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On some symmetrizable topology on ¢(¢) space

By DANUTA STACHOWIAK-GNILKA (Poznan)

Abstract. In the present paper we examine properties of a class ¢(¢) endowed
with some symmetrizable topology. We give the necessary and sufficient conditions
under which this space is metrizable and normable. Also, the connections between
this topology and any other topologies defined on ¢(¢) are examined. The problem
of compactness of subsets of the space ¢(¢) is solved. Our investigations about the
normability of ¢(£) are closely related to those in [2].

1. Let ® be the class of the non-negative real valued functions ¢
defined for all reals, which are even on (—o0, 00), non-decreasing on (0, co)
and satisfy the condition ¢(0) = 0. By ¢(¢) we denote the class of all
sequences (&x)g>1 for which

> (&) < o0,

k=1

and by RN the class of all sequences of reals. In the sequel we denote by
x,y, %, ... the sequences (&)r>1, (Mk)k>1, (Ck)k>1,- - -, respectively and by
xy, for n > 1 the sequences (£})r>1, n > 1.

If z,y € RY, then

do(w,y) = Y (& — k)
k=1

is called the ¢—distance between x and y.
Let = € ¢(¢) be arbitrarily chosen. For each ¢ > 0 we denote the
e—neighbourhood of z in the sense of the ¢—distance as follows:

Ap(z,e) ={y € p({) : dy(x,y) <e}.

We say that a sequence (z,,)n>1, Tn, € @(£) for n > 1, is convergent
to x € ¢(¢) in the sense of the p—distance if and only if for every e > 0
there exists a natural number N(e) such that dy(x,,z) < € for n > N(e).
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Remark 1.1. Observe that if p € ®, ¢(u) > 0 for u > 0 and z,y, x,, €
RY for n > 1 with dy (2, ) +dy (s, y) — 0 as n — oo, then clearly z = y.

The functions ¢,1) € ® are said to be equivalent if there exist con-
stants m, M > 0, vy > 0 such that me(u) < ¥(u) < Me(u) for 0 < u <
vo.

We say that a function ¢ € @ satisfies the condition (Aj), if there
exist constants C' > 0, ug > 0 such that ¢(2u) < Cp(u) for 0 < u < ug.

An obvious corollary of the condition (As) is the following

Remark 1.2. If ¢ € ®, p(u) > 0 for u > 0 and ¢ satisfies the condition
(Az), then for z,y,z € RY with dy(x,y) < p(ug) and dy(y, 2) < (ug) we
have dy(z,2) < C(dy(z,y) + dy(y, 2)).

Theorem 1.1. If p € ®, then (/) is a linear subset of RY if and only
if one the following conditions is satisfied:

(a) o(u) =0 for every u > 0,

(b) »(+0) >0,

(c) ¢(+0) =0, ¢(u) >0 for u > 0 and ¢ satisfies the condition (As).

PROOF. Sufficiency. If o(u) = 0 for every u > 0, then (/) = RN (see
2], 1.3(b)). If ¢(+0) > 0, then ¢(¢) is the class of all sequences (£)k>1
for which &, = 0 for almost all k& (see [2], 1.3(c)). If p(u) > 0 for u > 0
and ¢ satisfies the condition (As), then the linearity of ¢(¢) follows from
Remark 1.2.

Necessity. Suppose ¢(f) is a linear subset of RN, ((a) > 0 for some
real a > 0 and ¢(4+0) = 0. First it is easily seen that ¢(u) > 0 for
u > 0. Now let ¢ do not satisfy the condition (As). Then there clearly
exists an = € p(¢) such that 2z ¢ p(¢) (cf. [5] Lemma 1.2). This gives a
contradiction. We conclude that ¢ satisfies the condition (Aj).

We denote by W the class of all sequences (§)r>1 for which the &;—s
are rationals and &, = 0 for almost all k.

Let ¢ € ®. Let 7, be the system of subsets of ¢(£) defined by the
property: U € 7y, if and only if for every z € U there is an € > 0 such
that A, (z,e) C U.

73, is clearly a topology on ¢(£). The topological space ¢(f) with this
topology is denoted by (¢(¢),7a,,)-

Now we define the operator p. If ¢ € ®, then for every A C p(¢) we
write

p(A)={x € o) : A (z,e)NA#0D for every > 0}.

One can easily prove the following
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Theorem 1.2. Let ¢ € ®. The operator p has the following proper-
ties:
1 p() =0,
2° A Cp(A) for every A C p({),
3° p(AUB) =p(A)Up(B) for all A, B C ¢({).

It is easy to prove that for ¢ € ® a subset U of ¢(¢) is open in the
topology 73, if and only if p(¢£) \ U = p(p(£) \ U).

In the sequel we shall denote by A the closure of a set A in the topology
Tq. -

©

Remark 1.3. Let ¢ € ® and let A C ¢(¢) be arbitrarily chosen. Then

(a) p(4) C A,
(b) A= Aif and only if A= p(A).

Theorem 1.3. Let ¢ € ®. The topological space (¢({), 74, ) is discrete
if and only if p(+0) > 0.

PROOF. Sufficiency. Let ¢(40) > 0. We then clearly have A = p(A)
for all A C (¢) and thus (¢(£), 74, ) is discrete.

Necessity. Suppose the space (©(£), 7g,,) is discrete and let ¢(40) = 0.
Then {z} € 7y, for all x € p(¢). Let v = (0,0,0,...), then A (z,¢) = {=}
for some € > 0. There is a > 0 such that ¢(a) < e. Put y = (a,0,0,...),
then y € Ay, (x,¢) and y # . This gives a contradiction. We conlude that
©(+0) > 0.

Theorem 1.4. Let ¢ € ®. The topological space (¢(£),7q,) is sym-
metrizable (see [4]) if and only if p(u) > 0 for u > 0.

PROOF. Sufficiency. Let ¢(u) > 0 for u > 0 and for z,y € p(¢) let
o(z,y) = min{l,d,(z,y)}. Then p satisfies the axioms for a symmetric
and 7y, is a topology generated by this symmetric (see [4]).

Necessity. If the space (¢(£),7g,) is symmetrizable, then it is a T}

space (see [4]). Hence {x} = {x} for every x € ¢(f). Let a > 0 be
such that ¢(a) = 0, let z = (0,0,0,...) and y = (a,0,0,...). Then
Au(y,e) N {x} # 0 for all e > 0 and thus y € p({z}). This implies that
p({x}) # {z}, a contradiction. Hence p(u) > 0 for u > 0.

Theorem 1.5. Let ¢ € ® be such that p(u) > 0 for u > 0. The space
(¢(£),14,) is separable if and only if p(+0) = 0.

PROOF. Sufficiency. Let x € p(¢) and € > 0 be arbitrary. Then there
are a natural number kg and a real number § > 0 such that
> € €
> elé) <z and 9(8) < 5—.
2 2k
k=ko+1
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ko) there exists a rational number wy such that

For every & (1 < ko
< ko). Now we define

<k
[k —wi| <0 (1< k
wy if 1<k <k,
M = :
0 if k>ko.

Clearly y € Wand d,(z,y) < . Hence z € p(W) and we obtain ¢(¢) = W.
Necessity follows from Theorem 1.3.

Theorem 1.6. Let ¢ € @, ¢(u) > 0 for u > 0. The space (©(£),7a,)
is connected if and only if p(+0) = 0.

PROOF. Sufficiency. Let x € ¢(¢) and ty € (0,1) be arbitrarily cho-
sen, where (0,1) = {t e R: 0 <t <1}, and let V C ¢(¢) be an arbitrary
neighbourhood of tgx € ¢(¢). Then there are U E 73, and € > 0 such

that tox € U C V and A, (tox,e) C U. As hm Z ©(A&k) = 0, we can
ﬁnd a 6 > 0 such that for any ¢t € (0, 1) satlsfymg ]t — to| < 0 we have
Z © ((t —to)&k) < e. This implies that tx € V. Thus the function

= By (0,1) = (o(0),Ta,); t— ta

is a continuous function for every x € ¢(¢). We conclude that the im-
age F;((0,1)) is connected in (¢(£),7g,) and so the space (¢(£),7q,) is
connected too.

Necessity follows from Theorem 1.3.

Now we shall give the conditions under which the operator p is a
Kuratowski closure operator.

Theorem 1.7. Let ¢ € ®, ¢(u) > 0 for u > 0 and p(+0) = 0. The
condition (As) is sufficient and necessary for the following property to be
fulfilled:

1 for allx € ¢(¢) ande > 0 there is ad > 0such that for
(1.1) eachy € A,(x,d) there is ay > Osuch that A, (y,v) C Ag(x,¢).

ProoF. Sufficiency. Let A,(x,¢) be a given neighbourhood and let
0 < 6 < min (%,ap(uo)), where C > 0, ug > 0 are constants as in the
condition (Aj). Let y € A,(x,d). We choose 0 < v < ¢ and we shall prove
that A, (y,v) C Ay(z,¢). Let z € Ay(y,7). Then by Remark 1.2

dy(z,2) <206 < €,
and hence z € A, (z,¢).
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Necessity. Let x € p(f) and € > 0 be arbitrary. According to the
property (1.1) we can choose § > 0. There is a natural number k; such
(o.)

that > (&) < 4. Put
=k +1
=0 i k> ke
It is evident that d,(x,y) < § and so A,(y,v) C Ay(x,¢e) for some v > 0.

On the other hand there is a natural number ko such that >~ (&) < 7.
k=ka+1
We denote k' = min(kq, ko), k" = max(k1, k2) and we define
G=20 i K<k<k'
& if k> K
It is easily seen that z € p(¢) and z € A,(y,v). Hence z € A, (z,¢), that

ise>dy(x,2) > > @(26). It follows that 22 € ¢(¢). Hence, as it is
k=k"'+1
easily seen, condition (Ag) holds (see also [5], Lemma 1.2).

From the above theorem and Theorem 1.6 in [7] we immediately get

Corollary 1.1. Let ¢ € ®, ¢(u) > 0 for u > 0 and ¢(+0) = 0. A
sufficient and necessary condition for the operator p to be a Kuratowski
closure operator is (Az).

2. Let ¢ € @, p(u) > 0 for v > 0 and ¢(+0) = 0. By ¢*(¢) we
denote the space of those x for which ;irr%) > (M) = 0. As it is easily
—0k=1

seen ¢*(f) is a linear subspace of RY containing the set ¢(f) and in this
linear space we may introduce an F-norm (see [2] 1.8 or [3] Theorem 1.5)

by the formula
: = (1
|z], = inf a>0:k2_:1g0 a{'k <a;p.

By 7,- we denote the topology generated by the metric o(z,y)=|z — |,
restricted to ¢(¢). Let K,(x,e) be an open ball in the metric space

(p(€),Tp+), ie.,
Ko(z,e)={y € (l): |z —yl, <e}.
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Remark 2.1. Observe that for 0 < € < 1 and for every z € ¢(¢) we
have K, (z,e) C Ay(z,¢€).

Let 7, be the topology induced by the subbase {A,(z,e) : = €

o(f), e > 0}. We investigate the connections between the topologies
74,, Ty and 7,,.

It is easy to prove that 73, C 7, (cf. Remark 2.1) and 73, C 7.

Theorem 2.1. Let ¢ € ®, p(u) > 0 for v > 0 and ¢(+0) = 0.
Suppose that ¢ satisfies the condition (Az). Then Ty« C 1g,.

Proor. Let U € 7, and x € U be arbitrary. There exists ¢ > 0

such that K,(x,e) C U. We choose a natural number n and a real § > 0
such that ¢ > 2% and 0 < min (2C++1, go(g—g)), where C' > 0, ug > 0
are constants as in the condition (Ag). We shall prove that A,(z,d) C
K, (z,¢). Let y € Ay(x,0), then

o0

ZQO ( (7 — fk)) <> e (@ - &) <

k=1

l\.'JIff)

This implies that y € K,(x,¢) and so U € 7g,.

Observe as an immediate corollary of Theorem 2.1 the following

Remark 2.2. Let ¢ be the same as in Theorem 2.1. Then for every
e > 0 there is a 6 > 0 such that for z,y € p({), dy(z,y) < § implies
|z —yl, <e.

Indeed, by Theorem 2.1, K,(0,e) € 73, for every ¢ > 0 and thus
there is a § > 0 with A,(0,6) C K,(0,¢).

Taking into account also Theorem 2.4 and Proposition 2.1 in [6] we
can easily prove the following

Theorem 2.2. Let ¢ € ®, p(u) > 0 for u > 0 and ¢(+0) = 0. Then
7, C 14, if and only if p(u + 0) = p(u) for u > 0 and ¢ satisfies the
condition (Ag).

Theorem 2.3. If p € &, p(u) > 0 for u > 0, p(+0) = 0 and ¢ does
not satisfy the conditon (Ag), then T, \ Ty« # () and T+ \ T, # 0.

ProOF. Choose a sequence u,, | 0 as n — oo such that

1 1
o(uy) < on and ¢ ((1 + —> un) > 2" p(u,) for n>1.
n n
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Such a sequence clearly exists. Moreover there clearly exists a decomposi-

tion N = U F, of the set N = {1,2,...} into nonempty sets F,, such that

jeFn, and] € Fpy1 imply j < j' and

1 1
o0 < Z o(uy) < i for n>1
JjeFn
(see also [5], the proof of Lemma 1.2). Now let & = fu,, M = —2u,

if k € F,. Clearly z,y € ¢({). Let U = A, (y, 9). Then U € T, and

do(z,y) = > Y ¢(un) <2, thus € U. We shall prove that U ¢ 7-.
n=1jeF,

Let € > 0 be an arbitrary real. There is a natural number m such that

€ > % We define

|

One can easily prove that z € ¢(¢). Further, Y ¢ (2(& — () =
k=1

s+ Duy if kEF,,
Us; if kGFi,i#m.

N|—=

= Y ¢ (:2um) < 5 and hence z € K (z,¢). Let us suppose that z € U.

JEFm
Then dy(z,y) < 2. On the other hand

tcn= 3 o ((1+ ) )+ 3 X

j€F,, =1 F;
JE€ Zm JjE
=1 1 5
> 2 —=3—-—2> -
+;2Z 2m = 9

a contradiction. Hence K (x,e) ¢ U for all € > 0. This implies that
U ¢ 7, and so T, \ Ty,- # 0.

Now let & = u,, if k € F,. Let ﬂ A, (z;,€;) be an arbitrary set belonging

=1

to the base of the topology 7, such that z € ﬂ Ay(z, ;). Take 0 < §; <

=

gi —dy(x,x;) for 1 <i < N. Forany 1 <i < N there is a natural number
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k; such that Z ©(&8) < &;. Denote ko = max k; and let

TEZ0 i k> ko
Then clearly y € gp(ﬂ). Further,
oy, ;) Zw G—&)+ D (&) <dg(z, i)+ <e
k=ko+1

N
for 1 <i < N. Hence y € (] Ay(x;,€;). Choose 0 < ¢ < 1 and suppose
k=1

that y € K,(z,¢). Then > ¢ ((& —mi)) < e. On the other hand there
k=1

are natural numbers n; and ns such that % > 1+ n% and kg +1 € F,,.
Denoting ng = max(ny,ng) we have

Z@( &—nk))z i @(éfk)z

k=ko+1

5 m ()=
n=ngo+1 jeF,

a contradiction. It follows ﬂ A (zi,e;) ¢ K,(x,e). This implies that
K,(z,e) ¢ T, and so T« \’T #@

From the above theorems follows immediately

Corollary 2.1. Let ¢ € &, p(u) > 0 for u > 0 and p(+0) = 0.

(a) If o(u+ 0) = p(u) for u > 0 and ¢ satisfies the condition (As),
then 1y, = T = T,,.

(b) If ¢ satisfies the condition (As) and there is a real ug > 0 such
that ©(uo 4 0) > @(uo), then Ty, = T+ G Ty

(c) If ¢ does not satisfy the condition (Asg), then Tq, G Ty, Ta, G Ty,
T, \Typ- # 0 and Ty, \ T, # 0.

Corollary 2.2. If ¢ € ®, ¢(u) > 0 for u > 0, p(u + 0) = ¢(u)
for u > 0 and ¢ satisfies the condition (As), then the space (¢({),7,) is
metrizable.

Now we shall give the conditions under which the space (¢(£), 7g, ) is
metrizable.
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Theorem 2.4. Let ¢ € ® and ¢(4+0) = 0. The space (¢(£),7q,) is

metrizable if and only if p(u) > 0 for u > 0 and ¢ satisfies the condition
(Asg).

ProOF. Sufficiency follows immediately from Theorem 2.1.

Necessity. If (¢(f),74,) is a metrizable space, then by Theorem 1.4
we have ¢(u) > 0 for u > 0. Suppose that ¢ does not satisfy the condition
(A2). Then there are x € ¢(¢) and € > 0 such that ¢ IntA, (z,¢). In
fact, suppose that x € IntA,(z,e) for every z € ¢(f) and ¢ > 0. Asp
is not a Kuratowski closure operator (see Corollary 1.1), there are a set
A C @) and y € ¢(f) such that y € p(p(A4)) and y & p(A). Hence
A C p(l)\ Ay(y,eo0) for some g9 > 0. From Remark 1.3(a) we obtain
p(P(A)) C ¢(0) \ Ap(y,e0) and so IntA,(y,e0) C w(€) \ p(p(A)). This
implies that y & p(p(A)), a contradiction. Applying now Theorem 4 from
[4] we obtain that the space (¢(f), 74, ) does not satisfy the first axiom of
countability and hence it is not metrizable.

3. Let ¢ € &, p(u) > 0 for u > 0 and let ¢ be a convex function.
Then ¢(40) = 0 and in the space ¢*(¢) we can introduce a norm

lzll, :inf{a>0: ;g0<éfk) < 1} |

By 7% we denote the topology induced by the metric o(z,y) = ||z — yl|,
restricted to ¢(¢) C ¢*(¢). It is easy to see that for 0 < e < 1|x]|, <€

implies ||z||, < € and ||z||, < 2 implies |z], < €. An obvious corollary of
this fact is the following

Remark 3.1. If ¢ € ®, p(u) > 0 for u > 0 and ¢ is a convex function,
then 7% = T, and if ¢(¢) is complete in the metric defined by the F—

norm |-|,,, then it is complete in the metric defined by the norm || -|,, and
conversely.

In this section we shall give the conditions under which the space
(©(€),74,) is normable (cf. Theorem 1.1). Later we need the following

Lemma 3.1. If ¢ € ® and the space (¢({), 7, ) is linear and normable,

then p(u) > 0 for u > 0, ¢ satisfies the condition (As) and ¢ is equivalent
to a convex function ¢ € P.

PROOF. The idea comes from the proof of [2] 1.9. Since (©(£), 7g,) is
a nontrivial normable space it follows that it is nondiscrete and metrizable.
Thus according to Theorems 1.3 and 2.4 we have p(+0) = 0, ¢(u) > 0 for
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u > 0 and ¢ satisfies the condition (Az). There exists a norm || - || on the
set ¢(¢) such that the topology 7 induced by the metric o(z,y) = ||z — y||
coincides with the original topology of (¢), that is 73, = 7. Let K(x,¢)
denote the open ball

K(z,e) ={y e o(l): [z —yll <e}

in the space (¢(¢), 7). Theorem 1.7 shows that 0 € ¢(¢) belongs to the
interior (in 7y ) of the 1-neighbourhood A,(0,1) of 0 and thus there are

d > 0 and € > 0 such that A,(0,¢) C K(0,0) C A,(0,1). Now, let

0 < a < 1 be arbitrary. Then there is a natural number n such that
n+r1 < a < 1 Letay,...,z, € Ay(0,e) be arbitrarily chosen. Then
L(zy+---+w,) € A,(0,1). There is a real number v > 0 such that () <

€. Let 0 <t < . Then there is a natural number m such that mi—l <

o(t) < =. Hence = < 2¢(t). Let e = (1,0,0,...), e2 = (0,1,0,...),
e3 =(0,0,1,...),... and z; = t(e; +€ipn + -+ €iy(m-1)n) for 1 <i < n.
Then dy(z;,0) = me(t) < € and thus d, (2+2En 0) = nmep (L) < 1.
Consequently ¢ (1) < -1 < Z,(t). Hence p(at) < Z¢(t) < Lap(t).
Let us define a function

£ty = sup £
0<a<l «

for 0 <t <~.

Then 0 < f(t) < oo for 0 <t <7,

Fon) = sup POy gy POy

0<a<l @ o<a<l «&
for 0<t<vy, 0<A<1

and f is equivalent to . Now we define

f(t) :
- 1f0<t§')/,
(

g(t) =
fwz)-t if t=0o0rt>n~.

This function is non-decreasing for all ¢ > 0. Indeed, for 0 < t; <ty <7

e
we have g(t1) = f(tfl 2) < fsfj) = ¢g(t2) and for 0 < t; <y < t2 g(t1) <
@ < @ : % = ¢(t2). Finally, let
t
g(s)ds if t>0,
vy =1 1
P(—t) it t<0.
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This function is convex. Moreover, for 0 < t < min(2ug,7y) we have
¢
Y(t) < g(t) -t < 2(t), ¥(t) = [g(s)ds > g (5) - 5 = ¢o(t), where C' >0,

2
up > 0 are constants as in the condition (Aj). This implies that 1 is
equivalent to ¢, € ® and v is a convex function.

Theorem 3.1. Let ¢ € ®. The space (¢(), 74, ) is linear and normable

if and only if p(u) > 0 for u > 0, ¢ satisfies the condition (A3) and ¢ is
equivalent to a convex function ¢ € .

ProOF. Sufficiency. It is apparent that for the convex function i) € ®
we have ¥(40) = 0. If ¢ is equivalent to ¢, then t(u) > 0 for u > 0
and ¢ satisfies the condition (As). Hence 73, = 7% and thus, taking
into account also Theorem 1.1, (¥(£),73,) is a normable linear space.
Moreover, p(¢) = 9(£) and 73, = 73,. Thus (©(£),73,) is a normable
space as required.

Necessity follows from Lemma 3.1.

4. In this section we examine connections between Cauchy sequences
and convergent ones in the sense of the ¢—distance.

Later we shall need the following

Definition 4.1. We say that a sequence (zy,)n>1, Tn € @(£) for n >1
satisfies the Cauchy condition in the sense of the ¢—distance (or it is a
Cauchy sequence in the sense of the ¢—distance) if for every € > 0 there
exists a natural number N(¢) such that dy,(z,,2nm) < € for n,m > N(e).

Lemma 4.1. Let ¢ € ®, p(u) > 0 for u > 0 and ¢(+0) = 0. Any
sequence of elements of p(¢), convergent in the sense of the p—distance to
some element of p({), is a Cauchy sequence in the sense of the p—distance
if and only if ¢ satisfies the condition (As).

PROOF. Sufficiency. Let (z,,),>1 be an arbitrary sequence such that
zn € @(0) for n > 1, dy(zp,z) — 0 as n — oo and = € (). Let
C > 0, ugp > 0 be constants as in the condition (Az) and let € > 0 be an
arbitrary real. There exists a natural number N such that d,(z,,z) <
min (55, ¢(ug)) for n > N. Then, by Remark 1.2, dy(z,,2m) < € for
n,m > N and hence the sequence is a Cauchy sequence in the sense of the
p—distance.

Necessity. Let us suppose that the condition (Aj) is not satisfied.
Choose a sequence u,, | 0 as n — oo and the sets Fj, as in the proof of
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Theorem 2.3. We define for every fixed n > 1

0 if keF,i<n,
& =1 —iu, if keF,,
U; if kEFZ-,i>n.

Then for every fixed n > 1

ZSO&C Z (%un)‘f—i Zw(ui)<oo2“<oo

jeF, i=n+1 jeEF; =n

and hence x, € ¢(¢) for n > 1. Let x = (0,0,...). Then d,(z,,z) — 0
as n — oo. Thus the sequence (z,),>1 is convergent to z € ¢(¢) in the
sense of the p—distance. Now let n > m be arbitrary natural numbers. We
obtain

dy(Tn, Tm) > Y @ ((1 + %) un> > 2" N o(uy) > 2

JEF, JjEF,

This implies that (x,)n>1 is not a Cauchy sequence in the sense of the
p—distance.

Lemma 4.2. Let ¢ € ®, p(u) > 0 for u > 0 and ¢(+0) = 0. Any
Cauchy sequence in the sense of the ¢—distance of elements of ¢(¢) is
convergent in the sense of the p—distance to an element of p(¢) if and only
if ¢ satisfies the condition (As).

PRrROOF. Sufficiency. Let (x,)n>1, n € @(¢) for n > 1 be an ar-
bitrary sequence satisfying the Cauchy condition in the sense of the -
distance. We choose a continuous function ¢ € ®, equivalent to ¢ (this
is clearly possible). Let ¢ > 0 be arbitrary. Then dy(z,,zm,) < € for
sufficiently large n,m. It follows that nli_)n;o & = & for E > 1. By the

continuity of ¢, obviously dy(zy,2) — 0 as n — oo and so dy(2y,z) — 0
as n — oo. Since z,, —x € @({) for large n, we conclude by Theorem 1.1
that x € p(¢).

Necessity. Suppose that the condition (As) is not satisfied. Let the

sequence u, | 0 as n — oo and the sets F;, be as in the proof of Theorem
2.3. We put

e — 2u; if keF;,1<n,
B o if keF,,1>n.

Then for every fixed n > 1

Sty <3 oo+
k=1
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Hence z,, € ¢({) for every n > 1. Further, for any natural numbers p > ¢

Se@-= Y Yew< Y g

k=1 i=q+1 jEF, i=q+1

Thus d,(zp,z4) — 0 as p,qg — oo. Now let & = 2u; if & € F;. Then

oo o oo
dp(Tn,z) < Y 277 — 0 as n — oo, but > w(€k) > > 2 =o00. This
i=n+1 k=1 n=1
implies that (x,),>1 is a Cauchy sequence in the sense of the p—distance,
but taking also Remark 1.1 into account, it is not convergent in the sense
of the p—distance.

From the above lemmas follows immediately

Theorem 4.1. Let ¢ € ®, p(u) > 0 for u > 0 and ¢(4+0) = 0. The
following conditions are equivalent:

(a) ¢ satisfies the condition (As),

(b) any sequence of elements of ¢({), convergent in the sense of the
p—distance to some element of p(¢), is a Cauchy sequence in the sense of
the p—distance,

(c) any Cauchy sequence in the sense of the p—distance of elements of
»(¢) is convergent in the sense of the p—distance to an element of p(/).

Note the following obvious

Remark 4.1. Let ¢ € @, ¢(u) > 0 for u > 0 and ¢(4+0) = 0. If a
sequence (Tp)n>1, Tn € @(¢) for n > 1 satisfies the Cauchy condition in
the metric defined by the F-norm ||, then it satisfies this condition in
the sense of the ¢—distance (see also Remark 2.1).

Now we shall prove

Theorem 4.2. Let ¢ € &, p(u) > 0 for u > 0 and ¢(+0) = 0. A
sequence satisfying the Cauchy condition in the sense of the p—distance
satisfies the Cauchy condition in the F-norm |-|, if and only if p satisfies
the condition (As).

PRrROOF. Sufficiency follows from Remark 2.2.

Necessity. Suppose that ¢ does not satisfy the condition (Ag). Let
the sequence u,, | 0 as n — oo and the sets F,, be as in the proof of
Theorem 2.3. Let for every fixed n > 1

en 2u, if ke F,,
ko U; if k:EFi,i#n.
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Then x,, € p(¢) for n > 1. Moreover,

1 1
dp(Tn, Tm) = Z o(un) + Z o(um) < ST —|—2m—_1 — 0 asn,m — 0o.
JEF, JEFm

Hence (x,,)n>1 is a Cauchy sequence in the sense of the p-distance. Let
us suppose that it is a Cauchy sequence in the F-norm |-|,. Let € > 0 be
arbitrary. Then there is (see [3] Theorem 1.6) a natural number N such

that > ¢ (2§ — &) < € for n,m > N. On the other hand, for every
k=1

n,m

D e @E =) =D eun)+ D o(2um) > 4,

k=1 jan jeF'm
a contradiction.

Applying Remark 4.1, Theorem 4.1(a), (c¢) and Remark 2.2 we can
rephrase Theorem 1.82 in [2] as follows

Corollary 4.1. Let ¢ € ®, p(u) > 0 for u > 0 and ¢(+0) = 0. If
any Cauchy sequence in the sense of the p—distance of elements of ¢({) is
convergent to an element of ¢({) in the sense of the p—distance, then the
space ¢({) is complete in the F-norm |-|.,.

Finally we examine the problem of compactness of the sets in the
space (¢(£),7a, ).

Definition 4.2. We say that a set A C ¢(¢) is bounded in the sense

of the ¢—distance if there are z € p(¢) and a real number 6 > 0 such that
A C Ay(x,9).

Theorem 4.3. Let ¢ € ®, p(u) > 0 for u > 0, p(+0) = 0 and let
¢ satisty the condition (Ag). If a set A C ¢({) is compact in the Tg,
topology, then the following conditions are fulfilled:

(a) A= A4,

(b) for every € > 0 there is a natural number N such that

oo

Z o) <e for n>N and x€ A,
k=n+1

(c) A is a bounded set in the sense of the p—distance.
If ¢ is additionally a convex function, then these conditions are also suffi-
cient in order that A be a compact set in the 1, topology.

Proor. Sufficiency. By Corollary 2.1, Remark 3.1, Theorem 1.1,
Theorem 4.1 and Corollary 4.1 we can state that (o(¢),7a,) = (¢(£), T¢)
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is a Banach space and taking also Remarks 3.1, 2.2 and 2.1 into ac-
count we can state that the set: e; = (1,0,0,...),es = (0,1,0,...),
es = (0,0,1,...),... is a basis in this space. We shall prove that the
condition (b) is equivalent to the following requirement:

for every € > 0 there is a natural number N such that

> Gex

k=n-+1

<e for n>N and z€ A.

(%)

[

As the implication (x) = (b) is obvious, it suffices to prove that (b) = ().
In fact, let € > 0 be an arbitrary real. There is a natural number m
such that ¢ > le,l. Let C' > 0, ug > 0 be constants as in the condition

(Ag). From (b) there exists a natural number N such that > (&) <

k=n+1
o0
min(cm,w(Qm 1)) forn > N and x € A. Hence ) (p(%ﬁk) <1
k=n-+1
s €
and so S &rer|| < 5 < ¢. Further, one can easily prove that if
k=n+1

y € Ay(x,9), then ||z —y||, < max(1,0) for x € ¢(¢) and § > 0. Applying
now from [1], the Theorem in §28 we obtain that the set A is compact.
Necessity. 1t is clear that the condition (a) holds. We shall prove

that the condition (b) is fulfilled. Let € > 0 be an arbitrary real and let
C > 0, up > 0 be constants as in the condition (Ajz). Choose 0 < § <

min (1, ¢(uo), 55). We can find a finite set {21,..., 2, } of points of ¢(¢)
which is a d-—net for the set A in the metric defined by the F-norm |-|.

Further, there exists a natural number N such that > (&) < § for

k=N-+1
1 <i<m. Let z € A be arbitrarily chosen. Then by Remark 1.2
Z@(fk)écz (Sk—Sk +CZ Ek )<e for n>N.
k=n+1 k=n+1 k=n-+1

Hence the condition (b) holds. It remains to prove that the set A is
bounded in the sense of the ¢—distance. There is a real number ag>0
such that ¢(ag) < 1. Let 0 < 0 < p(ag). We can find a finite set
{z1,22,..., 2} of elements of ¢(¢) which is a d—net for the set A in
the metric defined by the F-norm |-|,. Let y be a fixed element of ¢(¥)
and let d = 1r<nzix dy(y,x;). For every 1 < i < m there is a real number

a; > 0 such that |y — &/| < a; for k > 1. Let a = max a;. There exists

0<i<m

a constant C, > 0 such that p(u +v) < Cya(e(u) + ¢(v)) if 0 < u,v < a.
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Let € A be arbitrarily chosen. Then there is x; € {z1,22,..., 2, } such
that |z — 2], < 6. Thus

do(z,y) =Y 0 (16 — &l + 1€ — me]) < Ca(l + )

k=1
and so A C Ay (y,Cq(1 + d)). This implies that the condition (c) holds.
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