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Cyclic presentations and solutions
of singular equations over free groups

By ARYE JUHASZ (Haifa)

Dedicated to the memory of Dr. Edit Szabo

Abstract. In this paper solutions of finite order for singular equations over
free groups are considered. As an application we prove a new criterion for the
infinitude of cyclically presented groups.

Introduction

Let G be a group. An equation over G is an expression r(t) = 1, where
r(t) is an element of the free product G * (¢ | —) written in normal form,
r(t) ¢ G. The equation r(t) = 1 is singular if the sum of the exponents
of ¢t in r(t) is zero. There is an extensive literature on solvability and so-
lutions of equations over free groups G with and without the additional
requirement that the solutions should be in G. In this paper we consider
solutions of singular equations outside G. It is well known (see [Bro] and
[Hol]) that every equation over a free group is solvable in some overgroup,
since every free group is locally indicable. This paper is addressed to the
problem: which equations over G' have solutions of finite order n and for
which n? Our Main Result (Theorem A, stated at the end of Section 1)
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implies that every singular equation over G which satisfies a certain com-
binatorial condition (%) (see Definition 1.4) which can be algorithmically
checked, has solution of order n for every n which is at least four times
the length of the equation. We apply this result for G = Z and derive a
Freiheitssatz for cyclic presentations.

Thus let 2 < k < n be natural numbers, let X = {z1,...,z,} and let
F(X) be the free group on X. Let © : F(X) — F(X) be the automorphism
of F(X) defined by ©(z;) = xj4q1 fori =1,...,n—1 and ©(z,,) = z1. Let
W(x1,...,x;) be a cyclically reduced word in F(X) and let W® be the
automorphic image of W by ©. (Thus W is a word in F(X) which “looks
like W7, but with indices of the z; shifted by one, mod n.) Define we'
accordingly. Then P = (X | W,W® ..., Wen_1> is the cyclic presentation
defined by W. Let H = (x1,...,x | W) and let C' be the group presented
by P.

Cyclic presentations have been widely studied. (See [Edj2] and refer-
ences there.) The main problem concerning cyclic presentations is whether
the given presentation presents the trivial group, a finite group or an
infinite group. There are examples for each of these cases. (See [Joh]
and [Edj2].) In certain cases it is very easy to see that C is infinite,
just by showing that the abelianised quotient of C' is infinite (see [Joh]).
However, this test is not always applicable, since infinite cyclic presenta-
tions may have trivial abelianisations. In these cases other methods are
needed, mostly relying on geometrical interpretations when available, or
using small cancellation theory. The following theorem gives a different
type of test for the infinitude of the given group with cyclic presentation.

Theorem B. Let C be as above. If W satisfies (x) and n > 4k then
H embeds in C.

Since k£ > 2, H is infinite and in particular C is infinite, since C
contains an isomorphic copy of H. This way we show that a new large
class of cyclic presentations is infinite.

Remark 0.1. A similar result, formulated differently, was obtained in-
dependently by M. EDJVET and J. HOwIE [Edj-Ho].

The work is organised as follows. In Section 1 we collect the necessary
definitions and results from the literature and formulate the main result;
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Theorem A. In Section 2 we prove the main theorem and in Section 3 we
apply Theorem A to get Theorem B.

1. Preliminary results

1.1. Equations.

Definition 1.1. Let r(t) € G * (t). A solution of the equation r(t) =1
is a triple (H, v, h), where H is a group, v is an embedding of G in H and
h is an element of H such that v(r(h)) = 1 in H, where v(r(h)) is the
element of H obtained by the substitution of & in the image v(r(t)) of r(t)
in H, in place of t.

The following well known criterion follows easily from this definition
and the universal property of free products (see [Edjl]).

Lemma 1.2.

(1) r(t) = 1 is solvable if and only if the natural map 7 : G — G * <t>/((r(t)>>
is an embedding. Here ((r(t))), as usual, denotes the normal closure of
r(t) in G * ().

(2) r(t) = 1 has a solution of order n if and only if the natural map
1 G — G <t>/<<7«(t), t")) is an embedding.

1.2. Magnus Subgroups. (see [L-S])

Definition 1.3.

(a) Let F = (X | —) be a free group and let R be a cyclically reduced
word in F, R # 1. Let K be the group with one-relator presentation
<X | R>. A Magnus Subgroup of K is a subgroup generated by a
proper subset of X which misses at least one generator and its inverse
which occurs in R.

(b) A Magnus intersection in K is the intersection of two Magnus Sub-
groups.
Magnus intersections are not necessarily Magnus Subgroups, e.g., if
X = {a,b}, R = a?b? then K| = (a) and K = (b) are Magnus Subgroups,
however K N Ky = (a?) is not a Magnus Subgroup. The study of Magnus
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intersections was initiated by D. J. CoLLINS [Co] who proved that Mag-
nus intersections are either Magnus Subgroups or free-products of Magnus
Subgroups with an infinite cyclic group. Later J. HOWIE extended this
result in [Ho2] to one-relator free products of locally indicable groups. Mo-
tivated by D. J. COLLINS’ results on Magnus intersections in one-relator
groups and independently of [Ho2] a similar result was shown in [Ju] for
free products of arbitrary groups, however with the assumption that R
satisfies a small cancellation condition. In these papers it was also consid-
ered, which are the exceptional Magnus intersections, in the sense that if
K= <X1> and Ky = <X2>, where X1, Xo C X, then K1NKy # <X1 ﬂX2>.

The following theorem was conjectured by D. J. COLLINS and is
proved in [Ho2|. See also [Co].

Theorem ([Ho2|). Let G = (A, B,C | R) be such that the Magnus
Subgroups (A, B) and (B,C) have exceptional intersection. Then there
exists a two-generator one-relator group Gy = (z,y | Ro(x,y)) such that
one of the following hold
(a) in Gy 2™ = y"™ and R(A, B,C) is freely equal to Ro(u,v), where u

lies in F(A, B), v lies in F(B,C') and neither lies in F'(B).

(b) in Gy xy™x~! = y" and R(A, B,C) is freely equal to Ry(vu,w),

where u lies in F\(A, B), v lies in F(B,C), neither lies in F(B) and w

is a word of F'(B).

It is also proved in [Ho2| that there exists an algorithm to decide
whether a given relator has one of the forms given in (a) and (b) above.

Definition 1.4. (The condition (x).) Let r(t) = 1 be an equation over
the free group G. Call r(t) = 1 exeptional if r(t), as an element of the
free group G * (t) satisfies condition (a) or (b) of the Theorem above.
If r(t) = 1 is not exceptional we call it non-exceptional and say that it
satisfies condition ().

Remark 1.5. In [Ju] Magnus intersections of one-relator free products
with the condition C'(5)&T'(4) were considered and a precise explicit list
of all words which admit an exceptional Magnus intersection was given.

1.3. Magnus—Moldavanskii transform and Magnus’s Theorem.
Let 7(t) = 1 be a singular equation over the free group G, freely
generated by X. Then the normal closure of r(¢) in G * (t) is contained in
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the normal closure ((G)) of G in G*(t), because the sum of the exponents of
tin r(t) is zero (see [L-S, p. 199]). Now, ((G)) is normally generated by the
conjugates of the generators of GG, conjugated by the powers of ¢, hence we
can rewrite r(t) in terms of these generators. Denote the rewritten word

by S(r(t)).

Ezample 1.6. Let X = {x1} r{(t) :'t_lx%t_lxl_lt%l_l. Then we get:
S(r(t) = a?1a”zay", where a; = t'x1t7, for i = —2, —1,0.

Definition 1.7. Let notation be as above. The rewritten word S (r(t))
is called the Magnus-Moldavanskii transform of r(t). Denote the lowest
index in S(r(t)) by A(r(t)) and the highest index by p(r(t)). If r(t) is
fixed, we shall write A and p in place of )\(r(t)) and p(r(t)), respectively.
In the last example A = —2 and p = 0.

The importance of S(r(t)) stems from the following fundamental the-
orem of W. MAGNUS. (See [L-S] and references there.)

Theorem (W. Magnus). Let K be a group with a one-relator presen-
tation <X | R>. Suppose that for some x; € X that occurs in R the sum of

the exponents of x; in R is zero. Let az@ = tta;t~*, for x; € X \ {z;} and
¢ e€Z. Then K = <H, zj | l‘j_lUl‘j = V>, where H = <a§€) such that z; €
X\ {z;}, A<L<p| Sr@)). U={(aV,... aV |z; € X\ {z;}) and

)

V= <a(>‘+1),...,a§p) | ;€ X\ {z;}).

)

1.4. Hickin index and Hickin’s Theorem.

K. K. HICKIN considered in [Hi] the following problem:
Let ¢ : A — B be an isomorphism of subgroups of a group G. For every
natural number n denote H, = (G,t | t"'at = ¢(a),(a € A) and t" = 1)
and call it bounded HNN presentation. Under what condition does G
embed in H,, via the natural map? To resolve this problem he introduced
the following: let ¢ > 1 be the smallest natural number such that D =
Dom(¢?) = Dom(¢~9). Here Dom stands for domain. If such a ¢ exists
denote ||¢]| = ¢ — 1 and if no such integer exists then denote |¢| = oc.
We call q the Hickin-index of .

It is easy to see that if D exists then it is the unique largest ¢-invariant
subgroup of AN B, hence ¢ acts on D as a group of automorphism. Denote
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by |¢| the order of ¢ on D. (Notice that our notation slightly differs from
that of [Hi]). HICKIN solved the above problem in the following theorem.

Theorem ([Hi|). Let notation be as above. Then
(a) G embeds in H,, for some n if and only if ||| and |¢| are finite.

(b) If||¢|| and |p| are finite then G embeds in H,, for every n which satisfies
the following two conditions:

(i) n > 4| (i) lg| | n.
1.5. The Main Theorem.

Theorem A. Let F' be a free group, freely generated by a non-empty
finite set X = {x1,...,zy} and let r(t) = 1 be a singular non-exceptional
equation over F. Then for every n > 4(p — A), where A = A(r(t)) and
p = p(r(t)) (see Subsection 1.3) the equation r(t) = 1 has a solution of
order n.

2. Proof of the Main Theorem

By Lemma 1.2(2) we have to show that G — G * <t>/<<r(t),t”>> is an
embedding. Consider first the quotient L = G * <t>/<<r(t)>> Since G is free,

L is a one-relator group such that ¢ has exponent sum 0 in 7(¢). Therefore,
by Magnus Theorem (see Subsection 1.3) L = <H,t | 71Ut = V>, where

H:<l‘(ﬂ), xieX,)\gﬁgp\S(T(7§))>,U:<x(ﬂ), v, € X | A< <L

p—1> and V = <l‘§ﬂ), re€X | AM1<8< p>. (Here we follow the notation
of Subsect. 1.3.) Consequently, G * <t>/<<r(t),t”>> = <H,t | t~lUt =V, t”>,
hence Hickin’s Theorem applies and proves Theorem A, provided that
we show that conditions (i) and (ii) of its part (b) are satisfied, where
o(u) = t7tut,u € U. Now, Dom(p) = U, Dom(p~!') = V. Compute
Dom(¢*) and Dom(p %), £ > 2.

Dom(¢?) = {z € U | ¢
={zeUly

x) € Dom(p) NV}

) eUNVY=p HUNV),
(
(

—~~

Dom(¢ %) ={y € V| ¢ '(y) € Dom(p) ' NU}
={yeVi]ipgty) eUnNV}=pUnNV).
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Since r(t) is non-exceptional by assumption, hence

unv={_" | x+1<p<p-1).

1

But ¢ acts as a shift of indices by 1 forward and ¢~" acts as a shift of

indices by 1 backward. Therefore
pUNV) = (@ 2, e X | A+2<8<p)
el UNV) =@ meX | A<B<p—2).

Hence,

Dom(¢?) <:L"6)\>\§ﬁ§p—2, z; € X)
2

(
(2 | A+2<B<p, w € X).

Dom(i2)

Now it easily follows by induction on ¢ that
Dom(¢’) = <l‘§ﬂ) IN<B<p—t z;€X)
Dom(p ") = (a\? | A+ €< B < p, @i € X).

But then ||¢]| = p — XA and D = {1}, hence |p| = 1 and conditions (i) and
(ii) of part (b) of Hickin’s Theorem are satisfied.
The theorem is proved.

3. Proof of Theorem B

We are going to apply Theorem A for the special case G = (x1).
Following [Joh], we consider the split extension E of the group presented
by P. We have E = <1:1,t | W(:{:l,t),t”>, where /W(xl,t) is obtained from
W(zx1,...,x) by replacing x; by t'z1t™" and then freely reducing. Now,
we consider W(azl, t) as an equation in ¢ over (z1) for which we are looking
for a solution of order n. Observing that S(W(ml,t)) =W(x1,...,zp), it
follows from Theorem A that H embeds in E, provided n > 4k.

The theorem is proved.
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