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On skew 2-groups

By AVINOAM MANN (Jerusalem)

To the memory of Edith Szabó

Abstract. We study 2-groups whose non-linear irreducible characters are of
the third kind, i.e. real but not afforded by a real representation.

The purpose of this short note is to draw attention to an interesting
class of finite 2-groups, and to make a start in studying them. Our results
are far from definitive. First, let us recall the definition of the Frobenius–
Schur indicator ν(χ) of an irreducible character χ of a finite group G.
ν(χ) = 1 if χ is afforded by a real representation, ν(χ) = −1 if χ is real,
but is not afforded by a real representation, and ν(χ) = 0 if χ is not
real-valued. χ is said to be of the first, second, or third kind, if ν(χ) =
1, 0, or −1, respectively. For the theory of this indicator, see, e.g., [JL,
chapter 23]. Here we denote by Irr(G) the set of irreducible characters
of G, by X = X(G) the set of non-linear irreducible characters, and by
t(x), for x ∈ G, the number of elements y such that x = y2. In particular
t(1) = t + 1, where t is the number of involutions of G. We need the
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following two formulae:

ν(χ) =
∑

x∈G χ(x2)
|G| , (1)

t(x) =
∑

χ∈Irr(G)

ν(χ)χ(x). (2)

We also need the fact that irreducible characters of third kind have even
degree.

Recall that G is real, if all its irreducible characters are real. This is
equivalent to all elements being real, i.e. conjugate to their inverses. In
[CM], D. Chillag and the present author considered groups in which all
non-linear characters are real. Here we consider a more restricted class.

Definition. A group is termed skew, if it is non-abelian, and all its
non-linear characters have Frobenius–Schur indicator −1.

Thus in a skew group all non-linear characters are real. Among the
linear characters, the real ones are the ones of order 2 (or 1), i.e. the
characters of G/G2, and they are of the first kind.

Theorem 1 (W. Willems). A skew group G is a 2-group.

Proof. This is proved by W. Willems in [W], under the extra hy-
pothesis that G is real. However, he relies on a paper (his reference [3])
which seems not to have been published. We will indicate here a differ-
ent argument, which avoids the reality assumption, and also avoids the
application of the Feit–Thompson theorem, which was used in [W]. That
argument embodies a considerable simplification, suggested by the ref-
eree, of my original argument. Let G be a minimal counter example to
the theorem. First, since all non-linear irreducible characters have even
degree, a theorem of J. G. Thompson [T] shows that G has a normal
2-complement K. Let T be a Sylow 2-subgroup of G. Then T ∼= G/K,
therefore G and T have the same number of linear characters of order 2,
and all irreducible characters of T can be considered as characters of G.
Formula (2), for x = 1, shows that T has at least as many involutions as
G has. This is possible only if G and T have the same number of involu-
tions, and then (2) implies that all non-linear irreducible characters of G
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are characters of T , which means that K is contained in the kernels of all
these characters. But then K = 1, and G is a 2-group. �

A similar argument establishes the following variation:

Theorem 2. Let G be a finite group, in which all non-linear irre-

ducible characters have even degree, and they are not of the first kind.

Then G is a direct product of a 2-group and an abelian group.

Proof. As in the previous proof, G has a normal 2-complement K,
and if T is a Sylow 2-subgroup, then G and T have the same number of
involutions. This means that all involutions of G lie in T , and they generate
a normal 2-subgroup S of G. By induction G/S is a direct product of
a 2-group and an abelian group. We may assume that K �= 1. Since
K ∩ S = 1, and G/K is a 2-group, G is also a direct product of a 2-group
and an abelian group. �

Examples. The quaternion group Q (of order 8) is skew, while in the
dihedral 2-groups Dn of order 2n all characters are of the first kind. More
generally, for each n one of the two extraspecial groups of order 22n+1 is
skew, namely the one that is a central product of Q and several dihedral
groups of order 8. The other extraspecial group has all its characters of
the first kind. A direct product of a skew group and an elementary abelian
2-group is skew.

Two further examples, of order 64, will be noted below.
Recall that in a 2-group G2 = Φ(G), the Frattini subgroup.

Proposition 3. Let G be a skew group, and write |G : G2| = 2d.

Then |G| ≤ 22d−1. Equality holds only for G ∼= Q.

Proof. Write |G : G′| = 2k, recall that X is the set of non-linear
irreducible characters of G, and let A =

∑
χ∈X χ(1). Then t(1) = 2d − A,

implying A < 2d. Let m = maxχ∈X χ(1). Then m ≤ A, therefore m ≤
2d−1. Thus |G| = 2k +

∑
χ∈X χ(1)2 ≤ 2k +Am < 2k +22d−1. If k ≥ 2d−1,

we obtain |G| ≤ 2k, which is impossible. Thus k < 2d−1 and |G| ≤ 22d−1.
Suppose that equality holds. Then m = 2d−1, therefore |G : Z(G)| ≥

22d−2, so |Z(G)| = 2. Moreover, there is only one character of degree m,
and A−m < 2d−2d−1 = 2d−1. Thus |G| = 22d−1 ≤ 2k+(A−m)2d−2+m2 <



356 Avinoam Mann

2k + 22d−3 + 22d−2, which does not hold for k ≤ 2d − 3. Thus k = 2d − 2
i.e. G′ = Z(G). Since |Z(G)| = 2, that means that G is extraspecial, and
then its order is 2d+1. Thus d = 2, |G| = 8, and G ∼= Q. �

Proposition 4. Let G be a skew group, and 1 �= z ∈ G2. Then

t(z) > t(1). In particular, z is a square.

This follows immediately from the formula t(z) = 2d − ∑
χ∈X χ(z).

On the other hand, if all non-linear characters are of the first kind, we
have t(z) < t(1), while if all non-linear characters are of the second kind,
then t(z) is constant on G2. The last property actually characterizes 2-
groups in which all non-linear characters are of the second kind, by [CM,
Proposition 4.1].

We quote some further results from [CM].

Proposition 5. Let G be a non-real 2-group, in which all non-linear

characters are real. Then G/G′ has exponent 4, while all other factors

of the lower central series, and also all factors of the upper central series,

have exponent 2. Let R/G′ be the subgroup consisting of the elements

of order at most 2 in G/G′. Then R is the set of real elements of G, all

non-linear characters of G vanish off R, and if x /∈ R, then the conjugacy

class of x is the coset xG′.

This follows by specializing to 2-groups Theorems 1.3, 1.4, and Propo-
sition 4.9 of [CM].

Note that if G is a real group, then all factors of either the lower or
upper central series have exponent 2.

Lemma 6. A faithful character of a group G vanishes on Z2(G) −
Z(G).

This is well known. See [I, proof of (2.31)].

Proposition 7. Let G be a non-abelian 2-group such that each factor

group H of G satisfies: if 1 �= z ∈ H2, then t(z) > t(1). If cl(G) ≤ 3, then

G is a skew group. If we assume that G is real, we can relax the inequality

to t(z) ≥ t(1). Dually, if we assume the reverse inequality, t(z) < t(1), or

that G is real and t(z) ≤ t(1), then all non-linear characters of G are of

the first kind.
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Proof. Let χ be a non-linear character of G. We wish to prove that
χ is of the third kind. We may assume that χ is faithful. Then Z(G)
is cyclic. Suppose that it has order 4 at least. Then the restriction of χ

to Z(G) is a multiple of a faithful linear character, and it is not real. If
we assume that G is real, this is a contradiction. If we do not assume
reality, then we obtain that all faithful characters are of the second kind.
Let N be the subgroup of order 2 in Z(G), and let N = {1, z}. Then N

is the unique minimal normal subgroup of G, and thus lies in the kernels
of all non-faithful characters. Since ν(χ) = 0 for the faithful characters,
equation (2) shows that t(z) = t(1), contradicting our assumptions. Thus
Z(G) = N has order 2. By induction, G/N is either abelian or a skew
group. If it is abelian, then N = G′ = Z(G), and thus G is an extraspecial
group. Then G has a unique non-linear irreducible character, which is
real, and our claims follow easily by counting involutions. Now assume
that G/N is a skew group. We have χ(z) = −χ(1). If cl(G) = 2, then χ

vanishes off Z(G). If cl(G) = 3, then χ vanishes on Z2(G) −Z(G), and in
particular on G′ − Z(G). If G is real, all squares are in G′, by the remark
following Proposition 5. If G is not real, let K = G/γ3(G). Then K is
a skew group by induction, and so exp(K ′) = 2, by Proposition 5 and
the remark following it. Therefore K2 ≤ Z(K). That means that in G

the squares are in Z2(G). Thus in either case χ vanishes on non-central
squares. Thus |G|ν(χ) =

∑
x∈G χ(x2) = (t(1)−t(z))χ(1), and this number

is, by assumption, non-positive, and either it is strictly negative, or χ is
real, so in either case χ is of the third kind. �

A similar proof establishes the dual statement.
As a rule, skewness is not inherited by subgroups, but there are ex-

ceptions.

Proposition 8. Let G be a non-real skew 2-group, and write G/G′ =
K×L, where K is cyclic of order 4. Let M = K2, and write M×L = H/G′.
Then H is a skew group. Dually, if all non-linear irreducible characters of

G are of the first kind, the same applies to H.

Proof. Let G be a non-real skew group, let λ be a character of G/G′

with kernel L, considered as a character of G, and let χ be a non-linear
character of G. If x ∈ H, then λ(x2) = 1, and if x /∈ H, then λ(x2) = −1.
We have

∑
χ(x2) = −|G| =

∑
x/∈H χ(x2) +

∑
x∈H χ(x2) = A + B, say.



358 Avinoam Mann

Similarly
∑

(χλ)(x2) = −|G| = −A + B. It follows that A = 0, and∑
x∈H χ(x2) = −2|H|. Since |G : H| = 2, the character χ|H is either

irreducible or the sum of two irreducible characters of H, and the above
equality shows that the only possibility is that χ|H is the sum of two
irreducible characters of the third kind. This shows in particular that H is
not abelian, since abelian groups do not have characters of the third kind.
Since each non-linear character of H occurs in χ|H , for some χ, we see that
H is a skew group. �

The dual statement is proved in the same way. Note that in that case
H may be abelian.

Proposition 9. Let G be a non-real skew group. Suppose that G/G′

is the direct product of r cyclic subgroups of order 4 and s subgroups of

order 2. Then s ≥ r +2 ≥ 3, and all non-linear irreducible characters of G

have degree at least 2r+1. If H is a subgroup of G such that |G : H| ≤ 2r,

then H ′ = G′, and G contains a real skew subgroup S of index 2r such

that S′ = G′.

Proof. Let H and χ be as in the previous proposition, and let η be
one of the irreducible characters of H that occur in χ|H . Then χ(1) =
2η(1), and η is not linear, because it is of the third kind. Thus the claim
about the degrees follows by induction on r, and then all subgroups of small
index have derived subgroup G′, by Theorem 1 of [M]. Also, repeatedly
applying the process of passing from G to H shows that the subgroup S

consisting of all elements of order 2 (or 1) (modulo G′) is a skew group
satisfying S′ = G′, which has index 2r. S is real, because exp(S/S′) = 2.

Let N be a normal subgroup of G which is maximal in G′, and write
T = G/N . Then |T | = 22r+s+1, and the non-linear characters of T have
degree at least 2r+1. Therefore |T : Z(T )| ≥ 22r+2. On the other hand
Proposition 5 shows that exp(T/Z(T )) = 2, and therefore T 2 ≤ Z(T ) and
|T : Z(T )| ≤ 2r+s. Combining the two inequalities yields s ≥ r + 2. �

Proposition 10. Let G be a skew group, in which |G : G2| = 2d and

|G| = 22d−2. Then d ≤ 4 and |G| ≤ 26. There are three such groups.

Proof. We use the notations X, A, and k, as in the proof of Propo-
sition 3, and recall the inequalities A < 2d and |G| ≤ 2k + Am. Obviously
m ≤ 2d−2 and k ≤ 2d − 3. If m < 2d−2 we get |G| < 2k + 22d−3 ≤
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22d−2. Therefore m = 2d−2. This implies that |Z(G)| ≤ 4. Let r

be the number of irreducible characters of degree m. Then r ≤ 3 and
|G| < 2k + (A − rm)2d−3 + r · 22d−4.

Let r = 1. Then the inequality |G| = 22d−2 ≤ 2k +(A−m)2d−3+m2 <

2k + (2d − 2d−2)2d−3 + 22d−4 = 2k + 22d−3 + 22d−5 implies k = 2d − 3, i.e.
|G′| = 2, and then G′ ≤ Z(G). But G is not extraspecial, because its order
is an even power of 2, and so we have |Z(G)| = 4, and since |G′| = 2, the
non-central elements of G have two conjugates each. Writing k(G) for the
class number of |G|, we obtain k(G) = 4+(22d−2 −4)/2 = 22d−3 +2. That
means that G has just two non-linear irreducible characters, and writing
|G| =

∑
Irr(G) χ(1)2 shows that both non-linear characters have the same

degree 2d−2, a contradiction.
Now assume that r = 2. Then the inequality for |G| becomes 22d−2 <

2k + 22d−3 + 22d−4, and this again implies k = 2d − 3, |G′| = 2, and
|Z(G)| = 4. Since cl(G) = 2, we have G2 ≤ Z(G). But |G2| = 2d−2, so
that d − 2 ≤ 2, d ≤ 4, and |G| ≤ 26.

Finally, let r = 3. In this case we get that k ≥ 2d − 4. If k =
2d−3, then k(G) is as above, and there are only two non-linear characters,
contradicting r = 3. Thus k = 2d − 4. Since 2k + 3.22d−4 = 22d−2, we
see that the three characters of degree m are all the non-linear characters
of G, and k(G) = 22d−4+3. On the other hand, since |G′| = |Z(G)| = 4, we
have k(G) ≥ 4+ (22d−2 − 4)/4 = 22d−4 +3. But we know already that this
inequality is an equality, and that means that each non-central element
x has exactly four conjugates, which are the elements of xG′. Taking
x ∈ Z2(G), we get G′ = [x,G] ≤ Z(G). Thus again cl(G) = 2. Since
exp(Z(G)) = 2, by Proposition 5 and its remark, we have G2 ≤ Z(G),
yielding |G| ≤ 26 as in the previous case.

Thus we have either d = 3 or d = 4. In the first case it is easy to see
that the only possibility is Q × C2. In the second case we have |G| = 64.
Using the information gathered so far in the proof, and also the previous
propositions and the Hall–Senior tables [HS], one can determine that
the only possibilities are the groups numbered 187 and 108 in the tables.
Of these the first one is real, the second one not. �

Remark. It is easy to see that among the groups of order 64 at most,
the only other skew groups are the direct products of Q by two or three
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copies of C2, one extraspecial group of order 32, and the direct product of
the latter group and C2.

Corollary 11. Let G be as in Proposition 9, and assume that s = 3.
Then G is the group number 108 in the Hall–Senior list.

Proof. If s = 3, then Proposition 9 shows that r = 1, and thus
d = 4. Since G �∼= Q, Proposition 3 shows that |G| ≤ 64, and the previous
proposition, and the remark following it, apply. �
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