Note that Nt(X, ρ) is a semigroup with zero multiplication. More-
over, Nt(X, ρ) is actually an ideal of Mt(X, ρ). Considering the factor
semigroup Mt(X, ρ)/Nt(X, ρ), we observe that it is the 0-disjoint union
of semigroups (isomorphic to) M[t1,t2](X, ρ).

We now turn our attention to the structure of M[t1,t2](X, ρ). Notice
that every (nonzero) idempotent of M[t1,t2](X, ρ) is the partial identity
map IdY on a subset Y of type [t1, t2]. The properties of the restricted
product immediately imply that if t1 �= t2 then IdY is the only element of
M[t1,t2](X, ρ) (or Mt(X, ρ), for that matter) with domain and range equal
to Y . If t1 = t2, however, there is another element with such property,
namely, the map that “swaps” the two chains of length t1. We denote this
map by SwY . This fact leads to the dichotomies in what follows.

The semigroups M[t1,t2](X, ρ) are instances of Brandt semigroups (con-
sult [1] for all semigroup-related terminology). More specifically, one can
see that M[t1,t2](X, ρ) is isomorphic to an elementary matrix units semi-
group if t1 �= t2, while if t1 = t2, M[t1,t2](X, ρ) is an elementary matrix
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units semigroup with the coefficients in the symmetric group on two ele-
ments. The order of matrices is established by straightforward counting.
We summarize this result in the following lemma.

Lemma 1. Let [t1, t2] be the type of a nonempty subset of X. Suppose

(X, ρ) itself is of the type [n1, n2]. The number n([t1, t2]) of subsets of X

whose type is [t1, t2] with t2 > 0 is

n([t1, t2])=




(
n1

t1

)(
n2

t2

)
if t1> n2 or (t1= t2 and t1≤n2),

(
n1

t1

)(
n2

t2

)
+

(
n2

t1

)(
n1

t2

)
if t1 �= t2 and t1 ≤ n2,

while for [t1, t2] = [t, 0] we have

n([t1, t2]) =




(
n1

t

)
if t > n2,

(
n1

t

)
+

(
n2

t

)
if t ≤ n2.

It is now straightforward to express our findings in terms of the semi-
group algebra KMt(X, ρ). For brevity, we denote the algebra KMt(X, ρ)
by At and the algebra KNt(X, ρ) by It. It is an ideal of At and I2

t = 0.
In order to describe At/It, we need to iterate over all the types which can
occur for subsets of (X, ρ) of size t. We utilize the symbols m and � in the
theorem below to make such indexing possible. The symbol � 
 denotes
the integer part of a number.

Theorem 2. Let (X, ρ) be a finite set of type [n1, n2] and let 1 ≤ t ≤
n1 + n2. Put m = min(�t/2
 , n2) and � = max(0, t − n1).

(1) At/It decomposes as a direct product of matrix algebras:

At/It
∼=




m∏
i=�

Matn([t−i,i])(K) if t �= 2m,

m−1∏
i=�

Matn([t−i,i])(K) × Matn([m,m])(KSym2) if t = 2m,

where Sym2 is the symmetric group on two elements.
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(2) The Jacobson radical of At is

rad At
∼=

{
It if t �= 2m or char K �= 2,

It + Matn([m,m])(rad KSym2) if t = 2m and char K = 2.

Proof. The argument follows closely the line of reasoning which re-
vealed the structure of Mt(X, ρ).

(1) The semigroup algebra of a 0-disjoint union is a product of the semi-
group algebras of the corresponding subsemigroups. Furthermore, the
semigroup algebra of a Brandt semigroup is the (full) algebra of ma-
trices with the coefficients in the group algebra of the structure group.
These two facts together with the preceding discussion yield the claim.

(2) Since I2
t = 0, the ideal It is a part of radKMt(X, ρ). The structure

of At/It shows that this algebra is not semisimple only if t = 2m and
char K = 2 due to the non-semisimplicity of KSym2 in this character-
istic. Using the general fact that rad Matk(B) = Matk(rad B) for any
k > 0 and arbitrary algebra B allows us now to express the radical in
the stated form. �

We remark here that if we denote the elements of Sym2 by Id and Sw,
then the vector Id + Sw forms a basis of rad KSym2 if char K = 2. As
(Id + Sw)2 = 0, we have KSym2

∼= K[x]/(x2).

Corollary 3. The algebra KMt(X, ρ) is not hereditary if and only if

t = 2m and char K = 2.

Corollary 4. If t = 2m and char K �= 2, there are m− � + 2 (isomor-

phism types of) simple modules of the algebra KMt(X, ρ). In all other

cases, KMt(X, ρ) has precisely m − � + 1 simple modules.

Proof. There is precisely one simple module associated to each possi-
ble type [t1, t2] with t1 �= t2 that can occur. In case t1 = t2 (which happens
only when t = 2m), there are two possibilities. When char K = 2, KSym2

has only one simple module, thus this type yields one simple module too.
In the case char K �= 2, however, KSym2 splits as K × K, yielding two
simple modules corresponding to the partition [m,m]. �

This argument has an important consequence for the dimension of
simple modules.
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Corollary 5. Let S[t1, t2] be any of the simple modules of the alge-

bra KMt(X, ρ) associated with the type [t1, t2]. Then dimK S[t1, t2] =
n([t1, t2]), regardless of the characteristic.

See Lemma 1 for the values of n([t1, t2]).
Now we can formulate the main theorem describing explicitly the

structure of the semigroup algebra KMt(X, ρ).

Theorem 6. Let (X, ρ) be a finite set of type [n1, n2] and K a field.

Suppose 1 ≤ t ≤ n1 + n2 = n.

As before m = min (�t/2
 , n2). Six cases have to be distinguished,

arising from the conjunction of the (mutually exclusive) conditions 1, 2.1

and 2.2 with the conditions A and B:

A: t ≤ n1 B: t > n1

1: t �= 2m Case 1A Case 1B

2.1: t = 2m and charK �= 2 Case 2.1A Case 2.2B

2.2: t = 2m and charK = 2 Case 2.2A Case 2.2B

The quiver of KMt(X, ρ) is according to one of the six possibilities:

Case 1A
•0

•1

(t
1)

���������������
... •m−1

( t
m−1)

��

•m

( t
m)

����������

Case 1B

•t−n1 ... •m−1 •m

Case 2.1A
•0

•1

(t
1)

���������������
... •m−1

( t
m−1)

��

•m′
1
2 ( t

m)

����������
•m′′

1
2 ( t

m)
�������������

Case 2.1B

•t−n1 ... •m−1 •m′ •m′′

Case 2.2A
•0

•1

(t
1)

���������������
... •m−1

( t
m−1)

��

•m

1
2 ( t

m)
����������

��

Case 2.2B

•t−n1 ... •m−1 •m ��

A vertex marked i corresponds to the type [t − i, i]. An arrow with a

label h represents h arrows. In case t = 1, the quiver has a single vertex

marked 0 and no arrows. The only bounding relation comes from the loop

α in Cases 2.2, and that relation is α2 = 0.
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Corollary 7. The semigroup algebra KMt(X, ρ) is connected if and

only if t ≤ n1, or t = n, or t = n − 1 and n1 = n2.

Proof. As in Theorem 2, we will abbreviate KMt(X, ρ) to At and
KNt(X, ρ) to It.

First, let t > n1 (Case B). There are no order-preserving monomor-
phisms between the subsets of t elements of different types (the set Nt(X, ρ)
is essentially empty). The claim about the structure of At follows from
Theorem 2 and the proof of Corollary 5. Only in the Case 2.2 is the al-
gebra non-hereditary, since it contains KSym2

∼= K[x]/(x2) as its direct
factor.

Second, let t ≤ n1 (Case A). Let us choose, for each 0 ≤ i ≤ m, a
subset Yi of type [t − i, i]. It follows from Theorem 2 that IdY0 , . . . , IdYm

are nonequivalent orthogonal idempotents (only the last one is possibly
non-primitive). Moreover, if e denotes the sum of these idempotents, then
eAte is the basic algebra of At, its radical being eIte (in Cases 1 and 2.1)
or eIte + e rad KSym2e (in Case 2.2). From all the components of the
Pierce decomposition of eIte, only IdYiItIdY0 with 1 ≤ i ≤ m are nonzero.
Nonempty maps of IdYiNt(X, ρ)IdY0 (the order-preserving maps from Yi

to Y0) form a basis of IdYiItIdY0 . There are precisely
(
t
i

)
such maps,

and since Nt(X, ρ)2 = 0, these maps can be considered a basis of the
corresponding component of rad eAte/ rad2 eAte provided that i < m. If
t �= 2m (Case 1), this is true also for i = m, with nothing more to prove
in this case.

This leaves us to consider the component IdYmAtIdY0 in Cases 2.1
and 2.2. In Case 2.1, the idempotent IdYm splits into the sum of the
‘symmetrizing’ idempotent 1/2(IdYm + SwYm) and the ‘antisymmetrizing’
idempotent 1/2(IdYm −SwYm), where SwYm is the map swapping the two
chains of Ym. These idempotents in turn split the space IdYmAtIdY0 into
the ‘symmetric’ and ‘antisymmetric’ (with respect to the swap map) sub-
spaces, each having dimension 1

2

(
t
m

)
. As rad2 At = 0, there is no possibility

for relations in the quiver and this brings Case 2.1 to conclusion.
Finally, in Case 2.2, the idempotent IdYm is primitive as in Case 1,

but this time we have the element α = IdYm + SwYm which is a basis
of e rad KSym2e. As α2 = 0 and Nt(X, ρ)2 = 0, this element cannot
fall into rad2 At, therefore forming a loop in the quiver. We see that
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composing α with an arbitrary map from IdYmAtIdY0 symmetrizes the
latter map. Conversely, any map which is symmetric (invariant under the
left composition with the swap map) can be factored as α followed by a map
from IdYmAtIdY0. Therefore rad2 eAte is the subspace of all symmetric
maps. Its dimension is 1

2

( t
m

)
, hence IdYm rad At IdY0/IdYm rad2 At IdY0

is also 1
2

( t
m

)
-dimensional and no other relations (aside from α2 = 0) are

possible. �

The following theorem describing the representation type of each block
of KM(X, ρ) is an immediate consequence of Theorem 6.

Theorem 8. The algebra At = KMt(X, ρ) is of finite representation

type if and only if t > n1 or t ≤ 2. Otherwise, At is of wild representation

type.

Proof. The algebra is representation finite if t > n1 or t = 1 or
t = 2, n1 = 1, as well as in the case t = 2 and n1 ≥ 2, when it is one of the
algebras from Example 1 (see the following section).

In all the other cases, we have t ≥ 3, hence n1 ≥ 3. Thus the algebra
KMt(X, ρ) contains a hereditary algebra with the quiver •1

������ •0 as
a subalgebra and must be of wild representation type. �

Returning to semigroups, let us remark that the basic algebra of each
KMt(X, ρ) is the semigroup algebra of a graph semigroup in the sense
of [2]. The semigroups Mt(X, ρ) themselves are graph semigroups in the
sense of [3].

3. Illustrations

In this final section, we use a couple of small examples to demonstrate
the explicit structure of KM(X, ρ).

Example 1. Let (X, ρ) be of type [n1, n2] with n1 ≥ 2 and let t = 2
(thus we are considering an instance of Case 2.A).

Writing Si for the simple module S[t−i, i], we have two possibilities for
the quiver of the algebra A2 = KM2(X, ρ), depending on the characteristic
of K:
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First, suppose that char K �= 2 (Case 2.1). The algebra A2 has three
simple modules S0, S1′ and S1′′ , dim S0 =

(n1

2

)
if n2 = 1 and dimS0 =(n1

2

)
+

(n2

2

)
if n2 ≥ 2, while dimS1′ = dimS1′′ =

(n1

1

)(n2

1

)
= n1n2. The

algebra A2 is hereditary, its quiver is given below.

•0

•1′

����������
•1′′

		��������

Equivalently, the basic algebra of A2 = KM2(X, ρ) is isomorphic to
K 0 K

0 K K

0 0 K


 .

Second, assume that char K = 2 (Case 2.2). The algebra KM2(X, ρ)
has two simple modules S0 and S1, dim S0 =

(n1

2

)
if n2 = 1 and dimS0 =(

n1
2

)
+

(
n2
2

)
if n2 ≥ 2, while dim S1 = n1n2. The quiver, shown below, is

bound by the relation α2 = 0, where α denotes the loop.

•0

•1

��





Equivalently, the basic algebra of A2 is isomorphic to

[
K[x]/(x2) K[x]/(x2)

0 K

]
.

Example 2. Let [n1, n2] = [3, 2]. Then KM(X, ρ) ∼= A1×· · ·×A5 and
the quivers of Ai are, assuming char K �= 2, as follows.
A1 A2 A3 A4 A5

(m = 0) (m = 1) (m = 1) (m = 2) (m = 2)
Case 1A Case 2A Case 1A Case 2B Case 1B

•0

•0

•1′

��

•1′′

		��������

•0

•1

�� �� ��

•1 •2′ •2′′ •2
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Therefore KM(X, ρ) is a hereditary algebra in this case.
In case that char K = 2, the quivers of A2 and A4 are

•0

•1

��



 and •1 •2 



the only bounding relation being that the square of the loop is zero, both
in A2 and in A4.
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